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Abstract. In this paper, we give estimates of the minimal LL! distance between the distribution of the normalized partial sum and
the limiting Gaussian distribution for stationary sequences satisfying projective criteria in the style of Gordin or weak dependence
conditions.
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faible.
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1. Introduction

Let X1, X», ..., be a sequence of real-valued random variables (r.v.) with mean zero and finite variance. Let S, =
X1+ X2+ .-+ X,. By F,, we denote the distribution function (d.f.) of n=1/28,. Let @, be the d.f. of the N, 02)-
distribution. For independent and identically distributed (i.i.d.) r.v.’s, according to the central limit theorem (CLT),
F,(x) converges to @, (x) uniformly for x in R, where o is the standard deviation of X|. Agnew [1] proved that
the convergence also holds in L"(R) for r > 1/2. Agnew’s result is called mean CLT in the case r = 1. Let then
,o,(lr) = ||F, — @5 ||y. For r =1 and r = 2 and i.i.d. random variables with finite absolute third moment, Esseen [11]
proved that n!/2 p,i’) converges to some explicit constant A, (F) depending only on the distribution function F of X
(Theorems 3.2 and 4.2 in [11]). In particular, Esseen’s results imply that
,E”:O(n_l/z) asn — 00. (1.1)

Next Zolotarev [29] obtained the upper bound A (F) < E(| X 1*)/(202). The proofs of these results are based on the
method of characteristic functions (cf. [18] for more details).

The case r = 1 is of special interest, since ,0,31) is exactly the minimal distance between n~'/2S, and a r.v. with
distribution A/(0, o2) in L' (cf. [10], Section 11.8, Problems 1 and 2). Now let

di(X,Y)= sup E(f(X)— f(Y)), (1.2)
feA(R)
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where A1 (R) is the set of 1-Lipschitzian functions from R to R. Applying the Kantorovich—Rubinstein theorem we
also have that ,0,51) =di(n"V2S,,aY)if Y is a (0, 1)-distributed random variable.

In this paper we are interested in extensions of (1.1) for » = 1 to sequences of dependent random variables. This
subject was studied by Sunklodas [28] in the case of uniformly mixing (in the sense of Ibragimov) stationary sequences
of real-valued random variables. Using the Stein method, he reached the rate of convergence omn~Y 2(log n)?) in
(1.1) for geometrically mixing sequences of random variables with finite eight moments. A different approach to
get rates of convergence in the CLT is Bergstrom’s [2] inductive proof of the Berry—Esseen theorem, based on the
Lindeberg method. Starting from Bergstrom’s recursion argument, Bolthausen [4] obtained exact rates of uniform
convergence for martingale difference arrays. Rio [25] adapted Bergstrom’s method to weakly dependent sequences
and obtained the Berry—Esseen theorem for stationary and uniformly bounded sequences of real-valued r.v.’s satisfying
the condition ), kg(k) < oo, where (¢(k))x denotes the sequence of uniform mixing coefficients of the sequence
(Xi)ien, in the sense of Ibragimov (confer [18] for an exact definition of these coefficients). This result was extended
to the multivariate case by Jan [19], Theorem 9. Jan also weakened the notion of weak dependence involved in Rio’s
paper (cf. Theorem 1 in [20] for more details). However the dependence coefficients in [19] are too restrictive for the
applications to some dynamical systems, such as Sinai’s billiard. Péne [22] noticed that the inductive proof of Jan
[19] can be adapted to get the rate of convergence O(n~1/2) for the minimal L!-distance in the multivariate CLT for
stationary sequences satisfying some dependence conditions. In particular her result applies to sums of bounded r.v.’s
defined from dynamical systems (such as Sinai’s billiard) or strongly mixing sequences in the sense of Rosenblatt.
For example, Péne’s result yields (1.1) (with » = 1) for stationary sequences of bounded random variables (X;);eN
satisfying the condition ), ka (k) < oo, where (a(k))x denotes the sequence of strong mixing coefficients of (X;);ez
in the sense of Rosenblatt (confer [18] for a definition of these coefficients).

We now describe the contents of our paper. Our aim is to provide rates of convergence in the mean CLT for station-
ary sequences of real-valued r.v.’s satisfying either projective criteria in the style of Gordin [14] or weak dependence
conditions.

In Section 2, we give bounds in the stationary case involving L”-norms of conditional expectations. Let (X;);cz be
a stationary sequence of real-valued random variables, M = o (X;: i <k) and Ej denote the conditional expectation
with respect to M. In Section 2.1, we obtain in Theorem 2.1 the rate of convergence O(n~'/2logn) in the mean CLT
for stationary and ergodic martingale differences sequences (X;);cz with finite absolute third moments satisfying the
projective conditions

m
Z XoEo(X7 —a?)
k=1

i Eo(X{ —0?)

k=1

sup < 00, (1.3)

m>0

<oo and sup
1 m>0

1

where o2 = Var X(. In Section 2.2, we generalize Theorem 2.1 to ergodic stationary sequences satisfying projec-
tive criteria. In Section 2.3 we give some applications to bounded sequences. For example, assuming that the series
> k=0 Eo(Xx) converges in L', Theorem 2.3 provides rates of convergence in the mean CLT as soon as EO(S% /m)
converges to o in L', This condition appears in the conditional CLT of Dedecker and Merlevede [6] and is rather
mild. For example the rate of convergence O(n~'/21logn) is obtained under the projective conditions

DD Eoxi)

m>0"k>m

<oo and sup || Eo(Si — ma2) ||1 < 00. (1.4)
1 m>0

Again the proofs are based on the Lindeberg method at order three.

In Section 3, we give projective conditions or weak dependence conditions implying (1.1) for » = 1. Conditions
(1.3) and (1.4) involve conditional second moments. It seems difficult to get the optimal rate of convergence omn~12)
under second-order conditions (at least for the Berry—Esseen theorem: cf. [25] and [4], Theorem 4). Therefore our re-
sults hold under projective conditions on the monoms of degree three. For example, (1.1) holds for stationary bounded
martingale difference sequences under the projective conditions

Z”EO(X,%) —O’2H1 <oo and ZSUP|’EO(XkX?) —E(XkX?) ||] < 00. (1.5)
k>0 k>07Zk
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For stationary sequences, one needs to strengthen (1.5): we obtain (1.1) for stationary sequences of bounded r.v.’s
under the projective conditions

>k sup |Eo(XkX9X) —E(Xex4XP)|, <00, with (. B) € {0, 1)%, (1.6)
k>0 izjzk

which can also be deduced from Theorem 1.1 in [22]. It is worth noticing that the Berry—Esseen type Theorem 9 in
[19] requires L°°-norms instead of L' -norms in (1.6). The proofs of these results are based on the Lindeberg method
at order four. Therefore, in the unbounded case, the results hold for sequences of random variables with finite fourth
moments (cf. Theorems 3.1(a) and 3.2(a) for detailed conditions). For example, Theorem 3.1(a) applied to strongly
mixing and stationary sequences yields the rate of convergence O(n~!/?) in the mean CLT if there exists some p > 1
such that

> kP P=Dg (k) <00 and  E(|Xo|?) < oo, (1.7)
k>0

where a = 4. By contrast, the Berry—Esseen type theorem for functionals of stationary discrete Markov chains due to
Bolthausen [3] holds under condition (1.7) with a = 3. In order to improve Theorems 3.1(a) and 3.2(a) in the case of
strongly mixing sequences we adapt the truncation method in [24] to our context. We then get the rate O(n~1/?) in
the mean CLT under the strong mixing condition

> [

k>0

a(k) 3
i Qly, () du < 00, (1.8)

where Q) x,| denotes the quantile function of [X¢| and b = 1. This condition is implied by (1.7) with a = 3, so that
our result holds under Bolthausen’s [3] condition. Moreover, for stationary strongly mixing martingale difference
sequences, we prove that (1.1) holds for p = 1 under condition (1.8) with » = 0. In Section 5 we give two classical
examples of non irreducible Markov chains to which our results apply.

2. Projective criteria for stationary sequences

Throughout the paper, Y is a N/(0, 1)-distributed random variable.

We shall use the following notations. Let (§2, .4, P) be a probability space, and T : £2 > 2 be a bijective bimea-
surable transformation preserving the probability IP. An element A is said to be invariant if 7(A) = A. We denote by
7T the o-algebra of all invariant sets. Let M be a sub-o-algebra of A satisfying Mg € T~! (M) and define the non-
decreasing filtration (M,);cz by M; =T~ (My). Let Moo = \/iez M. Denote by E; the conditional expectation
with respect to M;.

Let X( be a My-measurable and centered random variable. Throughout the sequel, the sequence X = (X;);ez is
defined by X; = X o T. From the definition the sequence (X;);c7 is adapted to the filtration (M,);cz.

2.1. Martingale difference sequences

In this section we obtain rates of convergence of the order of n~'/>logn in the mean CLT for stationary martingale
difference sequences. In order to obtain these rates of convergence, we will just need a projective condition on the
variables X12 as in [19]. We first recall Jan’s results concerning the rates of convergence for the uniform distance
between the distribution functions.

Assume that (X;);cz is a stationary martingale difference sequence in L3 such that ]E(Xg) =02 and

Y IEo(X7 =025, < 0. @.1)
>0

Then, by Theorem 6 in [19], if ¥ is A/ (0, 1)-distributed,

sup|P(n /28, <t) = P(cY <t)| =O(n~'/*). 2.2)
teR
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Under projective conditions related to (2.1), the rate of convergence in the mean central limit theorem is at least
omn~12 logn) as shown in Theorem 2.1 below.

Theorem 2.1. Let (X;);cz be a stationary martingale difference sequence in 1.3, such that ]E(X(%|Z) = IE(X(Z)) =02
almost surely. Let A = 6_2E|X0|3 and Uy, = EO(X% + -+ an) —mo?. Then

(@) dl(Sn,GﬁY)S1%"4—%10g(1+2n)+2,[g] |\X0Um||1+%0||UmHl_

mo

(b) If sup,,-.o(IXoUnm It + 1 Unll1) < 00, then di(Sy, 0¥ «/n) = O(logn).

Remark 2.1. From the ergodic theorem, (Uy, /m) converges a.s. and in ! to 0 as m tends to oc. Since Xo € 3, it
follows that the sequence (XoU,,/m),, is uniformly integrable. Hence, under the assumptions of Theorem 2.1,

lim m ™' (| XoUpnll1 + 1Un 1) = 0.
m—00

Therefore Theorem 2.1(a) provides a rate of convergence in the mean CLT. For example, if ||X0E0(Xl2 — o)) =
O(~°%) and ||E0(Xl2 — 0’2)||1 = O(l_‘s)for some § in 10, 1[, then the rate of convergence in the mean CLT is of the

order of n=%2_ If Jan’s condition (2.1) holds, then (b) yields the rate of convergence O(n~"/?logn) in the mean CLT.
For bounded random variables (b) holds as soon as the series ), E()(Xl2 — 02) converges in L.

Proof of Theorem 2.1. We prove Theorem 2.1 in the case o = 1. The general case follows by dividing the r.v.’s by o.
Let (Y;);en be a sequence of independent random variables with normal distribution A/ (0, 1). Suppose furthermore
that the sequence (Y;);cn is independent of (X;);en. Let Y be a N (0, 1)-distributed random variable, independent of

the above defined sequences. Let 7,, = Y1 + Y2 + - - - 4+ Y;,. For any 1-Lipschitzian function f, let A(f) =E(f(S,) —
f(T,)). From (1.2), we have to bound A( f). Clearly

AP =E(f(S) = F(T)) <E(f(Sp +Y) = f(T, + 1)) +2E|Y|. (23)

In order to bound up the term on right-hand side, we apply the Lindeberg method.

Notation 2.1. Set fi(x) =E(f(x +Y + T, — Ty)). Let So = 0, and, for k > 0, let A = fi(Sp—1 + Xx) —
Si(Sk—1 + Yi).

Since the sequence (Y;);cn is independent of the sequence (X;);eN,
n
E(f(Sa+7Y)— f(T, +7)) = ZE(Ak). (2.4)
k=1
Next the functions fj are C*°. Consequently, from the Taylor integral formula at orders three and four,
1 1

Ak = S X = Yo + 5 (S (XF = Y7) = 2 7 (Se-)¥ + Re.

with

R < e AP + 5150 | @)
Consequently, for any 1-Lipschitzian function f,
n n
A(f) <2EIY |+ Y E(Rp) + ZE(f,;(Skoxk + %f,ﬁ’(skq)(X% - 1)). (2.6)
k=1 k=1

The terms E(f;(Sx—1)Xx) vanish under the martingale assumption. To bound up the other terms appearing in (2.6),
we need to bound up the derivatives of fi. This will be done via the lemma below.



Mean CLT for dependent sequences 697

Lemma 2.1. Let f be a 1-Lipschitzian function, Y be a standard normal and B be a real-valued random variable,
independent of Y. Then

i
%Ef(x—}—tY—i—B) ftlfi“qﬁ(i*l)”l foranyt >0

and any positive integer i, where ¢ denotes the density of Y .
Proof of Lemma 2.1. Let ¢; be the density of Y. Then
Ef(x+tY + B)=E(f *¢;(x + B)).

Since f is 1-Lipschitzian, the Stieltjes measure d f of f is absolutely continuous with respect to the Lebesgue measure
A and f’=df/d belongs to [—1, 1]. Next (f * ¢,)® = f' ¢>t(l_1), and consequently

Ef«¢ix+B)| <[] o "],

i
Since ¢~V (x) =171~V (x /1), it implies Lemma 2.1. O

Noting that

2 4 8 2 32 8
R P e P T o 2. @)

and applying Lemma 2.1 with t = +/n — k 4 1, we infer from (2.5) that

A\, (Y, -3/
E(Ry) < G n—k+1)"" + 5 (n—k+1)77/~. (2.8)
Summing on k, we infer from (2.8) that
: . 13 A
> E(R0) +2EIY[ < p(n)  with p(n) = < +e log(1 + 2n). (2.9)
k=1

The control of the main term in (2.6) is derived from the lemma below.

Lemma 2.2. Let Z be an integrable random variable with zero mean. Set Zy = Zy o T* and let W, = Z;"Zl Eo(Z)).
Then, for s =2 or s =3,

[v/2n]

n
Y E(£O (Si-DZi) < sz (1Xo Wil + 21 Win ).
k=1

Proof of Lemma 2.2. We first divide [1, n] into blocks of nonincreasing length.

Notation 2.2. Define the decreasing sequence of integers (n;)i>o0 by no =n and n; = max(0,n;—; —i) fori > 0. Let
p be the first integer such that n, =0. Set m; =i fori < pandmp, =n,_;.
Next fix i in [1, p]. Let then k be any integer in n;, n;_1]. Writing

k—1

FOSe = £+ Y (FENS) = £7(Si-0). (2.10)

j=ni+1
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we get that

ni—1 nj—1—1

Y E(£OS-0Z) =D+ Y Dij. .11

k=n;+1 j=n;i+1
where

nj—1
D; =E(f,ffil<sn,.> > En,.<zk>)

k=n;+1

ni—1
D, =E((f,-‘f31<sj> R IROENDS E,-<Zk>).
k=j+1
By definition of the sequence (Zy)x, for any integer j and any positive m,
Ei(Zis1+Zjso++Zjsm)=WpoT/.
Hence, from Lemma 2.1 applied with t = (n — ni)l/2 and B=0, forany i < p,

D; < (n—n) 72w (2.12)

Moreover D), = 0 from the centering assumption on the random variables Z;. Now, by definition, n —n; =i(i +1)/2
for i < p. Hence, from (2.12),

p—1 p—1

> D <2) i Willi, where —14++v2n<p<1++2n. (2.13)
i=1 i=1

Next we bound up D; ;. From the elementary equality
fj+1( ,1) fj ( ,1—1)— j(fj+]( ,/—1+ j) fj+1( ,1—1+ j))

we get that
£ = 7= < |50 | Ej1 X = Yl < (n = DT (1X 51+ 1),

whence

Dij < — HPE((1Xol + 1) W, —). (2.14)

Fix nj_1 — j=m. Thenm; >m > 0and 2(n — j) =i(i — 1) 4+ 2m > (i — 1/2). Hence, from the above inequality
(recall that m; =i fori < p)

p ni—1—1 p—1 p ¢
Z.Z D,-,,-sZ(nXonnwnWmu])Z 25/2(1-_5) :
i=1 j=n;+1 m=1 i=m+1

Now, from the convexity of x~* on ]0, +o0l,

14 —S P
Z i— 1 < / x¥ds < Lml_s
2 I Ts—1

i=m+1
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whence
p nio1—1
>y Dl,<22m (IXoWinll1 + [ Win 1) (2.15)
i=1 j=n;+1

From (2.11), (2.13) and (2.15), we get Lemma 2.2. 0

Theorem 2.1(a) follows from both (2.6), (2.9) and Lemma 2.2 applied to Zg = X% — 1. Theorem 2.1(b) is a conse-
quence of (a). O

2.2. Projective criteria

In this section we give estimates of the rates of convergence in the mean CLT for stationary sequences satisfying
projective L' -criteria in the style of Gordin [14]. Our main result is Theorem 2.2 below.

Theorem 2.2. Let (X;)icz be a stationary sequence of centered random variables in 1> such that BE(XoXy|T) =
E(XoXy) a.s. for any integer k. Suppose furthermore that the sequence XoEo(S,) converges in .'. Then the series
E(X%) +2 Z,fil E(XoXy) is convergent to some nonnegative real o2, Let

ZO=X(2)—02+211’£nX0Eo(Sn), Zi=ZooT' and Wy,=Ey(Zi+Zo+ -+ Zn).

Suppose that 62 > 0. Let A = o~ *E|Xo|>. Then

[v2n]
13¢ A 1 XoWill1 + 20 | Wi ll1
di(Su 0n/Y) <~ + = log(1 +2n) + Zl s+ D
—
where
Z — | > XoEo(X)) +Z—|| (14072X5) Eo(Sm) |-
1 I>m

Remark 2.2. By Theorem 1 in [8), the convergence in L' of XoE(S,) implies the convergence in distribution of
n~12S, to a mixture of Gaussian random variables. From [6] it also implies that n_l/on(Sn) converges to 0 in L.
Consequently, if X%EO(S,,) converges in ! as n — oo, then D' = o(/n). Moreover, from the L'-ergodic theorem,
(W, /m) and (XoW,,/m) converge to 0 in L! under the above additional condition. In that case, Theorem 2.2 gives
a rate of convergence in the mean CLT.

Proof of Theorem 2.2. Dividing the random variables by o, we may assume that o = 1. From (2.6) and and (2.9),
for any 1-Lipschitzian function f,

- 1
A(f) < ZE(f,é(Sk_oxk + 5 S (XE - 1)) + o), (2.16)

k=1
where the functions f; are defined in Notation 2.1 of Section 2.1. In order to bound up the terms of first order, we write

k—1
RSy = f50) + D (f111(S) = £1(Sj-1).

j=1
Next
L1 S) = f1(Si=1) = (£F1(S) = f1(Sj=D) = Ej(f}11(Sj +¥) = f]41(S))
= f{(S;-DX; + R, (2.17)
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where R} is some M ;-measurable random variable such that

IR <@n—2j)""(X;+1). (2.18)

SetUj, = E;(S, — S;). From (2.17) and (2.18)

n n—1
D E(HS-0Xk) < D (E(f] Sj=0XUjn) + Cn=2) 7 | (14 X5)Uja )
k=1 j=1

Next

E(f](Sj-)X;Ujn) <E(f](Sj-DXUjoo) + (n—j+ 172

D XJE XD

I>n

with the convention X ;U o =lim, X ;U; , in IL'. From the stationarity, (2.16) and the above inequalities we get that

1 n
A(f)ip(n)+EZE(f;/(Sj_l)Zj)+D1+D§, (2.19)

j=1

where
S|
—1/2 / 2
Z m~Y ZXOEO(XI) and Dy=)_ 51+ X5) Eo S -

I>m m=1

Theorem 2.2 follows then from (2.19) and Lemma 2.2 applied with s = 2. O

2.3. Applications to bounded random variables

Throughout this subsection we assume that X belongs to IL°°, and that Ey(S,) converges in L!. Then the series
XoEo(S,) converges in IL! and consequently Theorem 2.2 applies. Set

Jo= lim Ey(S,) and J,=JygoT™. (2.20)
n—o0
We first provide a rate which involves the quantities || Eq(m ™! S,%l) -2 appearing in the conditional CLT of [6].

Theorem 2.3. Let (X;)icz be a stationary sequence of centered and bounded random variables such that
E(XoXk|Z) = E(XoXk) a.s. for any integer k. Suppose furthermore that the sequence E((S,) converges in L! to
Jo. Then the series E(X(z)) + 22,‘;‘;1 E(XoXk) is convergent to some nonnegative real o2 and n=! Var S, converges
to o%. Suppose that 6% > 0 and let L =~ || X0/l 0o-

@ If S=3_,=0 | Eo(Jm)ll1 < 00, then
[v2n] 24 L
di(Sy, 0+/nY) < Clog(l +2n) + Z( )HEO(SZ)_moz”1
for some constant C depending only on || X¢||c0, 0 and S.
®) IfFllEo(Im) 1 < Msm—? for some & €10, 1[ and some constant M, then
[v2n] 24 L
1-8)/2 2 2
S i) 2 3 ( - )HEO(Sm) —ma?|,

for some constant Cs depending on &, Ms, || Xollco and o .
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Remark 2.3. The assumptions made in this section ensure that
: -1¢2 2
HILHQOHEO(”’ Sm) -0 ”1 =0,
which is the condition appearing in the conditional CLT of [6]. Consequently Theorem 2.3 provides rates of conver-
gence in the mean CLT. For example, if (a) holds and sup,,,_ || Eo(Si) —mao?||; < oo, thend; (Sy, o+/nY) =0(ogn).
If (b) holds and | Eo(S%) — mo?||; = O(m' =) as m — oo, then dy (S, o/nY) = O(n179/2),

Proof of Theorem 2.3. We first bound up D’. Let M = sup,, o || Eo(Sm)|l1. We have that

D' <L 2’1: m~1/2 ZEO(XI)
m=1

I>m
Since ZlZm Eo(X)) = EO(ZlZm E_1(X))) = Eo(Ju—1), we infer that

+ %(1 + L*) M log(1 + 2n).

1

n—1
D'<LY (m+ )| EUm)], + %(1 + L*)Mlog(1 +2n). (2.21)

m=0
Next we bound up the r.v.’s W,,, + mo? — EO(S,Zn) in L, By definition of W,,,,
m
W +mo? = Eo(S3) +2 > Eo (X, > El(Xk)>.
=1 k>m
Therefore

m m
| Wi +mo? = Eo(Sp) ]|, 2D | XiEi(Un) |, <20 Xolloo Y || EoCIm—1) ;-
=1 =1

Hence
[v2n] 1
3 (mo?) " (1XoWinlli + o Wil )
m=1
[v2n] 24 L m—1
= Z( )(HEO(SZ) —mo? |, +2||X0||ooZ||Eo(Jl)||1>. (2.22)
m=t "7 1=0
Theorem 2.3 follows then easily from both Theorem 2.2, (2.21) and (2.22). 0

We now give an application of Theorem 2.3 to sequences satisfying projective criteria in the style of [13,14]. The
proof, being elementary, is omitted.

Corollary 2.1. Let (X;);cz be a stationary sequence of centered and bounded random variables.

@ If Y o o> T IE—m(XoX1) — E(XoXD i <00 and Y,,_omllEo(Xm)ll1 < 00, then the series of covariances
converges to o and d (S, o+/nY) =0(ogn) as n tends to 0o, provided that o # 0.

(b) If, for some § €10, 11, sup;c(o. ) |1 E—m (X0 X)) — E(Xo X))} = O(m™"'7%) and || Eo(Xpn) |1 = O(m™'7?), then the
series of covariances converges to o> and di(Sy, o /nY) = O(nY=3/2) as n tends to oo provided that o # 0.

Remark 2.4. For example, if the strong mixing coefficients aa (k) of the sequence (X;)icz (see (3.1) for the definition)
satisfy ar (k) = Ok~1=%) then Corollary 2.1(b) applies and provides the rate of convergence O(n=%2y in the mean
CLT.
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3. Optimal rates for stationary sequences

Throughout Section 3, the filtration (M;);cz and the stationary sequence (X;);cz are defined exactly as in Section 2.
3.1. Stationary sequences

For stationary sequences, we will give two different conditions under which the rate of convergence O(n~'/?) holds
in the mean CLT. We consider two types of dependence coefficients.

Definition 3.1. For any integers 0 <i < j and p >0, let I'; j , be the set of multiintegers (ky, ..., k;) such that
0<ki<---<kjandki+p <kiy1 <---<kj. Set
0:.j(p) = sup ”Xkl ~ Xi Erg (X e Xy = E(Xg "'ij)) ”1
(k1,....k;)ely j p
Definition 3.2. For any random variable (&1, ..., &) with values in RK , and any o -algebra M, define the function

8x,j (1) =Li<x —P(§; <x). Set

a(M, (E1,....&))=  sup

(X150, X5 ) ERK

k k
E(]‘[ gx,.,j@,-)\M) —E(]‘[ gx,.,,-@,-))
j=1 j=1

For a sequence & = (&;);c7, where & = &y o T! and &y is a Mo-measurable and real-valued r.v., let

1

apg(n)=max  sup a(Mo, &,,....&)).

1<IZk jjssiy>n
Remark 3.1. Let By (R¥) be the set of functions f from R¥ to R such that | f (x) — f(y)| < 1 for any x, y in R*. Recall
that the strong mixing coefficient of Rosenblatt may be defined as

1

a(M., ol ....&)) sup |E(fE1, ..., 80IM) —E(f G, ... 80)] -

feB(RK)
For the sequence &, we define the strong mixing coefficients

ar(n)y=sup a(Mo,o(,,....&)) and a(n):iugak(n). (3.1)

ig==i1=n
By induction on k, it is easy to prove that g : (t1, ..., ;) — ]_[f;l 8x; i (t;) belongs to By (RX). It follows that

a(M, &1, &) <2e(M, o1, .... &) and o g(n) <20 (n).

We emphasize that there exist sequences which are not strongly mixing in the sense of Rosenblatt, for which ay g (n)
tends to O as n tends to infinity (see [7], Section 4 and the example of Section 5.1).

Definition 3.3. For any real-valued random variable X, let Qx be the generalized inverse of the tail function x —
P(X > x).
Theorem 3.1. Let (X;);cz be a stationary sequence of centered random variables. Consider the two conditions

(a) E(Xg) < 00 and 2?11 J0p.q(j) <ooforany0<p<q <3+ p) A4
(b) Xo = (f1— f2)(&o) for some real-valued random variable &y and nondecreasing functions f1, f2, suchthat fi(&o),
f2(&0) belong to IL* and, for Q =max(Q|f,)l> Qo))

0 a3 (j) 3
ZJ/O 03 (u) du < co. (3.2)
j=1
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If either (a) or (b) holds, then the series 0 = ]E(X(Z)) + 22130:1 E(XoXk) converges absolutely. Moreover, if o > 0,
then di (S, /noY) < C for some constant C.

Remark 3.2. For bounded random variables, Theorem 3.1 under (a) is a consequence of Theorem 1.1 in [22].

Remark 3.3. For the strong mixing coefficients defined in (3.1), we infer from Theorem 3.1(b) that, if Xo = f(&o)
belongs to > and if (1.8) holds with a3 (k) instead of a(k) and b = 1, then the conclusion of Theorem 3.1 holds.

3.2. Martingale difference sequences

In this section we give conditions for stationary martingale difference sequences ensuring the optimal rate O(n~!/?)
in the mean CLT.

Theorem 3.2. Let (X;);cz be a stationary martingale difference sequence in L3, with variance o%. Consider the two
conditions

(a) Xo belongs to L4,

(103 D{E) )+ oo - ) <o

k>0 i=1
and
1 k
>z 2 l0xolv ) (Eo(XiX7) —E(XiX7)) [, < oo. (33)
k>0 i=[k/2]

(b) Xo and Q are defined as in Theorem 3.1(b), and

]

a3 g(J))
Zf 03 (u) du < oo. (3.4)

j=1
If either (a) or (b) holds, then d\(Sy,, \/noY) < C for some positive constant C.

Remark 3.4. Note that the first condition in (3.3) implies that ]E(X%|Z) = o2 almost surely. Assume that E(|Xo|P) <
oo for some p > 4. Applying Hdolder’s inequality, we see that (3.3) holds as soon as

SIE0) =21y <0 and Tl Eo(eE) ~ BTy <00
> > -

4. Proofs of Theorems 3.1 and 3.2
4.1. A first decomposition
The following proposition is the main step to prove Theorems 3.2 and 3.1. It is stated in the nonstationary case.

Proposition 4.1. Let (X;);>1 be a sequence of centered random variables, each having a finite third moment, adapted
to the filtration (M;);. Let Z be a centered random variable with finite fourth moment independent of M, and let
E(Z?) = B2, B(Z3) = B3, E(Z*) = B4. Let Sy =0 and S, = X1 + - - -+ X,,. Let X;.1 and X; 5 be two M;-measurable
random variables such that X; = X; 1 + Xi 2. For any four times continuously differentiable function f and any |
in [1, k[,

E(f(Sk—1 4+ X0) — f(Sk=1 + 2)) <01 A1 + {2(Az + Ag) + §3(A3 + Ag) + {4(Ag + -+ + A7),
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where the reals ; = i (f) are defined by ¢; = || f©||oc and the numbers A; = A; (k,1) are defined by

A= Az=1 ,32_Ek—l—l<XkIXk+221:Xk—j1Xk> ;
2 ’ j=1 ’ 1
! !
Az = 3 B3 — Ex—i-1 (XkX/%,l + 32(Xk—j,l(xk,lxk - B2+ X;%_jlek))
J:

)

[ j—1
—6E;—- 1<ZZXI< 1 Xk— ple>

j=1p=1

1
1 1
Ay = 24( (|Xka1|)+ﬁ4) A5262;|
]=

l

Aé:%Z

bl

j-1
Xiin (ﬂz —Er—;j <Xka,1 +2)° Xk—p,1Xk>>

j=1 p=1 1
A —lix ‘(,3 —E ‘(X2X+3§X2 X
7_6],:1 k—j | B3 — Ex—j| Xi1 Xk Z e p1 Xk
j—1 j—1p—1
+32Xkp,1(Xk,1Xk—/32)+6ZZXkp,1qu,1Xk>> ,
p=1 p=1g=1 1

Xi—j2Er—j(Xy)

!
1
Ag = E(”Xk,zxk”l +2)°

j=1

)

j-1
Xi—jo (ﬂz — Ep—;j <Xka,1 + 22 Xk—p,IXk>>

p=1

l

Agzéz

j=1

1

Proof. We start from the equality
1
PS4 X0 = £y = Xe [ (7St + 1Xe) = £/(S) dr + Xuf (Sic) +11 )
0
with r1 (k) < (£2/2)| Xk Xk,2|. Consequently

p Xka,l p
FSk—1+Xp) = f(Sk—) + [ ( Sk Xi + f7(Sk-1)

Xkal "
+ ——— " (Sk—1) + Ry (k) +r1(k),

with [R; (k)] < (¢4/4)| XX} ,|. Hence
1
E(f(Sk=1 + X&) — f(Sk—1 + 2)) = E(f'(Sk—1) Xk) + EE(fH(Skfl)(Xka,l =)

E(f///(sk—l)(XkXI%,l — ﬂ3)) + Ry (k) +E(V1 (k))»
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with Ry (k) < {4A4. Consider first the third-order terms. Clearly
1 " 2 1 7 2
gf (Sk—1)(Xx Xj, — B3) = gf (Sk—1-1)(Xk Xj 1 — B3)
1 ! 1 4 2
+2 Z(/O O Shmjr + rxk,)dr)xk,- (XxXZ1 = B3)- 4.1)
j=1

Let g1(Sk—j, Xk—j1) = f"(Sk—j) — f"(Sk—j—1 + Xr—j,1). For the second-order terms, we have first

1 )
1 1
SIS XXt = B2) = 5 (Xa X1 = o) (f”(sk_z_l) + Z;gl (Sk—j» Xe—j1) + 2; " (Sk—j—DXk—j1
= Jj=

l 1
+Z</O (1 —l‘)f(4)(Sk7j*1 +thj,1)dt>X]%—j,l>’
j=1

and next

I I
1 1
Ef//(Sk—l)(Xka,l —B)= E(Xka,l - B2) (f//(sk—l—l) + X}gl(sk—j, Xie—j1)+ 2} " (Sk=i=1) Xk—j1
j= Jj=

l l 1
+Z Z </o f(4)(5k—p—1+th—p)dt)Xk—pXk—j,1

J=1p=j+1
l 1
+ Z(/o (1- t)f(4)(Skfj71 +thj’1)dt>X,%_j,1>. 4.2)
j=1

Let g2(Sk—j, Xk—j,1) = f'(Sk—j) — f'(Sk—j—1 + Xk—j,1). For the first-order terms, we have first

l

£ SeDXe = 'S Xk + Y g2(Sk—j Xamj.) X
j=1

+

l
j=

(f' (Sk—jm1 + Xp—j,1) = f'(Sk—j—1)) Xx,
1

so that

/

F Si—D)Xp = f'(Semi—1) Xi + ZgZ(Sk—j» Xi—j, 1) Xk
j=1

1 !
1
+ ) Sk Xk Xi + 3 > F Sk XE 1 Xk
Jj=1 j=1

! 1 2
(1—-1)
+E (/o Tf(4)(5k—j—1+th—j,1)d’>Xl§—j,1Xk'
j=1
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Next

1 l
f (S0 Xk = Xi (f’(sk_z_l) + Y e Skj Xemj) + D (Sk-D)Xa— g

j=1 j=1

! I
1
+§wa(sk7j71)xlg_j,1 YD Sk p-D) Xk pa Xi—ji

j=1 j=1p=j+1

i
Z Xi—j,181(Sk—ps Xk—p,1)
p=Jj+l1

I ! 1
+> ) </ (1= f®(Sk—p +th_p,1)dt>X]%_p,1Xk_j’1
X X 0
Jj=1p=j+l

11
+

Z(/ A= @, jo1 + 1 X jl)dt>Xk “)

whence

I !
F1(Sk—) Xk = X (f/(Skll) + ZgZ(Skfj, Xi—j,1) + Z " Sk—1=1) Xk—j1

j=1 j=1

! I
1
+§me(5k—1—1)xf_j,1 +Z Z " Sk—1-1) Xi—p 1 Xk—ji1
j=1 j=1p=j+1
!

Z Z Xi—j181(Sk—ps Xk—p,1)

J=1p=j+1
I

! 1
1
EZ ) (/0 f(4)(Sk_p_1—l—th_p)dt)Xk_pX,%j»l

j=1 p=j+1

I I )
+Z Z Z (/0 f(4)(Skq1+thq)dI)quka’]ijy1

+

I 1 1
+> > < f (1—r>f<4>(sk_,,_1+txk_,,,1>dr)X£_,,,1Xk_,-,1
j=1p=j+1 "0
! 1 (l _ l)2
+Z(/O Tf(“)(Sk_j_l+th_j,1)dt>X,§_j’l : (4.3)
j=1

Let us look carefully at the decompositions (4.1), (4.2) and (4.3). In front of f/(S;_;_1) there is X}, which leads
to the term ¢;A; by taking the conditional expectation with respect to My_;_1. In front of f”(Sx—;—1)/2 there is
Xk Xk1—PB2+2 lezl Xk—j,1 Xy, which leads to the term ¢, A, by taking the conditional expectation with respect to
Mi_;_1. In front of f"'(Sk_;_1)/6 there is

[ p—1
Xkal ,33+3 (Xi— i1 (Xk X1 — Bo) + X7 1 Xk) +6 Xi—p1Xp—j1 Xk,
Js
Jj=1 p=1j=1
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which leads to the term ¢3A3 by taking the conditional expectation with respect to My_;_;. Taking the conditional
expectation with respect to My ; and the supremum of | f @] in the last term of (4.3), we obtain {4 As. Gathering the
last term in (4.2) and the last but one in (4.3), we obtain

j—1
(/ A=) fD(Sijo1 +1Xp ,odr)xk ,1< (XiaXe— B2+ ) Xie plxk)

p=1

which leads to the term {4 Ag. Gathering the remainder terms in (4.1), (4.2) and (4.3) (except the terms involving the
functions g1, g»), we obtain

l Jj—

1 1
Z(/(; f(4)(Sk -1+t Xk /)dt)Xk ,(6(Xka1 /33 EZ JXk

i—1 p—1
1] J p
EZ kp Xk Xk =B + DD Xk p a1 Xeeg 1 X ),

p=lq=1

which leads to the term ¢4 A7. The term {» Ag is obtained by gathering || (k)||; and the terms involving the function g,
and by noting that |g2(Sk—;, Xx—j1)| < 2| Xk—j2|. The term ¢3Ag is obtained by gathering the terms involving the
function g1, and by noting that |g1(Sx—;, Xx—; 1] < &31Xk—j 2. O

4.2. Upper bounds for the A;’s

Let X; 1 and X; > be two M;-measurable random variables such that X; = X; 1 + X; 2. Define b(/) by

1
b(l) =E(X§,X0) +3 Y _E(XoaXi1Xi + X5, Xi) +6Y Y E(X01Xj.1X). (4.4)
i=1 i=1 j=1
Assume that the series

o0 o0
=E(X5)+2) E(XoXp) and of =E(Xo,1X0)+2) E(Xo1X)
k=1 k=1

converge absolutely. Let A; be the terms of Proposition 4.1 with 8, = o2, and B3 =b(l), and let A; 1 be the terms of
Proposition 4.1 with , = 012, and B3 = b(l). We now give upper bounds for Az 1, A3 1, As,1, A7,1 and Ag ;. First,

I
1
Ay < EHEk—l—l(Xk,IXk —EXw1X0)|, + Z | Xe—j1Ex—j(X0)|

j=l1/21+1
[1/2]

+ Z |E(X0,1X; )}-IrZHEk 1-1(Xk—j1 X — E(Xi—j 1 X0) ||
=[1/2]+1 j=1

[ J
1
2461 < Zl(z ¥ B X =BG X+ 3 [y Ko By X0,
J= p=u

00 Lj/2
+E(X(2),1) Z }E(X0,1XP)| + Z ” Xl%—j,lEk—j (Xk—p,lxk - E(Xk—p’lxk))Hl)*
p=Lj/21+1 p=l1
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l J
1
Ag < Z(E | Xk—j2Er—j(Xia Xx — E(Xr 1 X0)| | + Z | Xi—j2Xe—paEx—p(X0) |,
j=1 p=Lj/2]+1

00 [j/2]
+ 1 X021 Z |E(Xo0,1Xp)|+ Z | Xk—j2 Ex—j (Xk—p.1 Xi — E(Xx—p,1 X1)) H1>
p=Lj/21+1 p=1

Next, we have that A3 | < C; + Cy + C3, where

I
1
C1=8<HE1¢—1—1(X,%’1X1<—IE(X,%!IXk))||1+3 Z |X2 By (XD,

j=l1/21+1
(/2] I
+3 ) N B (X X =BG, X)) [ +3 0 30 [ Xemj B (X X = Eea Xo) [
j=1 J=l/21+1

[1/2]
+3 Z | Ex—i—1(Xx—j1 Xe1 Xk — E(Xi—j.1 Xe 1 X0) | 1>,

j=1
[/21j-1
G = Z ZH Er—i—1(Xi—j1 Xi—p1 Xx — EX—j 1 Xe—p 1 X0)) ||
j=1p=1
l Li/2]

+ > D X B (Ximpt Xi — EKa—p,1 X0)) |
J=[1/2141 p=1
1 -1

+ ) D XXk B p (X0

J=l/21+1 p=[j/2]1+1

l

I j—1
1

j=I1/21+1 p=1 j=l/21+1

1 [1/2] 00
+ 3 ]X_; |Ex—1-1(Xx—j,0) |, <|E(Xo,1X0)| + 2[;|E(X0,1Xp)|>
I

l oo
1
t5 D EXoaXaXpl+ Yo Y0 IXoalh[EXo1X,)].

j=l/21+1 j=l/21+1 p=[j/2]+1
In the same way, A7.1 < D1 + Dy + D3, where

l
1= ¢ 32 (10 5002 )
j=1
j—1

+3 ) X Xi, B p (X0
p=Lj/21+1
/2]

+3 ) | Xa B j (X, Xk —E(XF_, 1 X0))
p=1
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j—1

+3 ) | Xemj Xeopa Ex—p(Xka Xi — E(Xx 1 X0) |,
p=Lj/2]+1

[j/2]
+3 ) | Xaej Exej (Xampa Xe1 Xa — E(X—p 1 Xe 1 X0)) | 1>,
p=1

j—1 p—1
Dy = | Xk—j Xk p1 Xk—g1 Ex—q (X0 |
1

j=1 \p=[j/2]+1q=[p/2]+1
[j/21p—1

+ D Xk Exj (X pa Xk—g 1 Xi — B(Xx—p1 Xk—g1 X0)) |,
p=1 g=1

Jj—1 [p/2]
+ Z Z | Xk—j Xk—p.1 Ex—p(Xk—g.1 X — E(Xp—q.1Xk)) ||1)
p=Lj/2]+1 g=1

[ p—1

1
03=Z(2 D> D IXolh|E(Xo,1Xg.1X,)|
Jj=1

p=lj/21+1 ¢=1

Lj/2] o0
+ )Xk jEk—j(Xk—p,l)”l(|E(X0XO,1)| + 2Z|E(Xo,lxp)|>
p=1 p=1

1 l
+ Y 1% |E(X3, X))+ Y Xl |[E(X01 X1 X))
p=Lj/2]+1 p=Lj/21+1

[ 00
+2 ) > ||X0||2||X0,1||2’E(XO,1X(1)’>-
p=Lj/21+1g=[p/2]+1

4.3. Control of the A;’s for stationary sequences

In this section, we give bounds for the quantities A; for i # 4. The control of A4 is carried out in Section 4.5. The
bounds are given in terms of the coefficients 8, and in terms of o in the case where X = (f1 — f2)(%o), the functions
f1, f> being nondecreasing. For o, let

Xi1=Xi(@)=(ga0 fi —8ao° f2) &) —E((ga 0 f1 — ga 0 [2)(&)),

where g,(x) = (x Aa) vV (—a) forany a > 0. For 6, let X; | = X;(00) = X;, in whichcase A; 1 = A; and Ag(f, k,]) =
Ag9(f, k,I) =0. Denote by b(l, a) the quantity b(/) defined in (4.4) with X; 1 = X;(a). Note that b(/, c0) converges
to a limit b(oco, 00) as soon as both Y _ k6 3(k) and Y _ k6, 3(k) are finite. In the same way, since g, o f1 and g, o f>
are nondecreasing, we can use Corollary A.1 given in the Appendix: it follows easily that b(/, @) converges to a limit
b(o0, a) as soon as (3.2) holds.

Notation 4.1. In the following, the notation a < b means that a < Cb for some numerical constant C.

To control the A;’s with the help of the coefficients ag, the main tool is the second inequality given in Corollary A.1
of the Appendix. Let X,Ea) = Xk.2 = Xk — Xk(a). Then 02— 012 = E(XOX(()G)) +2 Z,fil E(X(()a)Xk). Note that

X9 = (hy o fi —hao f2)(E) —E((ha o fi — ha o )(E)),



710 J. Dedecker and E. Rio

where h,(x) = x — g,(x). The functions h, o f] and h, o f> are nondecreasing and

max(Q|g,ofi (¥)s Llgac fr(¥0)> Clhao f1(¥o)ls Llhgo fr¥p)) = Q-
Hence Corollary A.1 applies and yields lo2 — a]2| <K M(Q, a) where

X payg() 5
M(Q,a)= E f O 1gsqda,

. 0

i=0

A being the Lebesgue measure. Taking into account this upper bound, we get that

Ay — Az 1| K M(Q, a),
|A3 — Az1] < 1| Xo(a)]

M(Q.a),
|Ag — Ae.1| <1 Xo(@) |3M(Q. a),

|A7 — A7.1| < | X0l3M(Q. a).

Ao — Ao | < 1| XS |, M(Q. ). (4.5)

We now give some upper bounds for the A;’s. Clearly
aye(l)
A1 <6p1(l+1) and A <</ Qda. (4.6)
0

In the same way, since max(Qg,o f, (Yo)|» Qlgao (X)) = (O A a),

ar:(j)

I 1
as< Y o) ad A<y [7 @i @)
=1 j=1"0

Let A = sign{Ex—j—1(Xr(a) Xy — E(Xr(a)Xy)}. Recall that a(§1,...,&) is defined in Proposition A.l. Since
a(A, &, &) <a(A,&) <ajg(+ 1), we infer from Corollary A.1 that

arg(+1)
| Bt (e @Xe = B @X0)) |, = [E((4 - ) xe@x)| <« [ 0an.

Using this inequality to control A 1, we obtain the bounds

o o0
Ay <Lboa+ D+ Y B2+ Y 0120, (4.8)
J=l/21 J=l/21

e¢]

0(1.5(1-‘1-1) Olz,g(j)
Azl <</ 0%dx + Z f 0% dax. (4.9)
0 j=1/21”°

In the same way,

o oo oo
Ae LY j0ra()+ Y p03.4(p) +EX3) Y pbia(p), (4.10)
Jj=1 p=1 p=1

L pae()) 5 ! @.5(p) s
ta< ) [T oenarar Yp [T 00naan
=170 p=1 70
arg(p)

+E(X(2)(a))2p/0 0(0 Aa)dh. 4.11)
p=1
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The term Ao ; can be handled similarly:

!

A9,1<<aE f
— Jo
Jj=1

o (J) as.£(p)

1
0*19-qdA +aZp/ 0% -y di
0
p=1

e arg(p)
+ ”Xf)“)HlZP/O 0(0 Aa)da. (4.12)
p=1

In the previous section, we have defined quantities Cy, C2, C3 such that A3 1 < C1 4+ C2 + C3. If Xi1 = Xi(a)
we shall use the notation C; = C;(a), and if X; 1 = X (00) = Xi the notation C; = C;(c0). Thus A3 < Ci(a) +
Cs(a) + Cz(a) and Az < C1(00) + C2(00) 4+ C3(00). To control C;(a), we use Corollary A.1 and the fact that, for
any My-measurable r.v. B,

a(B, &, &, &) <aig(k) and a(B, &, &, &) <ayg(min(k, D).

Therefrom

I+1 l

!
Ci(0) < Y. h3()+2 Y Gos(D+ Y. 6130 (4.13)

J=l/2] J=l/2] J=ll/2])

ay g (I+1) ! a2 £ (j)
Cl(a)<</ Q(Q naydi+ Y / (0 Aa)*da, (4.14)
0 j=l/21”°

I 1 1
Ca(00) <<1< D s+ Y. s+ Y 92,3(/')), (4.15)

J=l1/2] J=l/4] J=l/4]

! 3,6())
ORI Y 0(0 Aa)*da. (4.16)

j=l1/41”°
Finally

I 00

C3(00) <1 Y (013() +623(D) + D (01.3() +623()))
j=l/4] J=l/2]

1 00 [e%9)
+< > eo,l(j)> (E(X%)HZ\E(XOX,,)])+1||Xo||1 > 0120) 4.17)
J=l1/2] p=1 J=l/4]
and
a2 e(j) e aye(f)

1
aw<t Y [T o@raras 3 0(0 A aa
0

j=l1/41 j=l172170

Lo s o
+< > /O Qdk) (|E(X0Xo(a))| +2Z|E(xo(a)x,,)|)
j=11/2]

p=1

s o)
+| Xo@], > /0 0(Q Aa)da. (4.18)

J=l/4]
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In the previous section, we have defined quantities D1, D2, D3 such that A7 1 < Dy 4+ D2 + D3. If X1 = Xi(a)
we shall use the notation D; = D;(a), and if X; 1 = X;(0c0) = Xj the notation D; = D;(0c0). Thus A7 < Di(a) +
Dy(a) + D3(a) and A7 < Di(00) + Dy(00) + D3(00). Furthermore

1 l

Dy(00) K 291,4(1') + Zj(93,4(j) +61.4()) +62,4())), (4.19)
j=1 j=1
Lo e ! a2 ())
Di(a) <<Z/ Q2(Q/\a)2d>~+2j/ Q*(Q Aa)*da, (4.20)
j=17° j=1 70
I I
Dy(00) € D (I A2)*014()) + D (L A2))*(02.4()) + 03.4())). (4.21)
j=1 j=1
! 3,5())
Dy(a) < ) (I A2)) / Q*(Q Aa)*dh. (4.22)
j=1
Finally

I 00
D3(00) < 1 Xollt Y (U A2))*(01,3() +623())) + 1 XolI3 Y A2))%6012())

j=1 j=1
1 00
+ <Zj91,2(j)) (E(XS) +2Z|JE(X0X,,)!) (4.23)
j=1 p=1

and

apg(J)

&) e
Ds(a) < ||X0||1<Z(l/\2j)2/ N Q(Q/\a)zkoij/O
j=1

j=1

Q(QAa)zdk>

a1e(j)
(Z / Q2d,\) <|E(X0X0(a) |+ZZ|E Xo(a)X )|)

p=1

Le(J)
+ 1 Xoll2] Xo(@) |, Z(z Azj)zf 0(Q Ana)dhr. (4.24)

j=1
It remains to bound up Ag. Clearly

L parg() 5

A< / 0%19-qd. (4.25)
— Jo
j=0

4.4. Control of the A;’s for martingales

For stationary martingale difference sequences, the control of the eight terms A; is much easier, since the terms
A1, As, Ca, Dy are equal to 0. If moreover Xy 1 = X;(00) = Xy, then Ag and Ag are equal to 0. We start from the
control of the previous section. For each term A;, we shall first give an upper bound when Xy | = X (00) = X in
terms of sums of conditional expectations, and next an upper bound involving the mixing coefficients oz . Clearly,

apg(+1)
Az < =|Eo(X7) —0?|, and A21<</ 0% da.

1
2
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In the same way

az¢(J)

1
i A6,1<<Z/0 Q(0 Aa)’ da
j=1

1
%Z|XO (Eo(Xx3) —0?)

and

! a2£(J)
ai<ay [T QP1oman
j=1

Starting from the control A3 | < C; + C, + C3, and noting that C; = 0 for martingale difference sequences, we infer
that

As < [ Eo(X7) = E(X])], + Z [Xo(Bo(X7) =)l + X |Eo(X;X7) —E(X;X7)],
=[1/2] J=l/2]
oy g(I+1) a2 £()) o g(/)
A3,1<</ (0 Aa)*di+ Z/ 0(0 Aa)*dr+ [E(XoXo(@)| Z/ dx.
0

J=l/2] J=ll/2]

Starting from the control A7 1 < Dj(00) + D2(o0) + D3(00), and noting that D,(oc) = 0 for martingale difference
sequences, we infer that

Ao 2 130(Ea(1) ~ ECDl, + a0 (Ea(1) )]

X (E () oA 2 [ Xo(Eo(X, ) — E(pr%»ul)

p=1 p=Lj/2]

apg(J)) a2 (j)

1
QZ(QAa)sz+Zj/ 0%(Q Aa)*dr
j=1 "

i
A7,1<<E f

— Jo

j=1

arg(j) a1£())

l
(0 Aa)*dr+|E(XoXo(a)) Z f 02 d.

+||Xo||1Z /

Finally, we have the simple bound Ag < fol 0%1¢g-qdh.
4.5. End of the proof of Theorems 3.1 and 3.2
We start with two preliminary results.

Proposition 4.2. Let (X;)icz be a stationary sequence of centered random variables in L3. Assume that the series
o2 =E(X, 8) +23 72 | E(X0Xk) converges absolutely and that o > 0. Consider the assumption H: there exist positive
constants K and M and a double array (Yi »)1<k<n 0Of independent and centered r.v.’s with common variance o2
that, setting Ty = Y1+ -+ Yo,

, such

di(Sy, T) <M and maxE(| ) < K3

1<k<n

IfH holds, then d\(S,,, \/noY) < C for some constant C depending only on M, o and K .
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Proof. Assume that H holds. Applying Theorem 5.17 in [23] we infer that there exists a constant A such that, for
any x,

3
IP(T,, < xy/no) —P(Y <x)| < A(E) (14 1x)) 7
o

Hence, integrating on the real line, d1 (T, o/noY) < AK30 2. The result follows by taking C =M + Ao 2K3. O
We also need the following lemma, whose proof is elementary.

Lemma 4.1. Let B, > 0 and B3 be two fixed real numbers, and define

BAyBEB2  p B3

m= , = and t= .
p2 zm 283 +4B3(Bs + B2+ B3/2)

Let Zg, and Bpg, g, be two independent r.v.s such that Zg, has the distribution N (0, B2/2) and Bg, g, is such that
IED(B‘BZ’/S3 =m) =t and P(Bﬁz,ﬁ3 = m/) =1—t¢. Let Gﬁz,/g3 = Zﬁz + Bﬁz.ﬂy Then E(Gﬁz,ﬁs) =0, E(G%Lm) = Bs and

3 —
E(Gy ) = b

To prove Theorems 3.1 or 3.2, it is enough to see that under the assumptions of Theorems 3.1 or 3.2, the con-
dition H of Proposition 4.2 holds. Without loss of generality, we assume that o= E(X(z)) + 22,?11 E(XoXy) =1
(the general case follows by dividing the random variables by o). Denote by b(/, a) the quantity b(l) defined in
(4.4) with Xy 1 = Xk(a) (see Section 4.3 for the definition of Xj(a)), and denote by b(/, 0o) the quantity b(l) with
X1 = Xy(00) = Xy. Let Yy 4, ..., Yy, be n independent random variables, independent of (X )iez, such that Yx ,
has the law of G 1 p((n,k),a(n,k))> Where G, g, is defined in Lemma 4.1. Let ¥ be a N (0, 1)-distributed random vari-
able, independent of (X;, Y} 4)icz,1<j<n, and let T,, = Y1 ,, + - -- + Y, ,. Starting from (2.3), and keeping the same
notations as in Notation 2.1, we have, as in Section 4.2,

E(f(Sy) = f(Tw) <2E[Y|+ ) _E(4p). (4.26)
k=1

By Lemma 2.1 applied with B = B{ p((n,k+1),a(n,k+1)) + - + B1,b(n,n),a(n,n)) We get that
[0 = Ditr =k + DI,

Define «~!(u) = >0 ]lu<a3£(i), and Rw) = oY) Q). Let x4 = R_l(\/E) and choose the truncation level
a(n, k) = oo for Theorems 3.1(a), 3.2(a) and a(n, k) = Q(x,—x+1) for Theorems 3.1(b), 3.2(b). Let B, be the set
of positive integers k such that k — 1 < +/n —k + 1 for Theorems 3.1(a) and 3.2(a), and B, be the set of positive
integers k such that k — 1 < 4a‘1(xn,k+1) for Theorems 3.1(b), 3.2(b). If k£ belongs to B,, take [(n,k) =k — 1.
If k& does not belong to B,, take /(n, k) = [«/n — k + 1] for Theorems 3.1(a), 3.2(a) and I(n, k) = 4a‘1(xn,k+1)
for Theorems 3.1(b) and 3.2(b). Let g(n) = sup B,. Applying Proposition 4.1, with Z = Yy », B2 = o2=1, B =
b(l(n,k),a(n,k)) and B4 =E(Y} ), we obtain that

n

n 9
Y EAD K Y Y kinkAi(k.1(n, k)

k=g(n) k=g(n)i=1
and

gn)—1 gn)—1 9

YR YD ki kAitk k= 1),

k=1 k=1 i=1
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where the numbers «; ,, are defined by «; , = m~? fori =1,2,3,4, K8.m = K2.m»> K9.m = K3 and Kj , = k4 for
i =35,6,7. We only control the first term, the second one being easier to handle, since in that case [(n, k) =k — 1 <
v/n —k 4+ 1 for Theorems 3.1(a), 3.2(a) and I(n, k) =k — 1 < 4a’1(xn_k+1) for Theorems 3.1(b), 3.2(b). To prove
that condition H of Proposition 4.2 holds, it is enough to prove that for any i in [1, 9],

sup Z Kin—kAi (k,1(n, k) < co. 4.27)
n>0k o(n)

The proof of (4.27) will be done using the upper bounds given in Section 4.3. We first prove Theorem 3.1 under
condition (a) and next Theorem 3.1 under (b).

Proof of Theorem 3.1 under condition (a). In that case a(n, k) = co and [(n, k) = [«/n — k + 1]. Consequently
Ag(k,l(n,k)) = Ag(k,l(n,k)) =0, so that we have to prove that (4.27) holds for i in [1, 7].
By definition of [ (n, k), (4.27) holds for i = 1 as soon as Z,fil 60.1( [\/%]) < 00, which is equivalent to condition (a)

with (p,q) = (0, 1).
From (4.8), (4.27) holds for i = 2 as soon as,

for (p,q) = (0,2) or (1,2), Zf Z 0p.4(j) < 00. (4.28)
J=IVk/2]

Again these conditions are implied by condition (a) withg =2 and p =0, 1.
From (4.13), (4.27) holds for i = 3 as soon as

o0
forp=0,1,2and g =3, Z[ Z 0p,q(j) <00, (4.29)
J=IWE/4]

which holds true under condition (a) withg =3 and p =0, 1, 2.
From (4.7), (4.10), (4.19), (4.21) and (4.22) we infer that (4.27) holds for i =5, 6, 7 as soon as,
o0 1 o
forg=4and 1< p <3, ZWX:zJM/— 0p.4(j) < 0. (4.30)
k=1 j=1

Clearly (4.30) holds as soon as

© [Vk/2]
Zm > j*0pq(j) <o and Z[ Z Op.q(j) < o0. (4.31)
k=l j=1 J=IvE/2]

Interchanging the sums, we see that (4.31) holds under condition (a) withg =4 and 1 < p <3.
It remains to prove that (4.27) holds for i = 4. Since ) ; kj 4 < Tc2/6, we infer that (4.27) holds for i =4 as soon as

sup{E( ) 1<k<n< oo} < 00. 4.32)
Now Yk, and Z1 4 B p(i(n,k),a(n.k)) have the same distribution, and consequently
E(Y;in) < 16(E(ZY) + I B1ban.k).atm o) (4.33)

Note that || B1.p((n.k).am.k))llco =m V |m’|, where m and m' have been defined in Lemma 4.1 with 8, = 02=1and
By =b((n,k),an,k)). Next b(I(n, k),a(n, k) < bz < oo with

oo [e¢) o
b3 =003(0)+6Y 013(k) +6Y kb1 3(k) + 6> kb3 (k). (4.34)
k=1 k=1 k=1
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Now b3 is finite under condition (a). Hence, from Lemma 4.1

1
| B1,o . k),a(n.h0) loo < b3 + ,/b% + > (4.35)

which completes the proof of (4.27) for i = 4. 0

Proof of Theorem 3.1 under condition (b). In that case we choose a(n,k) = Q(x,—kx+1) and I(n,k) =
4o~ (x,_x41). Note that, for any nonnegative measurable function 4 and any positive p,

e o3¢ (1) 1
> oir! / hdx < oo if and only if / (@ HPhdx < . (4.36)
0 0

Hence (4.27) holds for i =1 as soon as,

o0 1
Z/ 152 Q . < 00,
k=179

which holds under (b).

Now recall that, for i = 2,3,6,7,9, the terms A;(k,l(n,k)) are decomposed into a sum of two terms:
Ai(k,l(n, k) = Aj1(k,l(n, k) + Ai2(k,l(n, k)). Consequently, in order to prove that (4.27) holds for these val-
ues of i, we will prove that, for j =1 and j =2,

sup Z Kin—kAij (k, 1(n, %)) < oo. (4.37)
n>0, _ —g(n)

Fori =2, from (4.5), (4.37) holds for i =2 and j = 2 as soon as

/ 1o ZZ ]lk<deA<oo (4.38)

which follows from (b). From (4.8) and (4.9), (4.37) holds for i =2 and j =1 as soon as (4.38) holds. Hence (4.27)
holds fori = 2.
Fori =3 andi =9, from (4.5), (4.37) holds for j =2 as soon as

s a3 ()
1 Xol / 021, _ 2 di < 00,
O‘kZIQmZ S

which can be handled as (4.38) by noting that \/%Q(xk) > \/EQ(xl ). From (4.18) and (4.12), (4.37) holds fori = 3,9
and j =1 as soon as

00 i
R @3£())
(xk) / Q21k<R2 dr < oco. (439)
z : 2 : 0 =<
k=1 j=1

Since R(xy) < Vk, (4.39) can be handled as (4.38). Hence (4.27) holds fori =3 and i = 9.
For i = 6,7 and from (4.5), (4.37) holds for j =2 as soon as

1 Xoll —— / Q71 <g2 dA < 00,
p=R R il
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which can be handled as (4.38) by noting that vk Q% (xz) > vk Q?(x1). From (4.10), (4.20), (4.22) and (4.24), (4.37)
holds fori = 6,7 and j = 1 as soon as,

* 1 = 5 a3()) ) )
> a7 i nxkfm(j/@f 0*(Q A Q(xp)) dA < co. (4.40)
k=1 =1 0
Interchanging the sums and the integral, (4.40) holds as soon as
1 00 2 o0
(Q(x1)) :
/0 0? <Z ke D i <ase(ia | i < oo, (4.41)
k=1 j=1

1 0 1
/0 (a*1)3Q4 (Z mﬂsz) dr < oo. (4.42)

k=1

Now (4.41) is equivalent to (4.38), and by definition of R, (4.42) follows from condition (b). Hence (4.27) holds for
i =6and i =7. In a similar way, for i =5, (4.27) can be derived from inequality (4.7).
We now prove (4.27) for i = 4. First note that

]

1 1
Y s E(xex(0w0)] < /0 0’y Qkf/z")ﬂk<Rz ar+ / 'Y Hp
k=1

k=1 k>R2
and these sums can be handled as in (4.41), (4.42). Since ) ; ki 4 < n2/6, (4.27) holds for i =4 as soon as (4.32)
holds. Now as in the proof of (4.27) for i = 4 under condition (a), (4.33) holds and
© a3 g (k)
b(l(n, k), a(n,k)) SZSk/ 03 dx < 00 (4.43)
0
k=1

under condition (b). Hence, from Lemma 4.1, (4.32) holds, which completes the proof of (4.27) holds for i = 4.
From (4.25), (4.27) holds for Ag as soon as (4.38) holds. Hence Theorem 3.1 holds under (b). U

Proof of Theorem 3.2. Since the proof of Theorem 3.2(b) is similar to that of Theorem 3.1(b), we shall only give
some hints at the end of this section.

To prove Theorem 3.2(a), we use the control of the A;’s given in Section 4.4. Recall that, in that case, A1, As, Ag
and Ag are equal to zero. For i = 2, (4.27) holds as soon as

= 1
];ﬁ’|EO(X[2ﬁ]) —1f, <00,

which follows from the first condition in (3.3). For i = 6, (4.27) holds as soon as

Mg

Mzuxo Eo(x3) - )], <.

k=1

which follows from the first condition in (3.3) by interchanging the sums. For i = 3, (4.27) holds as soon as

0 1 [Vk]
Yoo 2 Xo(Eo(x}) — 1), <o, (4.44)
k=1 j=[Vk/2]

Yo I E(XX7 ) —E(X; X2 )], < oo (445)

k=1"" j=[vk/2]
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Equation (4.44) follows from (3.3) by interchanging the sums. Equation (4.45) is equivalent to

00 1 k
27 2 IE(XiX3) —E(X;X7)], < o0,
=1 " j=[k/2]

which follows from the second condition in (3.3). For i =7, (4.27) holds as soon as

o |1 Xoll1 VA . 5

> %372 2 il Xo(Eo(X3) = )], < o0,

k=1 j=1

© Wkl j 5 ,

ZW Z | Xo(Eo(XX3) —E(X,X7))], < oo,
k=1 Jj=1p=lj/2]

o | LK )

> 2o 2 X (Bo(XF) = )], < o0,

(4.46)

(4.47)

(4.48)

Interchanging the sums, we see that (4.46) and (4.48) follow from the first condition in (3.3), and (4.47) follows from
the second condition in (3.3). For i = 4, we proceed as in Theorem 3.1. We have the upper bound b(I(n, k), 00) < d3

with,

ds =E(1Xol) +3i||Xo(Eo(X%) — ;.

Hence (4.35) holds with a(n, k) = oo, and the proof of H under (a) is complete.

The proof of Theorem 3.2(b) is similar to that of Theorem 3.1(b). For 1 <i <9, (4.27) holds as soon as

L[ 2 00 & !
Z ﬁ [) szlkfRz dr < oo, Z X Z]]‘xkfa(j/4) \/0 Q21k§R2 dr < o0
k=1 k=1 j=1

and

— 1 = «y ,
Zmzjjlxkfa(jﬂ)/o 0*(Q A Q) dA < oo.
j=1

k=1

Arguing as in the proof of Theorem 3.1(b), these inequalities follow from (3.4).

5. Examples

5.1. Aperiodic Harris recurrent Markov chains

Throughout this section, K is a positive Harris recurrent Markov kernel on some separable state space (E, £), i.e. there
exists a unique probability measure 7w with 7 K = 7, and K is w-recurrent. As in [5], K is assumed to be aperiodic,
which ensures that the stationary chain (&;);cz with kernel K is strongly mixing in the sense of Rosenblatt. Moreover,
in the case of discrete Markov chains or chains with an atom, the rates of strong mixing and the integrability properties
of the recurrence times are strongly linked, as proved by Theorem 2 in [3]: for any r > —1, Y ", k" (k) < oo if and
only if £ (‘Cr+2) < 00, where 7 is the recurrence time (starting from the atom). From [26] the above series is convergent

if and only if &' (u) = Y_;~( Lu<a() belongs to L™+1([0, 1]).
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For any measurable function f, let S, (f) = f(§1) + f(§2) + --- + f(&,). From Bolthausen’s results ([3], Corol-
lary 3 and [5], Theorem 1), the convergence rates in the Berry—Esseen theorem are O(n~'/?) as soon as

7_[(|f|3p) <oo and Zk(p+1)/(p_1)a(k) <00, (5.1
k>0
for any p in ]1, oo], provided that
o*=n(f*)+2) n(fK"f)>0. (5.2)
n>0

From Theorem 3.1(b) above, we obtain the bound
di(n="28,(f). oY) < Cn~!/? (5.3)

as soon as f satisfies (5.2) and (1.8), with Xo = f(&p) and b = 0. From (4.36), the latter condition is equivalent to
: 1 23
/ [ )] Qi f () () du < 0. (5.4)
0
From the Holder inequality applied with s = p/(p — 1) and t = p, we see that (5.4) holds as soon as (5.1) holds.
Martingale difference sequences
If K(f) = 0 almost everywhere, the sequence X; = f(&;) is a martingale difference sequence. Consequently Theo-

rems 3.2 and 2.1 apply with o2 = (f?). From Theorem 3.2(b), (5.3) holds as soon as the strong mixing coefficients
satisfy (1.8) with b = 0. Under the weaker condition

a(k)
O} ey () du = O(k ™), (5.5)

Theorem 2.1(a) provides the rate
di(n™"28,(f),aY) =0(n™?). (5.6)

When f is a bounded function with K (f) = 0 almost everywhere, (5.3) holds under the summability condition
> r (k) < oo, which is related to the ergodicity of degree 2 (cf. [21], Section 6.4). From (5.5), the rate (5.6) holds
under the weaker condition « (k) = O(k~?).

5.2. The transformation ® (x) = 2x — [2x]

Let A be the Lebesgue measure on [0, 1] and consider the map ® from [0, 1] to [0, 1]: @ (x) = 2x — [2x]. On the
probability space ([0, 1], 1), the sequence (©');~ is strictly stationary. Note also that (®, e2, ..., ®™) is distributed
as (&,,...,&1), where (&);cz is a Markov chain with invariant distribution A and transition kernel

s-30(3)/(£)

Hence, we can obtain information on the distribution of S,,(f) = f o ® +--- + f o ®" by studying that of f (&) +
---+ f(&,). For instance, we can apply the criterion of Dedecker and Rio [8] for the central limit theorem: if A(f) =0,

Af?) <oo and D A(|FKN(S)]) < o0, (5.7)

k>0

then o = A(f%)+2 Yooy A(f-fo ©F) converges absolutely, and n~1/2S,, ( f) converges in distribution to a Gaussian
random variable with mean 0 and variance o 2. Now it is easy to see that (5.7) holds as soon as, for some p € [2, o],

1
1
feLP() and /0 w1 (1) di < 00, (5.8)
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where wg (f, t) is the IL7([0, 1], A)-modulus of continuity of f in IL([0, 1], 1). For p = 2, the criterion (5.8) has been
obtained by Ibragimov [16]. For p = 0o, the criterion (5.8) follows from the L!-criterion of Gordin [14] applied to
sequences of bounded variables.

In the same way, applying Theorems 2.2, 3.2 and 3.1, we obtain the following result:

Theorem 5.1. Let f be a measurable function from [0, 1] to R such that L(f) =
(a) Assume that, for some p € [3, 00],

logt|
t

fel?(\) and A Wp/(p—2)(fi 1) dt < o0. 5.9

If o > 0, there exists a constant C such that, d1 (S, (f), /no¥) < Clogn.
(b) Assume that, for some p € [4, 0],

! log?|

p —Wp/(p— 3)(f t)dr < oo. (5.10)

fel?(\) and /
0
If 0 > 0, then there exists a constant C such that,

di(Su(f),v/no¥) <C. (5.11)

(c) Assume that f(x + (1/2)) = — f(x) for almost every x € [0, 1/2]. Then the sequence (f (&,))nez is a stationary
martingale difference sequence, so that o> (f) = A(f2). If moreover, for some p € [4, 00],

1
1
A(|f|1’)<oo and /?wp/(p_g)(f,t)dt<oo,
0

then (5.11) holds.
(d) Assume that f = f1 — fa, where fi and f> are nondecreasing functions. Assume moreover that

1 1
/ (log(r — tz))z}fl (t)|3dt <oo and / (log(t — tz))2|f2(l)|3dt < 0.
0 0
Ifo > 0, then (5.11) holds.

Remark 5.1. If f belongs to 1.3 (1), Ibragimov [17] obtained the Berry—Esseen type estimate

logn 12
" )

sup|P(S, (f) < xv/no) —P(Y <x)| §C< (5.12)

xeR

under the condition w3 (f,t) < Ct* for some a > 0. This condition is slightly stronger than our condition (5.9) with
p = 3. Applying Theorem 9 in [19], one can obtain the bound Cn="/? in (5.12) as soon as

! log1]

fel®M) and / Woo (f, 1) df < 00,
0

where woo (f, t) is the modulus of continuity of f.

Remark 5.2. If f € L°°(X) and if K(f) = 0 almost everywhere, then (5.11) holds under the criterion (5.8) applied to
p = o0.

Remark 5.3. Applying the Hausdorff~Young inequality (cf. [15], p. 202), Ibragimov [16,17] proved that (5.8) holds
Jor p =2 as soon as the Fourier coefficients of f satisfy |f(n)| < Mn~12(og(n))73/>7¢ for some positive M
and €, and that (5.12) holds as soon as | f (n)| < Mn=2/3=€_ Using the same arguments, one can prove that
(5 9) holds for p =3 as soon as |f(n)| < Mn*2/3(log(n)) 8/3 €, and that (5.10) holds for p = 4 as soon as
| £ ()] < Mn=3/*(log(n))~11/4=<,
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Proof of Theorem 5.1. Point (a) follows from Theorem 2.2 and point (b) follows from Theorem 3.1(a). The proofs
being similar, we shall only prove point (b). Let us just see how to control the coefficient 61 4(/), the other one being
easier to handle. The sequence (§;);cz being a stationary Markov chain with invariant distribution A and transition
kernel K, the coefficient 61 4(I) is equal to

1
sup f
k=1,i>0,j>0J0

From Theorem 1 in [12], we infer that, for any % in LY ([0, 1], 1),

J”()C)(Kk(fK’(fK’(f)))(x)—fO (fK’(fK’(f)))(X)dX> dx.

< 2w, (h,27%).
q.A

H / KX () () — ()| dx

Hence, applying Holder’s inequality, we obtain that

Ora) < sup 2| fllpawpp—n (FK(FKI(H),27).

i>0,j>0

We now use the elementary facts that, for p > g and r > ¢,

wq(fg, 1< ”f”p,)»wpq/(p—q)(gv 1)+ ||g||r,kqu/(r—q)(f’ 1),
and that wy (K (f), 1) < wy(f, t). It follows that

01.4() < s,ugzufni,k(wp/(p_z) (FKT D27 + 1 lpawpsp-3(£.277))
Jj=

<6ILfID awp/p-3(f.27).

Hence, if f belongs to L7 ([0, 1], 1) for some p >4, >, 101,4(l) is finite as soon as Zl>olwp/(p,3)(f, 2_1) is
finite, which is equivalent to the condition of (b).

To prove (c), note that, if f(x + (1/2)) = — f(x) for almost every x € [0, 1/2], then (f(&;))icz is a sequence of
martingale differences, so that Theorem 3.2(a) applies. To conclude, use the control of 6; ;(/) given above.

It remains to prove (d). Let BV, be the space of left continuous bounded variation functions f on [0, 1] such that
ldfllv <a (here | - ||, is the variation norm). Let f© = f — A(f) and Mg = o (¥;,i <0). Arguing as in Lemma 1
of [7], one can see that, for any i; > --- > i} > n,

l I
E(]‘[ £ &) Mo) - E(]‘[ 19 (5,,.))

j=1 j=1

a(MO, (éils---ssij)): sup
f|,...,f[€BV]

1

Since K maps BV; to BVj,;, we infer that f(o) . (Ki(g))(o) belongs to BV for any i > 0 and any f, g in BV). It
follows that, for any i > --- > i; > n,

a(Mo, &, ..., &)) Sa(Mo, &) <27",
so that o3 ¢ (n) < 27". Applying Theorem 3.1(a), d (S, (f), /noY) < C as soon as

1 1
/ (log1)*Q7;, () dt <00 and / (log1)* Q7 (1) dt < oo,
0 0
where Q ¢ is the generalized inverse of 7 — A(f > ). Let f* = fv0and f~ = —(f A0). By Lemma 2.1 in [26],
1 1 1
/ (logt)0}, (1) dr < / (log 120, (1) dr + / (logr2Q*_ () dr.
0 0 £ 0 fi

Clearly O i (1) = f1+(1 — t) almost everywhere and Q 0= fi (¢) almost everywhere. Of course the same is true
with f> and the result follows. O
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5.3. Symmetric random walk on the circle

Let K be the Markov kernel defined by Kf(x) = (f(x+a)+ f(x —a))/2 on T = R/Z, with a irrational in [0, 1]. The
Lebesgue—Haar measure m is invariant under K . Furthermore K is a symmetric operator on L% (m), and consequently
the Kipnis—Varadhan or the Gordin—Lifshitz central limit theorems apply. Let (§;);c7z be the stationary Markov chain
with transition kernel K. For f in L2(m) with m(f) =0, set

Sn(f)=fED)+ fE)+--+ f(&n). (5.13)
Then the central limit theorem holds for n~1/2S,,( f) as soon as the series of covariances
azszzdm+22/fK”fdm (5.14)
T n>0 T

is convergent and the limiting distribution is (0, o2) (cf. [9], Section 2). Our aim in this section is to give conditions
on f and on the properties of the irrational number a ensuring optimal rates of convergence in the central limit
theorem.

Definition 5.1. a is said to be badly approximable by rationals if for any positive €, the inequality d (ka, Z) < |k|~'~¢
has only finitely many solutions for k € Z.

From Roth’s theorem the algebraic numbers are badly approximable (cf. [27]). Note also that the set of badly
approximable numbers in [0, 1] has Lebesgue measure 1. We will now give results for the symmetric random walk on
the circle in the case of badly approximable numbers a.

Theorem 5.2. Suppose that a is badly approximable by rationals. Let f be a function in 1L>(m) with m(f) = 0 and
m(f?) > 0.
(a) If the Fourier coefficients f(k) of [ satisfy supy k|1 +e |f(k)| < 00 for some positive €, then n=/*S,(f) con-

verges in distribution to a nondegenerate Gaussian distribution N(0,02).
(b) If the Fourier coefficients f (k) of f satisfy SUPy40 [k|*t€| f (k)| < oo for some positive ¢, then

sup|P(Sy < xo/n) —P(Y <x)|=0(n" "), (5.15)
xeR
di(n"%8,,0Y)=0(n"""?). (5.16)

Remark 5.4. The assumption f (k) = O(|k|~'=%) in Theorem 5.2(a) implies that f is S-H()'lden;an, and therefore
uniformly continuous. Conversely, if f is C'¢ then f satisfies (a). In the same way the condition f (k) = O(|k|=*7¢)
in (b) implies that f is C3*¢ and conversely any C**¢ function f satisfies (b).

Proof of Theorem 5.2. Since

/ FK"fdm="Y" cos"@nka)| f k)|,
T

keZ*

the series in (5.14) is convergent if ), ;. cot?(ntka)| f (k)|? < co. Moreover, interverting the sums, we get that
o= ZkeZ* cotz(nka)lf(k)lz. Since cot?(mtka) > O for any k in Z*, it ensures that o2 >0.

When {ka} = d(ka,Z) tends to O, cot?(rtka) ~ n’z{ka}’z, so that the convergence of the series in (5.14) is
equivalent to

3" ka) 2| F )| < oo, (5.17)

keZ*
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as shown in [9].
In order to complete the proof of Theorem 5.2(a), we will need the elementary fact below.

Lemma 5.1. Let a be a badly approximable irrational number. Then, for any positive n, there exists some positive
constant C such that, for any nonnegative integer N and any p > 2, Zke[zN)QNH[{ka}’p <2CP2pIN+2)(I+m),

Proof. Let k and [ be integers in Iy = [2V, 2N+ with k # [. From the equality |{ka} — {la}| = min({( — k)a}, {({ +
k)a}) and Definition 5.1, we get that |{ka} — {la}| = C~ 'k —1|717" > C~12=N+2U+1) for some positive constant C.
Now, denoting by x{v, . xé\,’V the order statistic of ({ka})kery .,

XN >N 4 (m— 1) NEN >y 07l CEN A,

Hence
IN+1_q N 2N
Z {kal™? = Z(X,va)_p < CcPoP(N+D U+ Z mP,
k=2N m=1 m=1
which implies Lemma 5.1. O

Now, applying Lemma 5.1 with p =2 and n = ¢/2, we get that

3 ka) (| f 0|+ | f(—h)|?) < 4c2NCH) kma}x|f(k)|2 <2 Ne
kely €ln

under the assumptions of Theorem 5.2(a), which implies the convergence of the series in (5.17). Therefore Theo-
rem 5.2(a) holds.

We now prove Theorem 5.2(b). Equation (5.15) is a byproduct of Jan’s theorem ([19], Theorem 9, page 61 or [20],
Theorem 1) and (5.16) is a corollary of our estimates of the minimal LL!-distance. The main tool is Lemma 5.2.

Notation 5.1. For s > 0, let Fy be the class of 1-periodic functions g such that g(0) =0 and |g(k)| < |k|™* for any k
inZ*.

Lemma 5.2. Let a be a badly approximable irrational number. Then, for any ¢ in 10, 1]

Zn sup ||K"g||oo < 00.

n>0 g€Farae
Proof. For g in L2(m) with m(g) =0,

K'g(x) = Z cos" 2mka)g (k) exp(imtkx).
keZ*

Therefore

sup ||K”g||oo =< Z |COSn(2:|'cka)||k|—4(l+s)’

8E€S 444e keZ*

which ensures that

Zn sup ||K"g||oo < Z (l - |cos(2nka)|)_2|k|74(1+g) < Z (|k|1+8{2ka})_4.

n>0 §€Fatac kezZ* keZ*
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Next, applying Lemma 5.1 with n = ¢/2 and p = 4, we get that

Z (|k|l+8{2ka})—4 < 4C4 Z 2(4+28)(N+2) maxk—4(1+g) < 00,
kely
keZ* N>0

which implies Lemma 5.2. 0

We now complete the proof of Theorem 5.2(b). Set X, = f(£,). In view of the Berry—Esseen type Theorem 9 in
[19] and Theorem 3.1 we have to bound up the coefficients

Yo =sup{|| Eo(Xp, -+ Xp)) —E(Xp, - Xp)| i 3.0 < p1 <--- < pj}

in such a way that ) °, ny,, < oo.
We proceed as in [19]. Set pg = n. Then (in the case j = 3)

Eo(Xp, "'ij) = EO(Epo(Xm (Em (szEpz(Xm)))))-

Hence, setting ¢; = p; — pi—1, we get Eo(Xp, -+ Xp;) = K"'"(KN(fK%(f K% f))). Starting from this equality, we
now prove that, for s > 1 there exists some constant Cs (depending only on s) such that, for any f € F,

Y < Cs sup | K"g| .. (5.18)
geFs

To prove (5.18) one can prove that, for f in Fy and g = K9 (fK?(f--- K f)--),
|g(k)| < Cslk|™  for any k € Z*, (5.19)
any j <3 and all natural integers gy, ..., ;. This is derived from Lemma 5.3.

Lemma 5.3. Let s > 1. For any g in F; and any natural p, K? g lies in F;. For any g and h in Fs and any k # 0,
lgh(R)] < (s — D722 k|~

The proof of Lemma 5.3, being elementary, is omitted. Now, from (5.18) and Lemma 5.2, Zn nyr, < oo under the
assumptions of Theorem 5.2(b). Since the function f is uniformly bounded, it implies (5.15) via Theorem 9 in [19]
and (5.16) via Theorem 3.1. [l

Appendix

In this section, we give an upper bound for the expectation of the product of k centered random variables ]_[f: (X =
E(X;)). This upper bound is given in term of a dependence coefficients «(X71, ..., Xx), which is a generalization of
the coefficient introduced in [26], Eq. (1.8a), for kK = 2 (note that, for k = 2, our definition differs from that of Rio by
a factor 2).

Proposition A.1. Let X = (X1, ..., Xx) be a random variable with values in R* and define the number

k
E(]—[ﬂx,m —P(X; >x,»)>|. (A.1)

i=1

a=a(X(,...,Xp) = sup
[CTT xp)eRK

Let F; be the distribution function of X;, let Fl._l be the generalized inverse of F; and let D;(u) = (Fi_l(l —u) —
F;l (u)) 4. We have the inequality

k o2 k
E(H X; —IE(X,-)) <2 /0 (]‘[ Dl-(u)> du. (A.2)
i=1

i=1
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In particular, if X is M-measurable, we have a < a (M, (X2, ..., Xy)). Hence

(M, (Xa,...Xi)/2 [k
(HX —E(X; )) <2 f (]‘[ Di(u)) du. (A.3)
i=1

i=1

Proof. We have that

k k
E(]‘[x,» —]E(X,»)) :/E(]‘[nxim —P(X; >x,-)> doxy - - - dxg. (A4)

i=1 i=1

Now A = |]E(]_[f:1(lxi>xi —P(X; > x;)))| is such that A < «, and for any 1 <i <k,
A <2P(X; > x)P(X; <x)) Aot < 2{1@()(,- > x) AP(X; <x1) A %} (AS5)

Consequently, we obtain from (A.4) and (A.5) that

k a2 [k
E(H Xi —E(Xi)) < 2/ (1_[/ ]lu<IP(X,->x,-)Jlu<IP(X,-<x,»)dxi) du
i=1 0 i=1

/ (H/ “Huwy=xi<F; (l—u)dxi>d”

and (A.2) follows. O

Lemma A.1. Let X = max(0, X) and X_ = —min(0, X). For almost every u < 1/2, we have the inequalities
0<Dx(u) < Qx, (u)+ Ox_(u) <20Qx/(u). Furthermore the second inequality is an equality if 0 is a median
for X.

Proof. First, we have F;l(l —u) = Oxu) < Ox, (u). Next, by definition of F_l, we have —F;l(u) =
sup{x: P(—X > x) > u}. By definition Q_x (u) = inf{x: P(—X > x) > u}, so that —F;l(u) = Q_x(u) for every
continuity point u of Q_x and hence almost everywhere. To obtain the desired inequality, note that O _x(u) <

Ox_(u). O

Corollary A.1. Let X = (X1, ..., Xx) be a random variable with values in R and let a be defined by (A.1). Let
(fi)1<i<k be k functions from R to R, such that f; = fl.(l) — fi(z) where fi(l) and fl.(z) are nondecreasing. For 1 <i <k

and j € {1,2}, let Ql(j) = Qlf»('f)(X-)l' We have the inequality
=l k=l
In particular, if X1 is M-measurable,
. 2 2 pa(M (X2, X0))/2 k G
]_[ﬁ(X) B(fi(X0) )| =2+ Z"'Z/O 01 @ [T 0w ) du
=l =1 i=2

Proof. Clearly

‘ (Hﬁ(x) E(fi(Xi )))

k
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Since ffji) is nondecreasing, oz(fl(jl)(Xl), e, fk(jk)(Xk)) < a(X1,..., Xr). To obtain the result, apply (A.2) and
Lemma A.1 to each term of the sum in (A.6). [l
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