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Abstract. In this paper we obtain the central limit theorems, moderate deviations and the laws of the iterated logarithm for the
energy

Hy= ) wjoclis=s,)

1<j<k<n

of the polymer {Si, ..., S;} equipped with random electrical charges {w1, ..., w,}. Our approach is based on comparison of the
moments between H,, and the self-intersection local time

On= Z Lis; =8}

1<j<k<n

run by the d-dimensional random walk {Si}. As partially needed for our main objective and partially motivated by their independent
interest, the central limit theorems and exponential integrability for O, are also investigated in the case d > 3.

Résumé. Cet article est consacré a I’étude du théoréme central limite, des déviations modérées et des lois du logarithme itéré pour
I’énergie

Hy= ) wjoplis;=s

1<j<k<n

du polymere {Sy, ..., Sy} doté de charges électriques {wy, ..., w,}. Notre approche se base sur la comparaison des moments de
H,, et du temps local de recoupements

On= Z Lis;=5:}

1<j<k<n
de la marche aléatoire d-dimensionelle {S;}. L’étude du théoréme central limite et de 1’intégrabilité exponentielle de Q) (dans le
cas d > 3) est également menée, tant pour comme outil pour notre principal objectif que pour son intérét intrinseque.
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1. Introduction

In the physics literature, the geometric shape of certain polymers is often described as an interpolation line segment
with the vertices given as the n-step lattice (simple) random walk

{SI’S27"'7S}1}'

By placing independent, identically distributed electric charges wy = =£1 to each vertex of the polymer, Kantor and
Kardar [16] consider a model of polymers with random electrical charges associated with the Hamiltonian

H, = Z ijkl{Sj:Sk}~ (1.1)

1<j<k<n

In the physics literature, H, is called the energy of the polymer. To understand the physics intuition of H,,, we assign
an electrical charge wy to the random site S for all k = 1,2, .... Assume that when two charges meet, the pair with
opposite signs gives negative contribution while the pair with the same sign gives positive contribution. Thus, H,
represents the total electrical interaction charge of the polymer {Si, S>, ..., S,}.

We point out some other works by physicists in this direction. In [10], the charges are i.i.d. Gaussian variables.
In [11], the charges take 0—1 values. We also refer the reader to [4,18] for the continuous versions of the polymer
with random charges. Finally, we mention the survey paper by van der Hofstad and Konig [12] for a long list of
mathematical models connected to polymers.

As for other connections, we cite the comment by Martinez and Petritis [18]: “It is argued that a protein molecule is
very much like a random walk with random charges attached at the vertices of the walk; these charges are interacting
through local interactions mimicking Lennard—Jones or hydrogen-bond potentials”.

We study the asymptotic behaviors of H, given in (1.1). In the rest of the paper, {S,},>1 is a symmetric random
walk on Z? with covariance matrix I" (or variance o> as d = 1). We assume that the smallest group that supports
{Suln>11s 74, Throughout, {w}x>1 is an i.i.d. sequence of symmetric random variable with

2
Ew% =1 and EeM <oo forsome Ao > 0. (1.2)
Our first result is on the central limit theorems.

Theorem 1.1. Asd =1,

1 d -1/2 * 5 12
3—/4Hn — (20) L~(1,x)dx U, (1.3)
n —00

where U is a random variable with standard normal distribution, L(t,x) is the local time of the 1-dimensional
Brownian motion W (t) such that U and W (t) are independent.

Asd =2,

Ly, : U (1.4)
——H,— ——F— .
J/nlogn " V2ndet T

Asd >3,
Ly < U (1.5)
«/ﬁ n Yu, .
where

o0

y=> P(S=0}. (1.6)

k=1
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Here is our explanation on the dimensional dependence appearing in Theorem 1.1. The higher the dimension is,
the less likely the random walk is to have long-range interaction (self-intersection). In the multi-dimensional case
(d = 2), therefore, H, is a sum of random variables with weak dependence and yields a Gaussian limit when properly

normalized. It should be pointed that the low level of long-range interaction is vital for the chaos

j{: aj kWi

1<j<k<n

to have a Gaussian limit when properly normalized. A simple example is when a; ; = 1. In this case

1<j<k=<n
By the classic law of large numbers and classic central limit theorem,
1 d 1, 5
- wijop — - (U”—1
n ZE: J Pk 2( )
1<j<k<n

which sharply contrasts to the statements in Theorem 1.1.
Our next theorem describes the moderate deviation behaviors of H,,.

Theorem 1.2. Asd =1,

1 1
lim ™ log P{£H, > A(nby)**} = —502/3(3»4/3, r>0,

n—oo n
for any positive sequence {b,} satisfying

by — 00 and b, =o0(/n), n— oco.

Asd =2,
1
lim ™ log P{£H, > y/n(logn)b,} = —my/det(INA*, 1 >0,
n— 00 n

for any positive sequence {b,} satisfying

b, > oo and b, =o(logn), n— oo.

Asd >3,
li 11PiH>)\b—)‘2 A>0
Jim 5~ log {£H, = nn}——g, > 0,

for any positive sequence {b,} satisfying

1/4
b, > o0 and bnzo(( " ) ), n— 0o.
logn

Our moderate deviations applied to the law of the iterated logarithm:

Theorem 1.3. Asd =1,

+H, 23/4
limsup ——————— = =712

n—oo (nloglogn)3/4 3 -

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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Asd =2,
li £ ! (1.14)
imsu = a.s. .
i J/nlognloglogn  /mdet(I")/4
Asd >3,
. +H,
limsup ———==+/2y a.s. (1.15)

n—oo «/nloglogn

We compare the results and treatments between the present paper and some recent works on self-intersection local
times such as [3,6]. On the one hand, we shall see that the asymptotic behaviors of H,, described in our main theorems
are closely related to those of the self-intersection local time

On=D_ lis;=5- (1.16)

1<j<k=<n

Indeed, our approach is based on the moment comparisons between H,, and Q,, (see Proposition 2.1). In particular,
the difference in limiting distribution between the case d = 1 and the case d > 2 in Theorem 1.1 is caused by the
fact that in the case d = 1, Q,, converges (in distribution) to the Brownian self-intersection local times when properly
normalized (see [8]), while as d > 2, O, is asymptotically close to its expectation (see [3] for d = 2 and the Section 5
for d > 3).

On the other hand, the fact that Q,, is close to the quadratic form

Z 1>(n, x)
xezd

of the local time /(n, x) plays a crucial role in the study of the self-intersection local time Q, (see e.g., [3,8]). It
allows, for example, some technologies developed along the line of probability in Banach space. Unfortunately, this
idea does not work in our setting. Indeed, the fact (in view of Theorem 1.1) that the second term in the decomposition

n 2 n
Z[ijl{s:x}} =2H,1+Zw§ (1.17)
j=1

xezdLj=1

is the dominating term shows that H, is not even in the same asymptotic order as the quadratic form on the left-hand
side.

The key estimations are carried out in Proposition 2.1. Our approach relies on the following crucial observation.
By (1.17) we have

n 2 n
Hn=% ZH:ZCUJ'I{S:X}} —Za)jl{g.zx}}. (1.18)
j=1

xezd LLj=1
Conditioned on the random walk {S;}, the random variables
n 2 n
[ijl{sjzx}j| — Za)j 1{5j=x}, X € Zd,
j=1 j=1
form an independent family and, for each fix x € 74,

I(n,x) :|2 I(n,x)

n 2 n
|:ij1{5/'=)6}:| - ijl{S:x} £ |:Z @il - Z ek
j=1 Jj=1 /=t =
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By a classic estimate for independent sums, and by some combinatorial computation, a conditional moment estimate
given in Proposition 2.1 links H,, with Q,,. Another fact repeatedly used in this work is that the self-intersection occur-
ring at the frequently visited sites does not make a significant contribution to the quantities H, and Q,. Consequently,
the pairs H, and ﬁn (defined in (2.3)); Q, and én (defined in (2.4) below) are exchangeable in our setting.

Beyond mathematical technicality, the creation of the present paper is based on our belief that H, resembles, in the
limiting behaviors described in our main theorems, the random quantity

Hy= Y lis;=s9Ujx,

1<j<k<n

where U are i.i.d. standard normal random variables independent of {S;}. Notice that H, is conditionally normal
with conditional variance Q,. Our observation explains why and how the limiting behaviors of H, depend on its
conditional variance Q. It should be pointed out, however, that the replacement of w jwy by Uj x is highly non-trivial
and should not be taken for granted, in view of the example given next to Theorem 1.1.

In Section 2, we establish a comparison (Proposition 2.1) between the moments of H,, and Q,, and then apply it
to prove Theorem 1.1. Our approach relies on combinatorial and conditioning methods. In Section 3, Proposition 2.1
is further applied to prove Theorem 1.2 through a Laplacian argument. In Section 4, the laws of the iterated logarithm
given in Theorem 1.3 are proved as a consequence of our moderate deviations. The non-trivial part of this section
is a maximal inequality (Lemma 4.1) of Lévy type. In Section 5, we investigate the weak laws and exponential
integrabilities for the renormalized self-intersection local time Q, —EQ, in the high dimensions (d > 3). The central
limit theorem given in Theorem 5.1 and the exponential integrability given in Theorem 5.2 provide sharp bounds
on Q, — EQ,, which constitute the replacement of O, by EQ,, carried out in our argument for Theorem 1.1 and
for Theorem 1.2 (the estimate of Q,, — EQ, needed in the case d = 2 was established in [3,20]). In addition, the
results given in Section 5 are of independent interest as a part of the study of the self-intersection local times in high
dimensions and are partially motivated by some recent works of Asselah and Castell [1] and Asselah [2].

2. Moment comparison and laws of weak convergence
We begin with the following classic lemma.

Lemma 2.1. Assume (1.2). Then
n 2 n 2
IE{ (ij) —Za}?} =2n(n —1). 2.1)
j=1 j=1
More generally, there is a constant C > 0 such that for any integers n > 1 and m > 2,

|(5e) -2

<m!(Cn(n—1))"">. 2.2)

Proof. The first part follows from the following straightforward computation:
" 2, 2
E{(Zw]) —Za}?} =4]E{ Z a)]a)k} =4 Z a) a)k =2n(n—1).
j=1 j=1 1<j<k<n 1<j<k<n
For the second part, we only need to show

n 2 n m
£(30) -2
j=1 j=1

<m!C™ M,
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By the inequality
n 2 n my\ 1/m n 2my 1/m n my 1/m
j=1 j=1 j=1 j=1

all we need is that

n 2m
E(Z a)j> < C"min™
j=1
and that

< C" 2™,

Due to similarity we only prove the first inequality. Notice that by symmetry

n 2m
T @t e ok g
E(;;w]) = Z (2k1)!-~-(2kn)!Ew Ew*".

kit tky=m
ki,....kyn =0
By the integrability given in (1.2) there is a constant ¢; > 0 such that
Eo* <kick, k=0,1,2,....

Notice also the very rough estimate

Ak <@k <Ak, k=0,1,2,....

So we have
n 2m '
m!
j=1 ki+--+k,=m D
Kiyeroskn =0 0

Let K, be a positive sequence which may vary in different settings and will later be specified in each specific
setting. Recall that Q,, is given in (1.16) and define the local time

n
In.x)=) lg=x. xe€Zin=12 ..
k=1

The asymptotic behaviors of the local times of the random walks have been studied extensively. We cite the book by
Révész [19] for an overview.
The following two random quantities play important roles in this paper:

Hy = Hy Lisup, g 101.0)<K, ) (2.3)
On = 0Ol {sup, pa 100, X)<Kp}- 2.4)
In addition, we introduce the deterministic quantity

1 m
Ay =20 ) E(l{supxezdzm,x)gg,}]‘[z(n,yk)(lm,yk)—1)>,

(V15 Ym)E€Bm k=1
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where m,n=1,2,... and

By = {1, ym) € (Z)"; y1, ..., ym are distinct}.
An easy observation gives that

1 m
An) < 0 ) E(l{supxez,,un,x)gg,}Hl(n,yw(l(n,yk)—1))

Viseens Ym ezd k=1

=EQ™.
Some more substantial comparisons are given in the following.
Proposition 2.1. There is a constant C > 0 independent of n, m and the choice of K, such that
[2 m] i
EH;" < 2m Z l’Km 2121C(m 20)/2 ( o )EQI

On the other hand, for any integers m,n > 1,

IEHzm > (2m)!
Z S

EQ" < (’7) ( 2”) Ai(n).
=1

Proof. Notice that

Z {(ijl{S,—x}> - Za)ﬁl{s_,:x}} = % Z An(x) (say).
=

erd xezd

[ Am (),

Hence,
m
EH,:" =27" Z E<1{supxezd I(n,x)<Kp} 1_[ An ()Ck)) .
X1y X €Z4 k=1
Foreach 1 <l <m, let
Ar={(x1. ... xm) € ZH" #x1, . oxm) =1).
Then,

m m
EH’:" =2—m2 Z E<1{Supxezd I(n.x)<Ky) HA"(xk))'

=1 (x1,..., Xm)€EA] k=1

Write
C={Fcz';#F) =1}
and for any {yy, ..., y1} € C, set

Aty =G x) € (29" i xmd = L )

2.5)

2.6)

2.7)

(2.8)

2.9)

(2.10)

@2.11)
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Notice that
LX) = > Ay &L Xn).
{y1yiteC

Thus

m
Z E(hSpreZdl(n,x)sKn} l_[ An(xk)>

(X15eesXm) €A k=1

m
= 2 > E(l{suf’xezd o<k [ | An(xk)>~
)

1 y}e€Cr (x1,e,xm) €A (V150 ) k=1

For any (x1,...,xn) € A;(y1, ..., 1), let iy be the number of x1, ..., x,,, which are equal to y;, wherek =1, ..., 1.
Then

m 1
E(hsupxezd 1=k | | An(xk)) = E{ Vsup, pa 10, ) <Ky} [T4n0* }

k=1 k=1

Consequently,

m
> E<1{supxezdl(n,x)§K,,} I1 An(xk)>
1)

(X1 Xm ) EAI (V1500 ) k=1

l
m! .
= mE!l{supxezdl(ﬂ,x)SKn}HAn(Yk)lk}'

i1 +etip=m k=1
ig5ei>1

Summarizing the above discussion,

m
> E<1{SUPX€Zd 1<k | | An (xk)>

(Xyeey Xm)EA] k=1

l
m! .
- Z Z mE{l{Supxgzdl(n,x)SKn}HAn(J’k)lk}~

{y1,-}eCrit++ij=m k=1
iyenir>1

Notice that the quantity

I
m! .
f(yla---ay[) = Z WE{l{supxezd l(nsx)SKn}l—[An(yk)lk}
ivttig=m 1 b k=1
i1yeenip>1

is invariant under the permutations over {y1, ..., yi}. So we have

m
Z E<1{SUPXEZdl("»X)§Kn} l_[ An(xk)>

(X100 Xm)EA; k=1

1
1 m! .
=i X X mE{l“upmw<n,x><mHAn<yk’k}’

"V Y)EBy it =m k=1
1,001
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where By is defined by (2.5). By (2.11)

m
H 1 m!
By =2y~ Y
! i) (1))
=1 l i14-+ij=m (ll)~ (l])
i1,...,01>1

1
x oy E{ Usup, patn0<ko) | | AnOR)™* (2.12)
15+ Y1)EBY k=1

We adopt the notation “E®” for the expectation with respect to {wy}x>1 and for each y € z4, write D(y) = {1 <
k <n; Sy = y}. Then

Ay) = ( Y oo ) PRCH
J€D(y) JE€D(y)
and for distinct yy, ..., y;, the sets D(yy), ..., D(y;) are disjoint. Hence, by independence,
I I
E® [T An)* = [ TE® An ()™
k=1 k=1

In particular, the above quantity is zero if any of iy, ..., is 1. Consequently, the terms in (2.12) with / > m /2 are
equal to zero,

EH, =0 (2.13)
and for any integer m > 2,
~ (2-1m] 1 m!
=2 Z 2 G

Cipeetip=m
i1yeenydy>2

1
X Z E{ Lisup, _ya 1(n.x)<Ky) l_[ E® An(yi)'* } (2.14)

(V1,--sY1)EB; k=1

Notice that

I(n,x) 2 I(n,x) ik
E® An (y)'™* :Ew{ ( > w,-) -y w?} . 2.15)
j=1 j=1

By Lemma 2.1 we have

l

l
[TE AnG™ < [TitCH {10, yo) (L, yi) — 1)}
k=1 k=1

l
= (ir!---i)(C}) ch. ”/2 H I(n, yo) (L(n, Yk)—l)}lkﬂ’
k=1

where C; =1 as i =2 and C; is the constant C given in (2.2) as i > 3. We may assume that C > 1 in the rest of the
proof.
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Hence,
m! 12 m
rym 11/2 i1/2
n 2_ 1 Z C . C
=1 i14--+ij=m
iy >2
[ ix/2
x Y E(l{supxgzdzm,x)fk,,}]"[{l<n,yk)(z(n,yk)—1)}’“ )
15+ 1)EBI k=1
'[2 m] P i
KM= =21 i i
< o Z K { > 2l }Az(n)
i1++ij=m
[T i>2
m! (2tm] 1 2 )2
: =21l i i ~]
< o EK;” 2{ Z G Gy }]EQ”, (2.16)
= i14-+ij=m
iyenny i>2

where the last step follows from (2.6).
For each (iy,...,i;) withi{ + --- +i; = m, write

We have
m=iy+---+i;>2k+3(0—k)

which leads to [ — k <m — 2l. Thus,

Y (= Y bR commbr Y
1 1 -

i1+-+ij=m i1 +-+ij=m i1 +-+ij=m
1,000,022 1,000,022 i1yl >2

m—any2 (m—1-1
=C < m —2l ) ’
Hence, (2.7) follows from (2.16).
To prove (2.8), we come to (2.14) and we notice that the symmetry of {«wy} implies that for any integer [ > 1,

. . ik
E® A, () = 24K > wjle2> > 0. (2.17)
1<ji<jp=l(n,x)
Replacing m by 2m in (2.4) and only keeping the term with / = m on the right-hand side, we obtain

m
772 @m)! 2
EA" z 52 ) E(“supxgzdl(n’an} [TE4n 0 )

V1seeesYm)EBm k=1

_Cm)!

S Am(n).

where the second step follows from (2.1) in Lemma 2.1 and (2.15).
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To prove (2.9), we adopt the argument used for (2.12).

m
EQy =27" Z E(l{supxezdl(n,x)fKn}l_[l(naxk)(l(naxk)_1))

k=1

m
SO DI
I i!---ip!
=1 " ijetig=m L !
i,000>1

l
x> E(l{supxezd 1=k ] {0 y0 (1 y0) = 1) }”‘)

k=1

=1 i1 ++ij=m
i1,..01>1

I
x Y E<1{supxezdl(n,x)§K,,}Hl(n»yk)(l(nvyk)_1))

1y Y)EB; k=1

m! e 1 1 )
o - (m—1)
= Zz{ 2 i1!--'i1!}K"

m
1
— ) =~ p2(m=1)n—(m—I)
_m.zl!Kn 2 Al(n)' Z P
i1+-+ij=m

=1
if,...0>1

Finally, (2.9) follows from the following estimate:
1

1
> s X oo
IARERRN A 1 — Lo ] — .
i1+-+ij=m 1 ! i14-+ij=m ( 1 ) (l )
i1, >1 i1,.,i>1

1 lm—l
= 2 Ll m—D
O

1.
i1+-+ij=m—I 1
i1,..0,0120

Proof of Theorem 1.1. We start with the case d = 1. Notice that

O, = %(le(n,x) — n>

XEZL

By Theorem 1.2 of [6],

3/2 a1 % 5
n—3/ 0, — —f L“(1,x)dx. (2.18)
20 J_«
Fix 0 <8 < 1/2 and let K,, = nU+%/2_ By the classic fact (see, for example, [19]) that
V2 supl(n, x) % o~V sup L(1, x) (2.19)
X€Z xeR
we have that

(2.20)

~ 1 S
n320, -4 5/ L2(1, x)dx,

—00
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which gives

~ 1 o0 m
lim n=3"/?EQ™ = E(/ L2(1,x)dx) , m=1,2,.... (2.21)

n—00 (2o)™ —o0
Replacing m by 2m + 1 in (2.7) we have
- 2m 4+ 1)! - 1 _ ~
EF2H < @m+1) Z_n(1+8)(m—1)+(1+6)/221C(2m—21+1)/2( 2m —1 >]EQ£,

= 22m+l i I 2m — 2l +1

m
— O(Zn(l+8)(m—l)+(1+5)/2n3l/2> =O<n3(2m+1)/4>, n— oo, (2.22)
=1

forallm=0,1,2,....
Replacing m by 2m in (2.7) and by (2.21) we have

m
~om _ (2m)! L sy m—iynl pom—t [(2m —1 =1 -~
EH"™ < 50 121: T 2lc 5 o JEC,

_@m! i 1 W48)m=D) 9y ~1 /2!
2 Zap” 8
=1
o0 !
) / L2, 0de) e (P L s
NS 2m —2I
Clearly, the right-hand side is dominated by the term with [ = m. Consequently,
~ 1 @2m)! * "
limsupn 3" 2EH>" < @m)!y / L2(1, x) dx (2.23)
n—00 Qo)™ 2mm! 0
forallm =1, 2, .... In particular, combining this with (2.8) we have
An(m)=0(n*"?), n—oo,m=1,2,.... (2.24)

On the other hand, by (2.24) and (2.21), the right-hand side of (2.9) is dominated by the term with / = m. Hence,

1 o0 m
liminfn "% A,,(n) > E/ L*(1,x)dx) , m=1,2,.... (2.25)
n=c0 o)\ e
From (2.8),
~ 1 ©2m)! 0 m
liminfn =" 2EH>" > @m)! g f L3(1,x)dx ) . (2.26)
n—00 (20)™ 2"Mm! PSS

In summary of (2.22), (2.23) and (2.26), and noticing that

gy @m)!

= and EU*"t!1 =0

we have that for everym =0, 1,2, ...,

o 1 o0 m/2
lim n—3m/4EH,;"=(20)m/2(EUm)E< / Lz(l,x)dx> ) (2.27)

n— 00 o0
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Notice the fact that for any 6 € R,

00 172 92 o
Eexp{@(/ Lz(l,x)dx> U}:Eexp{—/ L2(1,x)dx} < 00,
o0 2 J

where the last step follows from Theorem 1.1 (with m = 1 and p = 2) in [8]. Therefore, (2.27) implies that

I ~ a | _ip * V2
3—/4Hn—>2 o L~(1,x)dx U.
n —00

By (2.11) and by our choice of K, we have
P{supl(n,x) > K,,} -0 (2.28)
X€Z

as n — oo. Thus, we have proved Theorem 1.1 in the case d = 1.
The proof in the multi-dimensional cases is essentially the same. Instead of (2.12), we have that

O Py ldetI) 2 asd=2, (2.29)
nlogn
&k, asd >3, (2.30)
n

Indeed, (2.29) and (2.30) follow from the weak convergence of the sequences (Q,, —EQ,)/n when d = 2 (see [20]),
(Qn —EQ,)//nlogn when d = 3 (see Theorem 5.1) and (Q,, —EQ,)/+/n when d > 4 (see Theorem 5.1); and from
the well-known fact that

2n)~N(det I~ 2nlogn, d=2,
EQ, ~{ ¢ : 231
o) {ym iy 2.31)
In addition, it is well known [19] that
I(n,x) [(n, x)
sup > and  su
7?2 (logn) cezd logn

are almost surely bounded in the case d = 2 and the case d > 3, respectively. Thus, if we define K,, = M (log n)2 as
d=2,and K, = Mlogn as d > 3. Then (2.28) holds as the constant M > 0 is sufficiently large.
Therefore, a modification of the proof for (2.27) gives that

lim (nlogn) ™/2EH™ =27"/22n) /2 (det ') ™/*EU™ asd =2, (2.32)
n—0o0
lim n"/2EH" =27"/2y"2Ry™ asd > 3. (2.33)
n—o0
So the multi-dimensional part of Theorem 1.1 follows from (2.32) and (2.33). O

3. Moderate deviations

Recall that K,, = M (logn)? as d = 2, where M > 0 is a large but fixed constant. Take K, = (n/logn)!/* asd > 3. In
the case d = 1, (1.8) implies that there is a positive sequence M,, such that

BTN 174
M, — oo and M,f(—”) -0, n— oo. (3.1
n

So in this section we take K,, = M, /nb, asd = 1.
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An important fact is that under our choice,

1
lim b—log]P’[ sup I(n, x) > Kn} = -0

n—oo
n xeZd

in all dimensions. We refer to [5] for (3.2) under d = 1, and [19] for (3.2) under d > 2.

Another important fact is that
EA>" >0, m=0,1,...,

which follows from (2.13), (2.14) and (2.17).
We claim that Theorem 1.2 holds if we can prove that for any 6 > 0,

1 byt 04
nli)ngo—nlogEexp :I:OW }:@ asd =1,
lim — logEexp] 0, | ——f ” d=2
im — logEex —_— =————— asd=2,
sob, | T Y mlogn | T dndetl
o1 y92
lim —logEexp{+6 H asd > 3.
n— 00 bn
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(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Indeed, according to the Gértner—Ellis theorem (Theorem 2.3.6, p. 44 in [9]), (3.4)—(3.6) imply that ﬁn satisfies
the moderate deviations given in Theorem 1.2. By Theorem 4.2.13, p. 130 in [9], the moderate deviations pass from

H, to H, through the exponential equivalence given by

llmsupilogP{H #H,}= 11m llogIP’{ sup I(n,x) > K, ] —00,
n—o00 bn b xeZd
where the second step follows from (3.2).
In the rest of this section, we prove (3.4), (3.5) and (3.6) in three separate parts.
Cased = 1.
By (2.7) in Proposition 2.1,

] m/4
o™ (b, -
> — (n—3) EH!

m=2

IA

0 gm m/4 m! 27 'm] 1 -
M m—=2lnl ~(m—=21)/2 I
2 v<n3) TP PRTE ( m—2l )EQ

m=2 =1

=1 m=2Il

Notice that

-2 —20)/4
i Q " gm=2l b_n (n=201 Ccm=20/2 m—1—1
2 n n3 m — 2l

m=2[
B 2 "\ n3 m
m=0

B (1_ ﬁeKnb’£/4>(11)

2n3/4

x g 12 & (0 m—21 (b (m—21)/4 A 11
-n O el m— -n (m=21) -t
Z ’l'< ) EQ"Z<2> K <n> ¢ < m—2l
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where the last step follows from the Taylor expansion:
(1—x)_(l_1)=§:(m+ni_l>xm, x| < 1. 3.7)
m=0
Combining the above estimate with (2.13) gives

1/4 02 p\/2 1/4\ -1
b, ~ by COK,b ~
Eexp{@n—Hn} <Eexp{ <1—g> Q,,}.

034 2 1372 2n3/4

In view of (2.13), by the Taylor expansion one can easily see that

b1/4 b1/4
n ry n Iy
Eexp{—@mHn} SECXp{QmHn}

So we have
1/4 02 pl/2 174« —1
by by VCOK,b ~
]Eexp{:i:@ 3 } ]Eexp{ ey (1 — 2;17374’1) Q,,}, (3.8)
Notice that
Zﬂ(n x) < nsupl(n x). (3.9)
xEZ x€Z

For any A > 0,

1/2

b A b
Eexp{A%Qn}gEexp ~ = supl(n,x)}.

n3/ 2V n X€EL

By the fact (see Lemmas 11 and 12 in [15]) that

. 1 A by
limsup — logEexp{ =/ — supl(n,x) ; <00
n—oco by 2V n yez
we have that for any A > 0

b1/2
lim sup — logIEexp 372 O, < 00. (3.10)

n—oo n

Recall (Theorem 1.3 in [8], with m = 1 and p = 2) that for any A > 0

1
lim —logP{Q, > wn*Pby%) = —6022. (3.11)

n—oo n

According to Varadhan’s integral lemma (Theorem 4.3.1, p. 137 in [9]), (3.10) and (3.11) imply that for any A > 0,

by? 2
lim —logEexp{ 3/ZQn}_sup{yA 602k2} (3.12)

n—oo b 0 240

This, together with (3.8), gives the desired upper bound for (3.4):

bt 6*
lznlsolipalogEexp{:te 3/4H }5 9602 (3.13)
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On the other hand, by (2.8)

o 2m m/2 00 2m m/2
0> (b, ~) 1 6% (b,
— EH"™ > — A . 3.14
mZ_1<2m)!<n3> Zm' 2m( ) ) G
Write
=06 “Ky b
=0exp] — —
P 8 n3
By (2.9)

m/2 m le m—I
) 2(1)(%) woe
=1
bn 12 00 1 9-2 m—I bn (m—1)/2 ZK,% m—I
() X oim(s) G (%)
1 bn 1/2 9‘2[{3 bn
(n_> Aj(n)expy! ) 3
o (02k2 (B |\ b\
)(6’exp{ 2 n—3}) (n—3> Aj(n)

X 16% (b,
:Zﬁ_l(;) Arln), (3.15)

where the second inequality follows from the fact that 6 < 6.
Combining (3.14) and (3.15),

o H2m m/2 52 1,1/2
62" (b, ) 82 bl
2 Gy <F> RH EeXp{TWQ”}

2172
:(1+o(1))Eexp{?#Qn}, (3.16)

where the second step follows from the estimate (notice that (3.9) implies that én <nkK,/2)

0267 < 02b,) ~ 92 02k2 [b, | 16)* ~
On— —|1—exp n f2n e
2 32T 2 32" 4 Vn3(|n32

02 b,/” ~  6260%K} b b,i/an _02b)7
=5 3R 22 =7 3/an o(l), n— oo. (3.17)

In view of (3.3), by (3.16) we conclude that

b1/4~ 2 1/2~
Eexp{ TR } (1+0(1))Eexp{ 3/2Qn}. (3.18)
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Getting the lower bound for the negative coefficients —6 is harder. To do this we need to control the terms with
odd powers. Replacing m by 2m + 1 in (2.7) we obtain

©  g2m+l by (@2m+1)/4 -
(2m+1)'( ) B

m=1

i 2m —21 + 1

14 20 1 g2 /p N2
n3 120\ nd "

=1

© g2 2m+1)/4 m
m+1 <b )( m+b/ )3 1K2(m_z>+121c<2m—2l+1)/2< 2m —1 >E§l
; n

=1

]

2(m—I =0/2
<35 " on- g2 (2 N (3.19)
2 w3 om—21+1) ~

m=l[

Noticing that
2m —1 . 2m-—l1 2m—1—1 < 2m—1—1
2m —2l+1) 2m—20+1 2m — 21l - 2m — 21
we have

o0 2m—1 )
Z 6 o )Cm—lK2(m—l) by =D fom 11
2 n n3 2m — 21

m=l

o0 2m m/2
0 om [ bn 2m+1—1
2(3) () e ()

m=0
00 m m/4

0 b, m+1—1
32(5) & (E) e (")
m=

=1<1 - JE@K,,b},/4)_<l_1)

2n3/4

IA

where the last step follows from (3.7).
By (3.17), therefore,

0 92m+1 b 2m+1)/4
Z Ei_‘i2m+1
2m +1)! n

m=1

93 bn 3/4 o0 1 92 -1 bn il-1/2
<JC=K, 2 — (= =2
=g "(m) Yamlz) (3)

1/4\ —(-1)
VCOK, b, ~
x<l ) EQ!

2n3/4

0 (b,\"* 92 i/ JCOK, b\ -
Ve () E(Bew| TR (1-T55) o)

By the estimate én < %nKn and by the assumption (1.8) we have that

b\ M2 b/
Kn(n_3> Qn57n1/4—>0, n— 0o.
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In view of (2.13), we have proved that

00 92m+l bn 2m+1)/4 o] 92 bi11/2 -
m —
m=0
This, together with (3.16), yields
b1/4 N 2 ,1/2 N
Eexp{—G#Hn} > (1 +o(1))Eexp{7#Qn}, n— 00.
Combining this with (3.18),
b1/4 N 2, 1/2 N
Eexp{i@#Hn} z(1+o(1))Eexp{?#Qn}, n— oo. (3.21)

To estimate the right-hand side of (3.21), notice that

92 b1/2 -
Eexp{_ngﬁQn}

62 by/*
5 > E(exp{?an}l{supxezl(n,X)EKn}>

2,172 2,12
= Eexp{?#Qn} —E(exp{?#Qn}l{supxezl(n,x)>](n}>.

Consequently, by (3.12)

1 2 i/2~ 1 2 rll/2
max{lilrgicgfb— log]Eexp{ T On }, lim sup ™ logE(exp{ a2 On } l{sumgzl(n,ben}) }

n 4 n—oo by 4
94
>—. 3.22
~ 9602 (3.22)
By the Cauchy—Schwarz inequality,
02 p1/2
E<exp{ 7 # Qn } l{supXEZl(n,x)>K,,})
pl/2 1/2 12
< <Eexp{92% Qn}> (P[supl(n,x) > Kn]) :
n3/ xX€Z
Hence, (3.2) and (3.12) imply that

, 1 02 by'?
llr{n Sol:)p b logE{ exp 5 32 On 1{superl(n,x)>K,,} = —00.

e n

In view of (3.22),
1 02 by/* ~ o
llllnggcl)fa log Eexp T Onp = 9602 (3.23)
Combining (3.21) and (3.23) gives the desired lower bound

liminf — log B ieb’l’/4ﬁ A 3.24
Lrggéaog exXp W n _967 ( )

Therefore, (3.4) follows from (3.13) and (3.24).
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Cased =2.
Similar to (3.8) and (3.21), respectively,
-1
by ~ 6> CHK b by~
Eexp{ +6 " _H,{ <FEexp{—|[1- VCOK, i ~_0On (3.25)
nlogn 2 2 nlogn nlogn
and
by ~ 6> o~
Eexpi 46 Hyt > (1 +0(1))Eexp O, n— oo. (3.26)
nlogn logn

Applying Jensen’s inequality on the right-hand side of (3.26),

by ~ 6% b ~
Eexp{ 0 “—H,t>(14+o(D)expl ————EQ,{, 0eR. (3.27)
nlogn 2 nlogn

By the fact (implied by (3.2)) that P{sup, 72 [(n, x) > K,} —> 0, n — oo, we have that

EQ, ~EQ, ~ 2n) 'detI' ?nlogn, n— oo,

where the second step follows from (2.31).
Consequently,

1 | by~ 62
llmmf—lo Eexpl+0 | ——H,} > — . (3.28)
—00 £ p{ nlogn "} 4m+/detI”

On the other hand, recall the fact (Lemma 2.3 in [3]) that

A
Eexp ;|Qn _EQn|} <X

for some A > 0. By the assumption (1.10) we have

0% by, 0% by, 6>
E — —E E —-E
xp 2 nlognQ”} XP{ 2 nlogn Qn} exp{ 2n Q"'}
6% b
=0l exp " EQ,t), n— . (3.29)
2 nlogn
Combining this with (3.25) gives
li D ogEexpl o |2\ < o (3.30)
imsup — log E ex —_— _. .
o nlogn [ = 4n/detT
Thus, (3.5) follows from (3.28) and (3.30).
Case d > 3.

The treatment in the case d > 3 is almost same as the one given in the case d = 2, except that here we use
62 by, 0% b
Eexp{?—Qn}z <exp{?—nEQn}>, n— 00, (3.31)
n

instead of (3.29).
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We end this section with the proof of (3.31). Notice that

02 b, ~ 6% b
Eexp{ T—nQn} <1 +E(€XP{?7nQn}1{Squezdl("*x)<K"})

n
02 by ~ 6% b
<1 +ECXP{77n]EQn}]E<eXP{7;n|Qn _EQn|}l{supxszdl(n,x)<[<n})~

Therefore, we need only to prove that

02 b
supE(exp{ Tlen —EQul } 1{S“Pxezd l(n,x)gK,,}) < O0. (3.32)
n

By the fact that Q, < 2~ 14K, on the event {sup,czal(n,x) < K,},wehave |0, —EQ,| < 2-1hK,. Consequently,
6% b
E(“P{ > Fn |Qn —EQn| } Lisup, 4 l(n,x)<K,,})

0% b
< Eexp{—2 (2 'nk,) P10, - IEQHF“}.
n

Finally, (3.32) follows from Theorem 5.2 and our assumptions on {b,} given in Theorem 1.2.

4. Laws of the iterated logarithm
The following Lévy type inequality is needed in our proof of the upper bounds in Theorem 1.3.
Lemma 4.1. Forany s,t > 0 and integer n > 2,

min P{|H| < s}IP’{lmlax \H)| > s +r} < 2P{|H,| > t}. 4.1)
<i=<n

1<k<n
Proof. Write
t=inf{l > 1; |H| > s +1}

and notice that foreach 1 <[ <n,

d
Z wjwil(s;=s,) = Hn—1,
I+1<j<k<n

where we follow the convention that both sides are zeroif [ =n — 1 or n =[. Thus

min IP’{|Hk| < s}]P’{ max |Hj| > s —l—t}
1<k<n 1<i<n

n

2 min P{|H| <s}P{r =1)

n
SZP{ Y wjolis=sy
=1

I+1<j<k<n

n
=ZIP{I =1,
=1

SS}IP’{t:l}

Y wjolis=sy
I+1<j<k=n

<s }, 4.2)
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where the last step follows from independence between {t =/} and

Y wjoilis=sy.
I+1<j<k<n

For each 1 <[ <n, write

n

1
) _ . ' .
By = Z ®joilis;=s0) + Z wjorls;=5) — E wjorl(s;=s)-
I<j<k=l [+1<j<k<n j=1k=l+1

-}

D wjolismsg+ Y, ojoils=s,)
1<j<k<l I+1<j<k<n

Notice that

{r:l,

C{‘L’=l,

Y wjolis=sy
I+1<j<k=<n

y

CP{r=1,|Hy + |H"| > 2t}.

Hence,
]P’{t:l, Z a)ja)kl{sjzsk} Ss}
I+1<j<k<n
<Plt=1|H) 2t} +P{r =1, |HP| =1} 4.3)

We now claim that

Pl =1 |H"| >t} =P{t =1, |H,| > t}. (4.4)
Indeed, (4.4) follows from the fact that the random vectors

(w1,...,05) and (W1,...,0, —Oj+15..., —Wy)

have the same distribution, and that replacing the first vector by the second does not change the event {tr =/} but
changes H, into H,El).
Finally, by (4.2), (4.3) and (4.4),

min P{| H| gs}]P’{ max |Hj| > s —H]
1<k<n 1<i<n

n
<2 Plr =1 |H,| =t} <2P{|H,| > 1}. -
=1

Proof of Theorem 1.3. Due to similarity we only consider the case d = 1. To prove the upper bound in (1.13), it
suffices to show
| Hy| Ay

limsup ———5 < —o0

.S. 4.5
n—oo (nloglogn)3/4+ — 3 as 4.5)

Let 6 > 0 and
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be fixed but arbitrary. Write ny = [0%) fork=1,2,.... Take & > 0 small enough so

93/4
Al —€&> Ta_l/z.

By Theorem 1.1,

min P{|H,| < e(ny loglogng)*/*} >

1
1<m=<n -2

as k is sufficiently large. By Lemma 4.1, therefore,

P{ max [Hy| = %1 (n¢loglogno)®*| < 4P{|Hy,| = Gur — &) (i loglogni)™*).

1<i<ny

By (1.7) in Theorem 1.2 (with b,, =loglogn),

ZP{ max |Hj| = Ai(ng loglognk)3/4} < 00.
1<l<ny
k
By the Borel-Cantelli lemma,
limsup————— max |H| <X as.
k_)oop (ny loglogny)3/4 l§l§nk| H=h

For any large integer n, if ny <n < nyy1, then

_ < (6% +o(1)) ! max |Hj|
(nloglogn)3/4 — (ngs1loglogngy1)3/4 1<i<niy i
So we have
H,
lim sup |Hal <603*x;  as.

n—ooo (nloglogn)3/4 —

Letting @ — 11 and A — 23/43715~1/2 gives (4.5).
We only prove the lower bound for H,:

H 23/4
lim sup - -1/2

— > a.s. 4.6
n—ooo (nloglogn)3/4 = 3 (4.6)

as the proof of the lower bound for — H,, is analogous.
Let ny be defined as above (but with large constant 6 > 0) and let the constant A, satisfying

23/4

d < —0o" 12
2 3 o

Let ¢ > 0 be small enough so

23/4

)\,2 +e< 7071/2'

Notice that

d
Z w;wj I{Si=sj} = Hpypy—ny-

ng+1<i<j<np4i
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As 6 > 0 and k are sufficiently large,

]P’{ Z wiwjlis=s;) zkz(nk+110g10gnk+1)3/4}
np+l<i<j<ngyi

3/4
> P{Hypy - = G2 + &) (11 — no) loglog(nary — np)) ™).

By (1.7) in Theorem 1.2 again,

ZP{ Z wiwjl(s,=s;) Z)»z(nk+110g10gnk+1)3/4} = 00.
k

ng+1<i<j<npi

Notice that

Y. wojls=s), k=12,

np+1<i<j<ngyi

is an independent sequence. By the Borel-Cantelli lemma,

1
lim sup Z C(),‘C()jl{Si:Sj} > Ay a.s.

loel 3/4
k—oo (Mi+1loglogngy) nt1<imf<nns

In addition, (4.5) implies that

23
H,,| 59—3/470—‘/2 as.

lim sup |
koo (Mi+1loglogngy1)3/4
Consequently,
1
lim sup {H + a)~a)~1{5i_5.}}
koo (Miy1loglogniy1)3/4 " nk+1<i2<;<nk+l o '
23/4
> A — 934 as.
Recall the notation
ng Mg+l
Hyl =Hy+ ), oiojlis=s) =) >, lis=s)-
n+1<i<j<ng4i i=1 j=ng+1

We have

(ng)
H, + H,
Hy, + Z wiwjl{S,-:Sj}Zw

np+1<i<j<ngyy
Therefore, by (4.7)

H(”k)

Ng+1

H,

MNk+1

lim sup + lim sup
koo (Mks1loglogniy1)3/* oo (npy1loglogny1)3/4

3/4
220 -0 012 s

4.7

(4.8)
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On the other hand, notice that for each &,

H ) 4 H

Ni41 Ng41°

By Theorem 1.2 (with b, =loglogn)

> B{H{Y) = Mgy loglog i)™/
k

93/4
= ZP{H”HI > A(Mg41 loglognk+1)3/4} <00 VA> Ta_l/z.
k
By the Borel-Cantelli lemma,
(ng) 3/4
H,, 2
lim sup Tt 7 = = 71?2 as.
koo (nit1loglognyi1)®/ 3
Combining this with (4.8) yields
H 3/4 3/4
lim sup Mt 7 = Z(AZ — 9_3/42_0_1/2> — 2_0_1/2 a.s.
koo (Nkg1loglognyiy)3/ 3 3
Consequently,
H 93/4 93/4
lim sup | >2 Ay — 934 _5712) 25712 4.
nooo (nloglogn)3/4 3 3
Letting @ — 0o and A, — 37123/46=1/2 on the right-hand side gives (4.6). |

5. Self-intersection in high dimension

From Theorem 1.1, we have seen that the multi-dimensional case (d > 2) is different from the case d = 1. Here is the
reason: contrary to (2.18), a concentration phenomenon appearing as

0,/EQ, 51

takes over when d > 2. The concentration also plays a role in the moderate deviations (Theorem 1.2) as d > 2. In our
treatment given in Sections 2 and 3, O, is replaced by EQ,, when d > 2. To justify such action, we need to show that
0, and EQ,, are asymptotically close enough. More precisely, our concern in this section is the central limit theorem
and the exponential integrability for the renormalized self-intersection local time Q, —EQ,,. The case d =2 has been
investigated. In [20], it was proved that

%(Qn —EQ,) -5 (det1)"12y,, .1)

where y; is the renormalized self-intersection local times

n=[[ _swor-weyeas-s[[  sme-we)wds o
0<r<s<t 0<r<s<t

run by a planar Brownian motion W (¢). In [3], it was proved that

Eexp{%|Qn _EQn|} <00
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for some A > 0. In the following discussion, we focus our attention on the case d > 3. Apart from its role in the
charged polymers, the study of self-intersection local time is an important subject for its own sake. Our involvement
on the integrability problems is also motivated by the recent interest [1,2] in the large deviations for Q, in the case
d>3.

In high-dimensional cases defined by d > 3, a related object is the range #{S[1, n]} given by

#{S[1,n]} =#{S1..... Su).

It has been known [13,14,17] that

1 d
W(#{S[l,n]} —E#{S[1,n]}) — c1U (5.2)
as d = 3; and
1 d
ﬁ(#{S[l,n]} —E#{S[1,n]}) — U (5.3)

as d =4, where U ~ N (0, 1). It is now widely believed that as d > 3, O, and #{S[1, n]} have very similar behaviors.
In particular, we have

Theorem 5.1. Asd =3,

1 d
oan logn(Q" On) — M (5.4)
asd >4,
1 d
ﬁ(Qn —EQn) — 22U, (5.5)
where
1
)\' —

"7 amtdeth)’
b= \/362(0) 16O)+2 Y G,

xeZd

G(x) = Z]P’{Sk =x}, xeZ
k=1

Proof. The proof is inspired by some ideas used in [13,17] in the setting of the ranges. Due to similarity we only
consider the case d = 3. Let {y,} be a positive sequence such that

Yn — 00 and ynzo(w/logn), n— 0o.

Let0=ng <nj <--- < ny, =n be an integer partition of [0, n] such that foreach 1 <i <y,,n—i—n;_; = [nyn’l]
or [nyn_l] + 1. Then

¥n Yn—1 nj n

On = Z Z lisj=s0) + Z Z Z Lis;=s;)- (5.6)

i=1lnj_1<j<k<n; i=1 j=nj_1+1lk=n;+1
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Foreach1 <i <y, —1,

n; n ni—nj_1 n—n; n n
1 4 I < 1
20 2 hsmsa= D D lis=sp =2 ) Lisi=s-
j=nij_1+1k=n;+1 j=1 k=1 j=lk=1

where {5} is an independent copy of {Si}. Thus,

Yn—1 nj 2 2
(Z Z Z 1{S/—Sk> 7 (Z {S/—Sk) =o(nlogn).

i=1 j=n;_1+1k=n;+1

In addition, notice that the random variables

> Ls=sg. i=12. 7,

nj_1<j<k<n;

are independent with

Z l{S Sk} Qn,—n, 1° i=1521"'17/n'

ni_1<j<k<n;

By Lemma 5.1 and by (5.7),

yﬂ

Var(Z Z 1{5].;&}) '\")\.%n logn.
i=1nj_1<j<k<n;

By Theorem 5.2, we can check the Lederberg condition. Hence,

Vn
Y lis=sa/nlogn = U,

i=1ln;_1<j<k<n;

Finally, (5.4) follows from (5.6), (5.7) and (5.8).

Lemma 5.1. Let A1 and Ay be given in Theorem 5.1,
Asd =3,

Var(Q,) ~ A%n logn, n— oo.
Asd >4,
Var(Q,) ~ A3n, n— 0.

Proof. Notice that

n—1 oo
0n=)_ D lisi=s — Zzl{skm
j=lk=j+1 j=lk=n+1

n—1 n—1
S SR S
j=1 j=1
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(5.7)

(5.8)

(5.9

(5.10)

(5.11)
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Write py(x) = P{Sx = x} and recall that {S; } is an independent copy of {S;}. Forany i < j <k <n,

o0

EW!W!= > P{§—5;=05-5=5-5)
k,l=n+1
o
= Y Ps=08=5_}
kl=n—j+1
o
=Y pi-ix) Y, P§=0 S =x}
xezd kl=n—j+1
<Y pj-itx) > PS5 =0S=x)
xeZd n—j+1<k<l<oo
+Y pii) Y P =0,5=ux) (5.12)
xezd n—j+l1<i<k<oco

For the first term on the right-hand side,

Yopiix) Y PS§=0,5=x}

xezd n—j+1<k<l<oo
=Y pj-itx) > Pk =x)P{Sk =x}
xezd n—j+1<k<l<oo
1
SCY o pi-) Y pgs
xezd n—j+l1<k<l<oo

1
=C ) PO

n—j+1<k<l<oo

where the second step follows from the classic fact that sup, ¢ pr(x) = O(k=/?).
As for the second term, a similar estimate yields that

Yopiix) Y. PS=0,5=-x]

xezd n—j+1<l<k<oo

1
=C > Prt+j=i0) 77 -

n—j+1<i<k<oo

Hence,

1
EW/'W} <2C > Pz—k+j—i(0)W

n—j+1<k<l<oo

oo 00 1
= 2( Z pk(0)>< Z W) =0((n - Pl - i)l‘d/z),
!

k=n—j+1 =j—i

Therefore, as n — 0o,

noj
>3 Ewwy =

j=1i=1

[l

O(n), 3
{ 4, (5.13)
5

d
O((logn)?), d
o(D), d

vVl
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Forl <i<j<n,

oo 00
COV(Z,',Zj)ZCOV( Z 1{Sk=5i}7 Z I{Sszj}>

k=j+1 k=j+1

00 00
= Cov <Z 1{5,(:5‘}7[_}, Z l{Sk—0}>
k=1 k=1

o

{P{Sk=$}_;81 =0} — pry;—i (0)pi(0)}

k=1

o]

x€eZ k=1 k=j—i+1
Write
o
> pisix) Y PS=x8 =0}
xezd k=1
= Pt Y PSi=x85=0)
xezd 1<k<l<oo
+ ) pi-i®) Y P(Si=x85=0).
xezd 1<l<k<oo
We have
Yopi-ix) Y, P{Si=x§=0}
xeZd 1<k<l<oo
=Y pisi) D pe)piop(x)
xezd 1<k<l<oo
o
=Y pisi)GE) Y pi(x)
xezd =0
=pj-i (OGO (1+G©0) + > pj-i(x)G*(x)
x#0
and

dopi-i) Y PlSi=x85=0)

xezd 1<l<k<oo
=Y pjisi@ > pei(x)pi(0)
xezd 1<l<k<oo

= Y P OpO=G60) Y. p0).

1<l<k<oo k=j—i+1

In summary of the argument since (5.14),

Cov(Zi, Zj) = pj-i(0)GO)(1+ G(0)) + > pj—i(x)G*(x).
x7£0

pi-i(x) Y P{Si=—x§=01-=GO) Y p0).
d

665

(5.14)
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Consequently,
Vax(Z zi> = ZVaI(Zi) +2 Z Cov(Zi, Z})
i=1 i=1 I<i<j<n
n—1 n—1
=nGO)(1+G©0)+2GO)(1+G©0) > Gnj©)+2) G*x) Y Gpi(x)
j=l1 x#0 i=1
n—1 n—1
=nGO)(1+G0)+2G0))Y G;0)+2 Y G*®) Y G,x),
j=1 xezd j=1
where

J
Gj(x) =) pix).

i=1
When d > 4,
Z G3(x) < 00.
xezd

By (5.15)

Var(Z z,-) ~n{G(O)(1 +G(0) +2G20) +2 Y Gs(x)}, n— oo.

i=l1 xeZd

By (5.11) and (5.13), this implies (5.10).
We now consider the case d = 3. We use the fact that (p. 308, [21])

G(x)~@m " det(!) "2, r7'x) 72, x| = oo
By (5.16),
> 6676w =0(5 ¥ 6;w)=0m), .
(.~ Lx)> ! ceza

In addition,

Y GWHGW) - Gix)

(x,F*lx)fj

<(GO-G;) Y G

(x, 7 1x)<j

1 .
§C(G(O)—Gj(0)) Z ‘TW=O(1), J — 00,
(x,F~ly)<j

and

1
Y G~ ﬁ/ (x, I~ 'x)73/% dx
I <] (2m) > det(I")” Jy<ix,r—1x)<j)

1
-3

dy=— |
Iy = G T e ©

1
T @m)3det(I) /{1<|y<¢7}

gj, J— oo.

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)
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Combining (5.17), (5.18) and (5.19) gives

> GG (x) ~

xezZd

1
o _logj, j— oo
Qmlder) £ 1T

By (5.14),

n
2
Var ZZ,- ~27nlogn, n— oo,
= 2m)%det(I")

which, together with (5.11) and (5.13), implies (5.9). O

We now investigate the integrability of Q. Write

n n
In = Z Z Lisi=s;)-

j=1k=1

where {S)} is an independent copy of {S,}. J, is known as the intersection local time between two independent
trajectories.

Lemma 5.2. As d > 3, there is a constant Cy4 > 0 such that
EJ" < Clm) ™2, m,n=1,2,.... (5.20)

Proof. Recall the fact (p. 3282, [6])

EJ <mH(A+EJ)", mn=1,2,..., (5.21)
and the fact that
O(ﬁ) d=3,
EJ, =1 Odogn), d=4, (5.22)
o), d>>5.

A trivial and rough summarization of (5.22) gives that EJ,, = O(4/n) as d > 3. By (5.21), we obtain a weaker version
of (5.20):

EJ™ < C™(m!)?n™?, m,n=1,2,.... (5.23)

To strengthen (5.23) into (5.20), recall (Theorem 5.1, of [6]) that for any integers m, ny, ..., n, > 1,

my1/2 m! N\12 (ke 1/2
(EJn ) = k1+~§ =m ki!---kg! (EJ”I) (EJ”a ) ) (5.24)
Kiyeees kaazO

We first consider the case n > m. Write [(m,n) =1 + [%]. By (5.23) there is a C > 0 independent of m and n such
that

[ n m/2
EJJt, ) < C"(m!) (;> :
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Taking a = m in (5.24) gives

172 m! k 172 km 172
(E‘]n ) = Z Lok (E‘Il(;n,n)) o (E‘Il(m,n))
et oo 1 K
ki,....ky >0
m/4
m m
Ky +---kg=m
kiy..osky >0

Since m™ > m! and

<2m—1)§4m
m

we have established (5.20) with C; = 8C in the case n > m.
As for the case n < m, the trivial fact J,, < n? leads to the following trivial bound,

E],:n < n2m < m3m/2nm/2 < Cm(m!)3/2nm/2,
where the last step follows from the Stirling formula. O

As for the exponential integrability of the renormalized self-intersection local time Q, — EQ,, we have the fol-
lowing theorem.

Theorem 5.2. As d =3,

0
supEexp{si@,, —EQn|2/3} <00 forevery > 0. (5.25)
n nlogn
Asd >4,
0
supEexp{3—|Qn — EQn|2/3} < oo forsome6 > 0. (5.26)
n \/ﬁ

Proof. The proof given here is radically different from the approach used in the case d =2 (Lemma 2.3 in [3]) where
the treatment is Le Gall-Varadhan’s triangular approximation. Due to similarity, we only consider d = 3. We first
prove that for any integer m > 1,

E[Q, —EQu|" = O((nlogn)™?), n— 0. (5.27)

We carry out induction on m. By Lemma 5.2, (5.27) holds as m = 1, 2. We let m > 3, assume that it is true for all
1 < j <m — 1 and prove it is true for m.
Given n, write n1 = [n/2], np =n —ny,

ni n
ni+1<j<k<n j=lk=n;+1
By Lemma 5.2 there is Cy > 0 such that

ElJ, —EJ,|" < Cm)**n™m, n=1,2,.... (5.28)
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By independence between Q,, and Q,

np’
(EIQ, —EQ,I")!"
=< {E(|Qn1 _Ein | + |Q;l2 _EQ;ZDm}l/m n {E|J_n —E.]_n|m}l/m

< {Z (’;‘) E|Qy, —EQ, VE|Q,, —EQ, |"™’

j=0

1/m

+ Con/n(m!)>/@m, (5.29)

Combining the induction assumption and (5.29),

(EIQ, —EQ, ")

<{O((nlogn)™2) +E| Qs —EQy, I" +E|Q), —EQ),["}"/" +0(Vn).

Write

ar = sup{(2¥10g2) V2 (E|Q, —EQ, ")/ 28 <n < 2kH1).
Then,

a1 < {O(1) 42722 4 o(1) <27 M=2/Cmgy L O(1), k- oo

By the fact that m > 3 one can see that the sequence o is bounded. We have proved (5.27).
We now claim that there is C > 0 such that

E|Q, —EQ," < C™(m)>*(nlogn)™?, m,n=1,2,.... (5.30)

Indeed, take m sufficiently large so that

1
(1 —2-tn-dy@my=1m Z D7 Mol e )
V2 -2 4
for all m > mg. By (5.27), there is a constant C > O such that for all j =1, ..., mo,

E|Q, —EQ, <C/(jH*?(nlogn)//?, n=1,2,....

We may assume that C > 8Cy. (Recall that Cy is given in (5.28).) By induction (on m), all we have to prove is that
for any m > my, if

E[Q, —EQul) < CI(jH(nlogn)’’?, n=1,2,..., (5.31)
forevery j=1,...,m — 1 then
E|Q, —EQ,|" < C"m)>*(nlogn)™?, n=1,2,.... (5.32)

From (5.29) and (5.31) we have

m—1
(BIQ, —EQ,[")"/™ < {272 C™ (nlogn)"/ 3 (’;‘) (Y2 (0m = py*?

j=1

na

1/m
+E|[Qn, —EQ,, " +E|Q,’12 ~EQ |m} + Co/n(m3/@m
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Notice that

m—1 m—1
3 (’]”) GO = Y =m! 3 G2~ ) < )2 m - 1)
Jj=1 j=1

and that by (5.27)

Bm = sup{(n logn)"/’E|Q, — EQ,|"} < oo

n>1

We have

1/m

cm= 1l/m

2

T m !)3/(2m)+2—(m—2)/(2m)ﬂ’:1/m+C0(m!)3/(2m).

| /\

Hence,

(m _ l)l/m

V2

< (%C + 4Co> (m)¥/ @M < € (m1)3/

Bal™ < (1 — 2= tn=2/@m) = { C+ Co}(mz)3/<2m>

Hence, (5.27) holds. By (5.27) and the Taylor expansion there is 6y > 0 such that

fo 2/3
supEexpy ———|0, —EQ,[*?} < cc. 5.33
up P{ W|Qn Onl (5.33)
It remains to extend (5.33) to any 6 > 0. Indeed, for any 6 > 6y, one can find an integer / such that for any » there is
an integer partition 0 =ng <ni,..., <n;=nsuchthatn; —n;_1 < n(90/9)3 (i=1,...,1). Write
l I nj— n
Q=2 > =t D D lis=so (5.34)
i=lnj_1<j,k<n; i=2 j=lk=n;_1+1
Notice that foreach 2 <i </,
nj—1 ni—1nj—nj—q
> Z Lisj=su) —Z Y lis—s) < -
j=lk=n;_1+1 j=1 k=1

By Lemma 5.2 and the Taylor expansion there is A > 0 such that

i1 2/3
supEexp{ <Z Z 1{5]_5k> } < 00.
nzl j=1k=n;_i+1

By the triangular inequality and the Holder inequality, therefore,

[ nj— ni 2/3
supEexp[ nlogn(zz Z ]{SJ_Sk}) ]<oo.

nxl i=2 j=1k=n;_;+1
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Consequently, by the Jensen inequality

ni— 2/3

supEexp ZZ Z Lis;=s;) < 00.

l
nzl z ogn i=2 j=lk=n;_1+1

By independence and by the triangular inequality

Y hs=sa—E DY ls=sy

nj—1<j,k<n; ni—1<j,k<n;

l 2/3

%
Eexpl ———
P Inlogn ;

<nEexp{\/—|Qn, —ni_i EQ"i”il|2/3}

i=1

< l_[IElexp{ Vo

Hence, the desired (5.25) follows from (5.33) and (5.34). O

0o

—n;—1)log(n; —n;_1)

|Qn,-—n,-_1 - IEQ}'L,’—}'L,'_| |2/3 }

By slightly modifying our argument, we can prove that Theorem 5.2 holds also for the range. We include this in
our paper for future reference.

Theorem 5.3. As d =3,

supEexp{ \/_|#{S[1 n }—E#{S[l,n]}|2/3} <00 forevery® > 0. (5.35)
Asd >4,
supEexp{ \/_i#{S[l,n]} —E#{S[l,n]}|2/3} <00 forsome > 0. (5.36)

Proof. The argument used here is essentially the same as the one for Q,. To carry it through, (5.21) needs to be
replaced by Lemma 3.1 in [17], and (5.24) needs to be replaced by Lemma 6 in [7]. The rest of the proof follows an
obvious modification of the argument for Theorem 5.2. |
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