Nous prouvons une inégalité isopérimétrique pour la mesure uniforme sur la boule unité de . Si , alors , où est la mesure de surface associée à et est une constante absolue. En particulier, les boules unités de vérifient la conjecture de Kannan-Lovász-Simonovits (Discrete Comput. Geom. 13 (1995)) sur la constante de Cheeger d'un corps convexe isotrope. La démonstration s'appuie sur les inégalités isopérimétriques de Bobkov (Ann. Probab. 27 (1999)) et de Barthe-Cattiaux-Roberto (Rev. Math. Iberoamericana 22 (2006)), et utilise la représentation de établie par Barthe-Guédon-Mendelson-Naor (Ann. Probab. 33 (2005)) ainsi qu'un argument de découpage.
The normalised volume measure on the unit ball satisfies the following isoperimetric inequality: the boundary measure of a set of measure is at least , where .
Mots-clés : isoperimetric inequalities, volume measure
@article{AIHPB_2008__44_2_362_0, author = {Sodin, Sasha}, title = {An isoperimetric inequality on the $\ell _p$ balls}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {362--373}, publisher = {Gauthier-Villars}, volume = {44}, number = {2}, year = {2008}, doi = {10.1214/07-AIHP121}, zbl = {1181.60025}, language = {en}, url = {http://www.numdam.org/articles/10.1214/07-AIHP121/} }
TY - JOUR AU - Sodin, Sasha TI - An isoperimetric inequality on the $\ell _p$ balls JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 362 EP - 373 VL - 44 IS - 2 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/07-AIHP121/ DO - 10.1214/07-AIHP121 LA - en ID - AIHPB_2008__44_2_362_0 ER -
Sodin, Sasha. An isoperimetric inequality on the $\ell _p$ balls. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 2, pp. 362-373. doi : 10.1214/07-AIHP121. http://www.numdam.org/articles/10.1214/07-AIHP121/
[1] Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc. 4 (1976) 165. | MR | Zbl
.[2] Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12 (2002) 32-55. | MR | Zbl
.[3] Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoamericana 22 (2005) 993-1067. | MR | Zbl
, and .[4] A probabilistic approach to the geometry of the ℓnp-ball. Ann. Probab. 33 (2005) 480-513. | MR | Zbl
, , and .[5] Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481-497. | MR | Zbl
and .[6] Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999) 1903-1921. | MR | Zbl
.[7] Spectral gap and concentration for some spherically symmetric probability measures. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 37-43. Lecture Notes in Math. 1807. Springer, Berlin, 2003. | MR | Zbl
.[8] An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25 (1997) 206-214. | MR | Zbl
.[9] On isoperimetric constants for log-concave probability distributions. Lecture Notes in Math. 1910 (2007) 81-88. | MR | Zbl
.[10] Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996) 35-48. | MR | Zbl
.[11] Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184-205. | MR | Zbl
and .[12] Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) 829. | MR | Zbl
and .[13] Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311/312 (1979) 80-100. | MR | Zbl
and .[14] The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975) 207-216. | MR | Zbl
.[15] On the distribution of polynomials on high-dimensional convex sets. Geometric aspects of functional analysis (Notes of GAFA Seminar) 127-137. Lecture Notes in Math. 1469. Springer, Berlin, 1991. | MR | Zbl
.[16] Certain questions of potential theory and function theory for regions with irregular boundaries. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 3 (1967) 152. (English translation: Potential theory and function theory for irregular regions. Seminars in Mathematics. V. A. Steklov Mathematical Institute, Leningrad, Vol. 3, Consultants Bureau, New York, 1969) | MR | Zbl
and .[17] Normal and integral currents. Ann. of Math. (2) 72 (1960) 458-520. | MR | Zbl
and .[18] On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16 (2006) 1274-1290. | MR | Zbl
.[19] Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995) 541-559. | MR | Zbl
, and .[20] Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Surveys in Differential Geometry. Vol. IX 219-240. Int. Press, Somerville, MA, 2004. | MR | Zbl
.[21] Between Sobolev and Poincaré. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 147-168. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR | Zbl
and .[22] Classes of domains and imbedding theorems for function spaces. Dokl. Akad. Nauk SSSR 133 (1960) 527-530. (Russian). Translated as Soviet Math. Dokl. 1 (1960) 882-885. | MR | Zbl
.[23] Concentration of mass on isotropic convex bodies. C. R. Math. Acad. Sci. Paris 342 (2006) 179-182. | MR | Zbl
.[24] On the volume of the intersection of two Lnp balls. Proc. Amer. Math. Soc. 110 (1990) 217-224. | MR | Zbl
and .[25] Concentration on the ℓnp ball. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 245-256. Lecture Notes in Math. 1745. Springer, Berlin, 2000. | MR | Zbl
and .[26] Extremal properties of half-spaces for spherically invariant measures. Problems in the theory of probability distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974) 14-24, 165. (Russian). | MR | Zbl
and .Cité par Sources :