Limit laws for the energy of a charged polymer
Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 4, pp. 638-672.

Cet article est consacré à l’étude du théorème central limite, des déviations modérées et des lois du logarithme itéré pour l’énergie

H n = 1j<kn ω j ω k 1 S j =S k
du polymère S 1 ,...,S n doté de charges électriques ω 1 ,...,ω n . Notre approche se base sur la comparaison des moments de H n et du temps local de recoupements
Q n = 1j<kn 1 S j =S k
de la marche aléatoire d-dimensionnelle S k . L’étude du théorème central limite et de l’intégrabilité exponentielle de Q n (dans le cas d3) est également menée, tant pour comme outil pour notre principal objectif que pour son intérêt intrinsèque.

In this paper we obtain the central limit theorems, moderate deviations and the laws of the iterated logarithm for the energy

H n = 1j<kn ω j ω k 1 S j =S k
of the polymer S 1 ,...,S n equipped with random electrical charges ω 1 ,...,ω n . Our approach is based on comparison of the moments between H n and the self-intersection local time
Q n = 1j<kn 1 S j =S k
run by the d-dimensional random walk S k . As partially needed for our main objective and partially motivated by their independent interest, the central limit theorems and exponential integrability for Q n are also investigated in the case d3.

DOI : 10.1214/07-AIHP120
Classification : 60F05, 60F10, 60F15
Mots clés : charged polymer, self-intersection local time, central limit theorem, moderate deviation, laws of the iterated logarithm
@article{AIHPB_2008__44_4_638_0,
     author = {Chen, Xia},
     title = {Limit laws for the energy of a charged polymer},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {638--672},
     publisher = {Gauthier-Villars},
     volume = {44},
     number = {4},
     year = {2008},
     doi = {10.1214/07-AIHP120},
     mrnumber = {2446292},
     zbl = {1178.60024},
     language = {en},
     url = {http://www.numdam.org/articles/10.1214/07-AIHP120/}
}
TY  - JOUR
AU  - Chen, Xia
TI  - Limit laws for the energy of a charged polymer
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2008
SP  - 638
EP  - 672
VL  - 44
IS  - 4
PB  - Gauthier-Villars
UR  - http://www.numdam.org/articles/10.1214/07-AIHP120/
DO  - 10.1214/07-AIHP120
LA  - en
ID  - AIHPB_2008__44_4_638_0
ER  - 
%0 Journal Article
%A Chen, Xia
%T Limit laws for the energy of a charged polymer
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2008
%P 638-672
%V 44
%N 4
%I Gauthier-Villars
%U http://www.numdam.org/articles/10.1214/07-AIHP120/
%R 10.1214/07-AIHP120
%G en
%F AIHPB_2008__44_4_638_0
Chen, Xia. Limit laws for the energy of a charged polymer. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 4, pp. 638-672. doi : 10.1214/07-AIHP120. http://www.numdam.org/articles/10.1214/07-AIHP120/

[1] A. Asselah and F. Castell. Self-intersection local times for random walk, and random walk in random scenery in dimension d≥5. Preprint, 2005. Available at http://arxiv.org/math.PR/0509721arXiv:math.PR/0509721. | MR

[2] A. Asselah. Large deviation estimates for self-intersection local times for simple random walk in ℤ3. Probab. Theory Related Fields. To appear. | MR | Zbl

[3] R. F. Bass, X. Chen and J. Rosen. Moderate deviations and laws of the iterated logarithm for the renormalized self-intersection local times of planar random walks. Electron. J. Probab. 11 (2006) 993-1030. | EuDML | MR | Zbl

[4] E. Buffet and J. V. Pulé. A model of continuous polymers with random charges. J. Math. Phys. 38 (1997) 5143-5152. | MR | Zbl

[5] X. Chen. On the law of the iterated logarithm for local times of recurrent random walks. In High Dimensional Probability II (Seattle, WA, 1999) 249-259, 2000. | MR | Zbl

[6] X. Chen. Exponential asymptotics and law of the iterated logarithm for intersection local times of random walks. Ann. Probab. 32 (2004) 3248-3300. | MR | Zbl

[7] X. Chen. Moderate deviations and law of the iterated logarithm for intersections of the range of random walks. Ann. Probab. 33 (2005) 1014-1059. | MR | Zbl

[8] X. Chen and W. Li. Large and moderate deviations for intersection local times. Probab. Theory Related Fields 128 (2004) 213-254. | MR | Zbl

[9] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications, 2nd edition. Springer, New York, 1998. | MR | Zbl

[10] B. Derrida, R. B. Griffiths and R. G. Higgs. A model of directed walks with random self interactions. Europhys. Lett. 18 (1992) 361-366.

[11] B. Derrida and P. G. Higgs. Low-temperature properties of directed walks with random self-interactions. J. Phys. A 27 (1994) 5485-5493. | MR | Zbl

[12] R. Van Der Hofstad and W. König. A survey of one-dimensional random polymers. J. Statist. Phys. 103 (2001) 915-944. | MR | Zbl

[13] N. C. Jain and W. E. Pruitt. The range of transient random walk. J. Anal. Math. 24 (1971) 369-393. | MR | Zbl

[14] N. C. Jain and W. E. Pruitt. Further limit theorem for the range of random walk. J. Anal. Math. 27 (1974) 94-117. | MR | Zbl

[15] N. C. Jain and W. E. Pruitt. Asymptotic behavior of the local time of a recurrent random walk. Ann. Probab. 11 (1984) 64-85. | MR | Zbl

[16] Y. Kantor and M. Kardar. Polymers with self-interactions. Europhys. Lett. 14 (1991) 421-426.

[17] J.-F. Le Gall and J. Rosen. The range of stable random walks. Ann. Probab. 19 (1991) 650-705. | MR | Zbl

[18] S. Martínez and D. Petritis. Thermodynamics of a Brownian bridge polymer model in a random environment. J. Phys. A 29 (1996) 1267-1279. | MR | Zbl

[19] P. Révész. Random Walks in Random and Non-Random Environments. World Scientific, London, 1990. | Zbl

[20] J. Rosen. Random walks and intersection local time. Ann. Probab. 18 (1990) 959-977. | MR | Zbl

[21] F. Spitzer. Principles of Random Walk. Van Nostrand, Princeton, New Jersey, 1964. | MR | Zbl

Cité par Sources :