Nous étudions un modèle de branchement spatial où le mouvement de base est Brownien -dimensionnel () et le taux de branchement est modifié par une collection aléatoire d’ensembles sur lesquels la reproduction n’a pas lieu (obstacles moux). Le résultat principal de cet article est l’asymptotique (en probabilité) des taux de croissance globaux «quenchés» pour tout , et nous identifions les termes de correction sous-exponentielle. Nous montrons aussi que le branchement Brownien avec obstacles moux diffuse moins vite que le branchement Brownien classique en donnant une borne supérieure de sa vitesse. Dans le cas où le mouvement de base est un processus de diffusion arbitraire nous obtenons une dichotomie pour la croissance locale «quenchée» qui est indépendante de l'intensité Poissonnienne. Le cas de distributions plus générales du nombre de descendants (autre que le cas dyadique considéré dans les théorème principaux), ainsi que des modèles d'obstacles moux pour des superprocessus, sont aussi discutés.
We study a spatial branching model, where the underlying motion is -dimensional () brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all . We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying motion is an arbitrary diffusion process, we obtain a dichotomy for the quenched local growth that is independent of the poissonian intensity. More general offspring distributions (beyond the dyadic one considered in the main theorems) as well as mild obstacle models for superprocesses are also discussed.
Mots-clés : poissonian obstacles, branching brownian motion, random environment, fecundity selection, radial speed, wavefronts in random medium, random KPP equation
@article{AIHPB_2008__44_3_490_0, author = {Engl\"ander, J\'anos}, title = {Quenched law of large numbers for branching brownian motion in a random medium}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {490--518}, publisher = {Gauthier-Villars}, volume = {44}, number = {3}, year = {2008}, doi = {10.1214/07-AIHP155}, mrnumber = {2451055}, zbl = {1181.60152}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP155/} }
TY - JOUR AU - Engländer, János TI - Quenched law of large numbers for branching brownian motion in a random medium JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 490 EP - 518 VL - 44 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP155/ DO - 10.1214/07-AIHP155 LA - en ID - AIHPB_2008__44_3_490_0 ER -
%0 Journal Article %A Engländer, János %T Quenched law of large numbers for branching brownian motion in a random medium %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 490-518 %V 44 %N 3 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/07-AIHP155/ %R 10.1214/07-AIHP155 %G en %F AIHPB_2008__44_3_490_0
Engländer, János. Quenched law of large numbers for branching brownian motion in a random medium. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 490-518. doi : 10.1214/07-AIHP155. http://www.numdam.org/articles/10.1214/07-AIHP155/
[1] Branching Processes. Springer, New York, 1972. (Reprinted by Dover, 2004.) | MR | Zbl
and .[2] Branching random walk in a catalytic medium. I. Basic equations. Positivity 4 (2000) 41-100. | MR | Zbl
and .[3] Brownian survival among Poissonian traps with random shapes at critical intensity. Probab. Theory Related Fields 132 (2005) 163-202. | MR | Zbl
, and .[4] Minimal displacement of branching random walk. Z. Wahrsch. Verw. Gebiete 45 (1978) 89-108. | MR | Zbl
.[5] Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978) 531-581. | MR | Zbl
.[6] Personal communication.
.[7] Spatial Ecology via Reaction-Diffusion Equations. Wiley, Chichester, 2003. | MR | Zbl
and .[8] Catalytic and mutually catalytic super-Brownian motions. In Proceedings of the Ascona '99 Seminar on Stochastic Analysis, Random Fields and Applications. R. C. Dalang, M. Mozzi and F. Russo (Eds) 89-110. Birkhäuser, Boston, 2002. | MR | Zbl
and .[9] Asymptotics for the Wiener sausage. Comm. Pure Appl. Math. 28 (1975) 525-565. | MR | Zbl
and .[10] Branching particle systems and superprocesses. Ann. Probab. 19 (1991) 1157-1194. | MR | Zbl
.[11] On the volume of the supercritical super-Brownian sausage conditioned on survival. Stochastic Process. Appl. 88 (2000) 225-243. | MR | Zbl
.[12] Survival asymptotics for branching Brownian motion in a Poissonian trap field. Markov Process. Related Fields 9 (2003) 363-389. | MR | Zbl
and .[13] Extinction properties of super-Brownian motions with additional spatially dependent mass production. Stochastic Process. Appl. 88 (2000) 37-58. | MR | Zbl
and .[14] Markov branching diffusions: martingales, Girsanov-type theorems and applications to the long term behaviour. Technical report. 1206, Department of Mathematics, Utrecht University, 2001, 39 pages. Available at http://www.math.uu.nl/publications.
and .[15] Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32 (2004) 78-99. | MR | Zbl
and .[16] On the construction and support properties of measure-valued diffusions on D⊂Rd with spatially dependent branching. Ann. Probab. 27 (1999) 684-730. | MR | Zbl
and .[17] Nonexistence of solutions to KPP-type equations of dimension greater than or equal to one. Electron. J. Differential Equations (2006) 6 pp. (electronic). | MR
and .[18] A scaling limit theorem for a class of superdiffusions. Ann. Probab. 30 (2002) 683-722. | MR | Zbl
and .[19] Law of large numbers for a class of superdiffusions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 171-185. | Numdam | MR | Zbl
and .[20] An approximate sampling formula under genetic hitchhiking. Ann. Appl. Probab. 16 (2006) 685-729. | MR | Zbl
, and .[21] Damage segregation at fissioning may increase growth rates: a superprocess model. Preprint. | Zbl
and .[22] Personal communication.
.[23] On the large scale behavior of super-Brownian motion in three dimensions with a single point source. Preprint. Avaible at ArXiv:math.PR/0607670. | MR
, and .[24] Functional Integration and Partial Differential Equations. Princeton University Press, 1985. | MR | Zbl
.[25] Further probabilistic analysis of the Fisher-Kolmogorov-Petrovskii-Piscounov equation: one sided travelling-waves. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 125-145. | Numdam | MR | Zbl
, and .[26] Branching random walk with catalysts. Electron. J. Probab. 8 (2003) (electronic). | MR | Zbl
and .[27] General topology. Graduate Texts in Mathematics. Springer, New York-Berlin, 1975. Reprint of the 1955 edition [Van Nostrand, Toronto, Ont.]. | MR | Zbl
.[28] A review on spatial catalytic branching. Stochastic Models (Ottawa, ON, 1998) 245-263. Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
.[29] Asymptotic radial speed of the support of supercritical branching and super-Brownian motion in Rd. Markov Process. Related Fields 11 (2005) 145-156. | MR | Zbl
.[30] Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential. Ann. Inst. H. Poincaré Probab. Statist. 38 (2002) 253-284. | Numdam | MR | Zbl
and .[31] Wave propagation in a lattice KPP equation in random media. Ann. Probab. 26 (1998) 1179-1197. | MR | Zbl
and .[32] Positive Harmonic Functions and Diffusion. Cambridge Univ. Press, 1995. | MR | Zbl
.[33] Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24 (1996) 237-267. | MR | Zbl
.[34] Conditional survival distributions of Brownian trajectories in a one dimensional Poissonian environment. Stochastic Process. Appl. 103 (2003) 169-209. | MR | Zbl
.[35] Brownian Motion, Obstacles and Random Media. Springer, Berlin, 1998. | MR | Zbl
.[36] Front propagation in heterogeneous media. SIAM Rev. 42 (2000) 161-230 (electronic). | MR | Zbl
.Cité par Sources :