Dans le modèle de régression avec erreurs sur les variables, nous observons
In the regression model with errors in variables, we observe
Mots-clés : asymptotic normality, consistency, deconvolution kernel estimator, errors-in-variables model, M-estimators, ordinary smooth and super-smooth functions, rates of convergence, semi-parametric nonlinear regression
@article{AIHPB_2008__44_3_393_0, author = {Butucea, Cristina and Taupin, Marie-Luce}, title = {New $M$-estimators in semi-parametric regression with errors in variables}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {393--421}, publisher = {Gauthier-Villars}, volume = {44}, number = {3}, year = {2008}, doi = {10.1214/07-AIHP107}, zbl = {1206.62068}, language = {en}, url = {https://www.numdam.org/articles/10.1214/07-AIHP107/} }
TY - JOUR AU - Butucea, Cristina AU - Taupin, Marie-Luce TI - New $M$-estimators in semi-parametric regression with errors in variables JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 393 EP - 421 VL - 44 IS - 3 PB - Gauthier-Villars UR - https://www.numdam.org/articles/10.1214/07-AIHP107/ DO - 10.1214/07-AIHP107 LA - en ID - AIHPB_2008__44_3_393_0 ER -
%0 Journal Article %A Butucea, Cristina %A Taupin, Marie-Luce %T New $M$-estimators in semi-parametric regression with errors in variables %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 393-421 %V 44 %N 3 %I Gauthier-Villars %U https://www.numdam.org/articles/10.1214/07-AIHP107/ %R 10.1214/07-AIHP107 %G en %F AIHPB_2008__44_3_393_0
Butucea, Cristina; Taupin, Marie-Luce. New $M$-estimators in semi-parametric regression with errors in variables. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 393-421. doi : 10.1214/07-AIHP107. https://www.numdam.org/articles/10.1214/07-AIHP107/
[1] A consistent estimator in general functional errors-in-variables models. Metrika 51 (2000) 117-132 (electronic). | MR | Zbl
.[2] Efficient and Adaptative Estimation for Semiparametric Model. Johns Hopkins Univ. Press, Baltimore, MD, 1993. | MR | Zbl
, , and .[3] Efficient estimation in the errors-in-variables model. Ann. Statist. 15 (1987) 513-540. | MR | Zbl
and .[4] Probability and Measure, 3rd edition. Wiley. New York, 1995. | MR | Zbl
[5] Measurement Error in Nonlinear Models. Chapman and Hall, London, 1995. | MR | Zbl
, and .[6] On the polynomial functionnal relationship. J. Roy. Statist. Soc. Ser. B 47 (1985) 510-518. | MR
and .[7] On estimating linear relationships when both variables are subject to errors. J. Roy. Statist. Soc. Ser. B 56 (1994) 167-183. | MR | Zbl
and .[8] Semiparametric estimation in the (auto)-regressive β-mixing model with errors-in-variables. Math. Methods Statist. 10 (2001) 121-160. | MR | Zbl
and .[9] Asymptotic properties in space and time of an estimator in nonlinear functional errors-in-variables models. Random Oper. Stochastic Equations 7 (1999) 389-412. | MR | Zbl
, , , and .[10] Asymptotic properties of estimators in nonlinear functional errors-in-variables with dependent error terms. J. Math. Sci. (New York) 92 (1998) 3890-3895. | MR | Zbl
and .[11] Asimptotika: integraly i ryady. “Nauka”, Moscow, 1987. | MR
.[12] Measurement Error Models. Wiley, New York, 1987. | MR | Zbl
.[13] Improvements of the naive approach to estimation in nonlinear errors-in-variables regression models. Contemp. Math. 112 (1990) 99-114. | MR | Zbl
.[14] Identification and estimation of polynomial errors-in-variables models. J. Econometrics 50 (1991) 273-295. | MR | Zbl
, , and .[15] Nonlinear errors in variables estimation of some engel curves. J. Econometrics 65 (1995) 205-233. | MR | Zbl
, and .[16] A simple estimator for nonlinear error in variable models. J. Econometrics 117 (2003) 1-19. | MR | Zbl
and .[17] Consistent estimation for some nonlinear errors-in-variables models. J. Econometrics 41 (1989) 159-185. | MR | Zbl
.[18] Estimation of nonlinear errors-in-variables models: an approximate solution. Statist. Papers 38 (1997) 1-25. | MR | Zbl
, and .[19] Estimation of structural nonlinear errors-in-variables models by simulated least-squares method. Internat. Econom. Rev. 41 (2000) 523-542. | MR
and .[20] Consistency of the maximum likelihood estimator in the presence of infinitely many nuisance parameters. Ann. Math. Statist. 27 (1956) 887-906. | MR | Zbl
and .[21] Comparing different estimators in a nonlinear measurement error model. I. Math. Methods Statist. 14 (2005) 53-79. | MR
and .[22] Comparing different estimators in a nonlinear measurement error model. II. Math. Methods Statist. 14 (2005) 203-223. | MR
and .[23] Adaptive minimax estimation of infinitely differentiable functions. Math. Methods Statist. 7 (1998) 123-156. | MR | Zbl
and .[24] Estimation of nonlinear errors-in-variables models: a simulated minimum distance estimator. Statist. Probab. Lett. 47 (2000) 243-248. | MR | Zbl
.[25] Robust and consistent estimation of nonlinear errors-in-variables models. J. Econometrics 110 (2002) 1-26. | MR | Zbl
.[26] Likelihood inference in the errors-in-variables model. J. Multivariate Anal. 59 (1996) 81-108. | MR | Zbl
and .[27] Limit Theorems of Probability Theory. Oxford Science Publications, New York, 1995. | MR | Zbl
.[28] Identifiability of a linear relation between variables which are subject to error. Econometrica. 18 (1950) 375-389. | MR | Zbl
.[29] Semi-parametric estimation in the nonlinear structural errors-in-variables model. Ann. Statist. 29 (2001) 66-93. | MR | Zbl
.[30] Semiparametric statistics. Lectures on Probability Theory and Statistics (Saint-Flour, 1999) 331-457. Lecture Notes in Math. 1781. Berlin, Springer, 2002. | MR | Zbl
.[31] Estimating a real parameter in a class of semiparametric models. Ann. Statist. 16 (1988) 1450-1474. | MR | Zbl
.[32] Efficient estimation in semi-parametric mixture models. Ann. Statist. 24 (1996) 862-878. | MR | Zbl
.[33] Estimation of nonlinear errors-in variables models. Ann. Statist. 10 (1982) 539-548. | MR | Zbl
and .[34] Estimation of the quadratic errors-in-variables model. Biometrika 69 (1982) 175-182. | Zbl
and .Cité par Sources :