Nous considérons la fraction continue ordinaire de
For large
Mots-clés : euclidean algorithms, local limit theorem, diophantine condition, speed of convergence, transfer operator, continued fraction
@article{AIHPB_2008__44_4_749_0, author = {Baladi, Viviane and Hachemi, A{\"\i}cha}, title = {A local limit theorem with speed of convergence for euclidean algorithms and diophantine costs}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {749--770}, publisher = {Gauthier-Villars}, volume = {44}, number = {4}, year = {2008}, doi = {10.1214/07-AIHP140}, mrnumber = {2446296}, zbl = {1231.37015}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP140/} }
TY - JOUR AU - Baladi, Viviane AU - Hachemi, Aïcha TI - A local limit theorem with speed of convergence for euclidean algorithms and diophantine costs JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 749 EP - 770 VL - 44 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP140/ DO - 10.1214/07-AIHP140 LA - en ID - AIHPB_2008__44_4_749_0 ER -
%0 Journal Article %A Baladi, Viviane %A Hachemi, Aïcha %T A local limit theorem with speed of convergence for euclidean algorithms and diophantine costs %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 749-770 %V 44 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP140/ %R 10.1214/07-AIHP140 %G en %F AIHPB_2008__44_4_749_0
Baladi, Viviane; Hachemi, Aïcha. A local limit theorem with speed of convergence for euclidean algorithms and diophantine costs. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 4, pp. 749-770. doi : 10.1214/07-AIHP140. https://www.numdam.org/articles/10.1214/07-AIHP140/
[1] Euclidean algorithms are Gaussian. J. Number Theory 110 (2005) 331-386. | MR | Zbl
and .[2] Distributions diophantiennes et théorème limite local sur Rd. Probab. Theory Related Fields 132 (2005) 39-73. | MR | Zbl
.[3] Local limit theorems and equidistribution of random walks on the Heisenberg group. Geom. Funct. Anal. 15 (2005) 35-82. | MR | Zbl
.[4] Remainder term estimates of the renewal function. Ann. Probab. 11 (1983) 143-157. | MR | Zbl
.[5] An Introduction to Diophantine Approximation. Cambridge Univ. Press, New York, 1957. | MR | Zbl
.[6] Erratum to “Euclidean algorithms are Gaussian” by Baladi-Vallée. Submitted for publication, 2007.
.[7] Prevalence of rapid mixing in hyperbolic flows. Ergodic Theory Dynam. Systems 18 (1998) 1097-1114. | MR | Zbl
.[8] On decay of correlations in Anosov flows. Ann. Math. 147 (1998) 357-390. | MR | Zbl
.[9] Prime Numbers. Wiley, New York, 1985. | MR | Zbl
and .[10] An Introduction to Probability Theory and its Applications. Vol. II. Wiley, New York, 1971. | MR | Zbl
.[11] Berry-Esseen theorem and local limit theorem for non uniformly expanding maps. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 997-1024. | Numdam | MR | Zbl
.[12] Asymptotic winding of the geodesic flow on modular surfaces and continuous fractions. Ann. Sci. École Norm. Sup. (4) 26 (1993) 23-50. | Numdam | MR | Zbl
and .[13] Un théorème de la limite locale pour des algorithmes Euclidiens. Acta Arithm. 117 (2005) 265-276. | MR | Zbl
.[14] The number of steps in the Euclidean algorithm. J. Number Theory 49 (1994) 142-182. | MR | Zbl
.[15] Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Amer. Math. Soc. 359 (2007) 2421-2441. | MR
.[16] Analytic continuation of a dynamical zeta function under a Diophantine condition. Nonlinearity 14 (2001) 995-1009. | MR | Zbl
.[17] On the rate of mixing of Axiom A flows. Invent. Math. 81 (1985) 413-426. | MR | Zbl
.[18] Flots qui ne mélangent pas exponentiellement. C. R. Acad. Sci. 296 (1983) 191-193. | MR | Zbl
.[19] A local limit theorem for closed geodesics and homology. Trans. Amer. Math. Soc. 356 (2004) 4897-4908. | MR
.[20] Euclidean dynamics. Discrete Contin. Dyn. Syst. 15 (2006) 281-352. | MR | Zbl
.[21] Digits and continuants in Euclidean algorithms. Ergodic versus Tauberian theorems. Colloque International de Théorie des Nombres (Talence, 1999). J. Théor. Nombres Bordeaux 12 (2000) 531-570. | Numdam | MR | Zbl
.Cité par Sources :