Désignons par
Let
Mots-clés : fractional brownian sheet, Liouville fractional brownian sheet, fractional brownian motion, sectorial local nondeterminism, local times, joint continuity, Hölder conditions
@article{AIHPB_2008__44_4_727_0, author = {Ayache, Antoine and Wu, Dongsheng and Xiao, Yimin}, title = {Joint continuity of the local times of fractional brownian sheets}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {727--748}, publisher = {Gauthier-Villars}, volume = {44}, number = {4}, year = {2008}, doi = {10.1214/07-AIHP131}, mrnumber = {2446295}, zbl = {1180.60032}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP131/} }
TY - JOUR AU - Ayache, Antoine AU - Wu, Dongsheng AU - Xiao, Yimin TI - Joint continuity of the local times of fractional brownian sheets JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 727 EP - 748 VL - 44 IS - 4 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP131/ DO - 10.1214/07-AIHP131 LA - en ID - AIHPB_2008__44_4_727_0 ER -
%0 Journal Article %A Ayache, Antoine %A Wu, Dongsheng %A Xiao, Yimin %T Joint continuity of the local times of fractional brownian sheets %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 727-748 %V 44 %N 4 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP131/ %R 10.1214/07-AIHP131 %G en %F AIHPB_2008__44_4_727_0
Ayache, Antoine; Wu, Dongsheng; Xiao, Yimin. Joint continuity of the local times of fractional brownian sheets. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 4, pp. 727-748. doi : 10.1214/07-AIHP131. https://www.numdam.org/articles/10.1214/07-AIHP131/
[1] The Geometry of Random Fields. Wiley, New York, 1981. | MR | Zbl
.[2] Drap Brownien fractionnaire. Potential Anal. 17 (2002) 31-43. | MR | Zbl
, and .[3] Asymptotic properties and Hausdorff dimension of fractional Brownian sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | MR | Zbl
and .[4] Aquifer operator-scaling and the effect on solute mixing and dispersion. Water Resour. Res. 42 (2006) W01415.
, and .[5] Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277-299. | MR | Zbl
.[6] Gaussian sample function: uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | MR | Zbl
.[7] Local nondeterminism and local times of Gaussian processes. Indiana Univ. Math. J. 23 (1973) 69-94. | MR | Zbl
.[8] Anisotropic analysis of some Gaussian models. J. Fourier Anal. Appl. 9 (2003) 215-236. | MR | Zbl
and .[9] Joint continuity of Gaussian local times. Ann. Probab. 10 (1982) 810-817. | MR | Zbl
and .[10] Occupation density and sample path properties of N-parameter processes. Topics in Spatial Stochastic Processes (Martina Franca, 2001) 127-166. Lecture Notes in Math. 1802. Springer, Berlin, 2002. | MR | Zbl
.[11] Estimates for the small ball probabilities of the fractional Brownian sheet. J. Theoret. Probab. 13 (2000) 357-382. | MR | Zbl
.[12] Sample function properties of multi-parameter stable processes. Z. Wahrsch. Verw Gebiete 56 (1981) 195-228. | MR | Zbl
.[13] Occupation densities. Ann. Probab. 8 (1980) 1-67. | MR | Zbl
and .[14] A local time analysis of intersections of Brownian paths in the plane. Ann. Probab. 12 (1984) 86-107. | MR | Zbl
, and .[15] Inequalities. Cambridge Univ. Press, 1934. | JFM | Zbl
.[16] An iterated logarithm law for local time. Duke Math. J. 32 (1965) 447-456. | MR | Zbl
.[17] Multiparameter Processes: An Introduction to Random Fields. Springer, New York, 2002. | MR | Zbl
.[18] Sectorial local non-determinism and the geometry of the Brownian sheet. Electron. J. Probab. 11 (2006) 817-843. | MR | Zbl
, and .[19] Images of the Brownian sheet. Trans. Amer. Math. Soc. 359 (2007) 3125-3151. | MR | Zbl
and .[20] Local times of additive Lévy processes. Stoch. Process. Appl. 104 (2003) 193-216. | MR | Zbl
, and .[21] Small deviations for some multi-parameter Gaussian processes. J. Theoret. Probab. 14 (2001) 213-239. | MR | Zbl
and .[22] A relation between Hausdorff dimension and a condition on time sets for the image by the Brownian sheet to possess interior-points. Bull. London Math. Soc. 21 (1989) 179-185. | MR | Zbl
.[23] A law of the iterated logarithm for fractional Brownian motions. Preprint, 2005. | Zbl
and .[24] Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations. Stochastics Stochastics Rep. 71 (2000) 141-163. | MR | Zbl
and .[25] Local times for Gaussian vector fields. Indiana Univ. Math. J. 27 (1978) 309-330. | MR | Zbl
.[26] Functions continuous and singular with respect to a Hausdorff measure. Mathematika 8 (1961) 1-31. | MR | Zbl
and .[27] Self-intersections of random fields. Ann. Probab. 12 (1984) 108-119. | MR | Zbl
.[28] Hausdorff measure of trajectories of multiparameter fractional Brownian motion. Ann. Probab. 23 (1995) 767-775. | MR | Zbl
.[29] Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1-37. | MR | Zbl
and .[30] Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields. Probab. Theory Related Fields 109 (1997) 129-157. | MR | Zbl
.[31] Properties of local nondeterminism of Gaussian and stable random fields and their applications. Ann. Fac. Sci. Toulouse Math. XV (2006) 157-193. | Numdam | MR | Zbl
.[32] Sample path properties of anisotropic Gaussian random fields. Submitted, 2007. | Zbl
.[33] Local times of fractional Brownian sheets. Probab. Theory Related Fields 124 (2002) 204-226. | MR | Zbl
and .Cité par Sources :