Cet article étudie des systèmes dénombrables de diffusions en interaction hiérarchiques et linéaires vivant dans le quadrant positif. De tels systèmes apparaissent dans la dynamique d'individus de deux types qui migrent tout en interagissant dans des colonies. Le comportement à grande échelle et temps long peut être étudié en utilisant le programme de renormalisation. Ce programme, qui a permis de résoudre d'autres cas (principalement uni-dimensionnels) est basé sur la construction et l'analyse d'une transformation de renormalisation non linéaire, agissant sur la fonction de diffusion des composants du système et connectant l'évolution de blocs moyennés sur le temps à différentes échelles. Nous identifions une classe générale de fonctions de diffusion dans le quadrant positif pour lequel la transformation de renormalisation est bien définie et qui, sous une conjecture de comportement aux bords, peut-être itérée. À l'intérieur de certaines sous-classes, nous identifiens les points fixes de la transformation et étudions leurs domaines d'attraction. Ces domaines d'attraction constitutent les classes d'universalité du système après changement d'échelle dans le temps et l'espace.
This paper studies countable systems of linearly and hierarchically interacting diffusions taking values in the positive quadrant. These systems arise in population dynamics for two types of individuals migrating between and interacting within colonies. Their large-scale space-time behavior can be studied by means of a renormalization program. This program, which has been carried out successfully in a number of other cases (mostly one-dimensional), is based on the construction and the analysis of a nonlinear renormalization transformation, acting on the diffusion function for the components of the system and connecting the evolution of successive block averages on successive time scales. We identify a general class of diffusion functions on the positive quadrant for which this renormalization transformation is well defined and, subject to a conjecture on its boundary behavior, can be iterated. Within certain subclasses, we identify the fixed points for the transformation and investigate their domains of attraction. These domains of attraction constitute the universality classes of the system under space-time scaling.
Mots clés : interacting diffusions, space-time renormalization, two-type populations, independent branching, catalytic branching, mutually catalytic branching, universality
@article{AIHPB_2008__44_6_1038_0, author = {Dawson, D. A. and Greven, A. and den Hollander, F. and Sun, Rongfeng and Swart, J. M.}, title = {The renormalization transformation for two-type branching models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1038--1077}, publisher = {Gauthier-Villars}, volume = {44}, number = {6}, year = {2008}, doi = {10.1214/07-AIHP143}, mrnumber = {2469334}, zbl = {1181.60122}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP143/} }
TY - JOUR AU - Dawson, D. A. AU - Greven, A. AU - den Hollander, F. AU - Sun, Rongfeng AU - Swart, J. M. TI - The renormalization transformation for two-type branching models JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 1038 EP - 1077 VL - 44 IS - 6 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP143/ DO - 10.1214/07-AIHP143 LA - en ID - AIHPB_2008__44_6_1038_0 ER -
%0 Journal Article %A Dawson, D. A. %A Greven, A. %A den Hollander, F. %A Sun, Rongfeng %A Swart, J. M. %T The renormalization transformation for two-type branching models %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 1038-1077 %V 44 %N 6 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP143/ %R 10.1214/07-AIHP143 %G en %F AIHPB_2008__44_6_1038_0
Dawson, D. A.; Greven, A.; den Hollander, F.; Sun, Rongfeng; Swart, J. M. The renormalization transformation for two-type branching models. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 6, pp. 1038-1077. doi : 10.1214/07-AIHP143. http://www.numdam.org/articles/10.1214/07-AIHP143/
[1] Degenerate stochastic differential equations and super-Markov chains. Probab. Theory Related Fields 123 (2002) 484-520. | MR | Zbl
, , and .[2] On the attracting orbit of a non-linear transformation arising from renormalization of hierarchically interacting diffusions, Part I: The compact case. Canad. J. Math. 47 (1995) 3-27. | MR | Zbl
, , and .[3] On the attracting orbit of a non-linear transformation arising from renormalization of hierarchically interacting diffusions, Part II: The non-compact case. J. Funct. Anal. 146 (1997) 236-298. | MR | Zbl
, , and .[4] Diffusions and Elliptic Operators. Springer, New York, 1998. | MR | Zbl
.[5] Countable systems of degenerate stochastic differential equations with applications to super-Markov chains. Electron. J. Probab. 9 (2004) 634-673. | MR | Zbl
and .[6] Degenerate stochastic differential equations arising from catalytic branching networks. Preprint. | MR
and .[7] Mutually Catalytic Super Branching Random Walks: Large Finite Systems and Renormalization Analysis. Amer. Math. Soc., Providence, RI, 2004. | MR | Zbl
, and .[8] Ergodic theorems for infinite systems of locally interacting diffusions. Ann. Probab. 22 (1994) 833-853. | MR | Zbl
and .[9] Degrees of transience and recurrence and hierarchical random walks. Potential Anal. 22 (2005) 305-350. | MR | Zbl
, and .[10] Multiple scale analysis of interacting diffusions. Probab. Theory Related Fields 95 (1993) 467-508. | MR | Zbl
and .[11] Hierarchical models of interacting diffusions: Multiple time scales, phase transitions and cluster formation. Probab. Theory Related Fields 96 (1993) 435-473. | MR | Zbl
and .[12] Multiple space-time analysis for interacting branching models. Electron. J. Probab. 1 (1996) 1-84. | MR | Zbl
and .[13] Equilibria and quasi-equilibria for infinite collections of interacting Fleming-Viot processes. Trans. Amer. Math. Soc. 347 (1995) 2277-2360. | MR | Zbl
, and .[14] Continuum limits of multitype population models on the hierarchical group. In preparation.
, and .[15] Resolvent estimates for Fleming-Viot operators and uniqueness of solutions to related martingale problems. J. Funct. Anal. 132 (1995) 417-472. | MR | Zbl
and .[16] Long-time behavior and coexistence in a mutually catalytic branching model. Ann. Probab. 26 (1998) 1088-1138. | MR | Zbl
and .[17] On the uniqueness problem for catalytic branching networks and other singular diffusions. Illinois J. Math. 50 (2006) 323-383. | MR | Zbl
and .[18] Probability: Theory and Examples, 2nd edition. Duxbury Press, Belmont, CA, 1996. | MR | Zbl
.[19] Markov Processes - Characterization and Convergence. Wiley, New York, 1986. | MR | Zbl
and .[20] Diffusive clustering in an infinite system of hierarchically interacting Fisher-Wright diffusions. Probab. Theory Related Fields 98 (1994) 517-566. | MR | Zbl
and .[21] Renormalization analysis of catalytic Wright-Fisher diffusions. Electron. J. Probab. 11 (2006) 585-654. | MR | Zbl
and .[22] Renormalization and universality for multitype population models. In Interacting Stochastic Systems 209-246. J.-D. Deuschel and A. Greven, Eds. Springer, Berlin, 2005. | MR | Zbl
.[23] Renormalization of interacting diffusions. In Complex Stochastic Systems 219-233. O. E. Barndorff-Nielsen, D. R. Cox and C. Klüppelberg, Eds. Chapman & Hall, Boca Raton, 2001. | MR | Zbl
.[24] Renormalization of hierarchically interacting isotropic diffusions. J. Stat. Phys. 93 (1998) 243-291. | MR | Zbl
and .[25] Degenerate stochastic differential equations for catalytic branching networks. Preprint. Available at arXiv:0802.0035v1.
.[26] Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, 1995. | MR | Zbl
.[27] Isolation by distance in a hierarchically clustered population. J. Appl. Probab. 20 (1983) 1-10. | MR | Zbl
and .[28] Infinite-dimensional stochastic differential equations and their applications. J. Math. Kyoto Univ. 20 (1980) 395-416. | MR | Zbl
and .[29] Multidimensional Diffusion Processes. Springer, New York, 1979. | MR | Zbl
and .[30] Clustering of linearly interacting diffusions and universality of their long-time distribution. Probab. Theory Related Fields 118 (2000) 574-594. | MR | Zbl
.[31] Uniqueness for isotropic diffusions with a linear drift. Probab. Theory Related Fields 128 (2004) 517-524. | MR | Zbl
.[32] Probability Theory. Amer. Math. Soc., Providence, RI, 2001. | Zbl
.Cité par Sources :