Nous étudions la relation entre l’arbre couvrant minimal (ACM) sur des points aléatoires et l’arbre «quasi» optimal sous la contrainte qu’une proportion de ses arêtes soit différente de celles de l’ACM. Un raisonnement heuristique suggère que quelque soit le modèle probabiliste sous-jacent, le ratio des longueurs des deux arbres doit varier en . Nous montrons ce résultat d'échelle pour le modèle de la grille avec des longueurs d'arêtes aléatoires et pour le modèle euclidien.
We study the relation between the minimal spanning tree (MST) on many random points and the “near-minimal” tree which is optimal subject to the constraint that a proportion of its edges must be different from those of the MST. Heuristics suggest that, regardless of details of the probability model, the ratio of lengths should scale as . We prove this scaling result in the model of the lattice with random edge-lengths and in the euclidean model.
Mots-clés : combinatorial optimization, continuum percolation, disordered lattice, local weak convergence, minimal spanning tree, Poisson point process, probabilistic analysis of algorithms, random geometric graph
@article{AIHPB_2008__44_5_962_0, author = {Aldous, David J. and Bordenave, Charles and Lelarge, Marc}, title = {Near-minimal spanning trees : a scaling exponent in probability models}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {962--976}, publisher = {Gauthier-Villars}, volume = {44}, number = {5}, year = {2008}, doi = {10.1214/07-AIHP138}, mrnumber = {2453778}, zbl = {1186.05108}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP138/} }
TY - JOUR AU - Aldous, David J. AU - Bordenave, Charles AU - Lelarge, Marc TI - Near-minimal spanning trees : a scaling exponent in probability models JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 962 EP - 976 VL - 44 IS - 5 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP138/ DO - 10.1214/07-AIHP138 LA - en ID - AIHPB_2008__44_5_962_0 ER -
%0 Journal Article %A Aldous, David J. %A Bordenave, Charles %A Lelarge, Marc %T Near-minimal spanning trees : a scaling exponent in probability models %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 962-976 %V 44 %N 5 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP138/ %R 10.1214/07-AIHP138 %G en %F AIHPB_2008__44_5_962_0
Aldous, David J.; Bordenave, Charles; Lelarge, Marc. Near-minimal spanning trees : a scaling exponent in probability models. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 5, pp. 962-976. doi : 10.1214/07-AIHP138. http://www.numdam.org/articles/10.1214/07-AIHP138/
[1] Scaling and universality in continuous length combinatorial optimization. Proc. Natl. Acad. Sci. USA 100 (2003) 11211-11215. | MR | Zbl
and .[2] The ζ(2) limit in the random assignment problem. Random Structures Algorithms 18 (2001) 381-418. | MR | Zbl
.[3] Asymptotics for Euclidean minimal spanning trees on random points. Probab. Theory Related Fields 92 (1992) 247-258. | MR | Zbl
and .[4] The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures 1-72. H. Kesten (Ed.). Springer, Berlin, 2003. | MR | Zbl
and .[5] Percolation and minimal spanning forests in infinite graphs. Ann. Probab. 23 (1995) 87-104. | MR | Zbl
.[6] Simultaneous uniqueness of infinite clusters in stationary random labeled graphs. Comm. Math. Phys. 168 (1995) 39-55. | MR | Zbl
.[7] Graphs and Digraphs, 2nd edition. Wadsworth, Monterey, CA, 1986. | MR | Zbl
and .[8] Statistical Physics. World Scientific, River Edge, NJ, 2000. | MR | Zbl
.[9] The cavity method and the travelling-salesman problem. Europhys. Lett. 8 (1989) 213-218.
and .[10] Continuum Percolation. Cambridge Univ. Press, 1996. | MR | Zbl
and .[11] Probability Theory and Combinatorial Optimization. SIAM, Philadelphia, PA, 1997. | MR | Zbl
.[12] Weak laws of large numbers in geometric probability. Ann. Appl. Probab. 13 (2003) 277-303. | MR | Zbl
and .[13] Probability Theory of Classical Euclidean Optimization Problems. Springer, Berlin, 1998. | MR | Zbl
.Cité par Sources :