@article{AIHPB_2006__42_4_417_0, author = {Odasso, Cyril}, title = {Ergodicity for the stochastic complex {Ginzburg-Landau} equations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {417--454}, publisher = {Elsevier}, volume = {42}, number = {4}, year = {2006}, doi = {10.1016/j.anihpb.2005.06.002}, zbl = {1104.35078}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.06.002/} }
TY - JOUR AU - Odasso, Cyril TI - Ergodicity for the stochastic complex Ginzburg-Landau equations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2006 SP - 417 EP - 454 VL - 42 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2005.06.002/ DO - 10.1016/j.anihpb.2005.06.002 LA - en ID - AIHPB_2006__42_4_417_0 ER -
%0 Journal Article %A Odasso, Cyril %T Ergodicity for the stochastic complex Ginzburg-Landau equations %J Annales de l'I.H.P. Probabilités et statistiques %D 2006 %P 417-454 %V 42 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2005.06.002/ %R 10.1016/j.anihpb.2005.06.002 %G en %F AIHPB_2006__42_4_417_0
Odasso, Cyril. Ergodicity for the stochastic complex Ginzburg-Landau equations. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 4, pp. 417-454. doi : 10.1016/j.anihpb.2005.06.002. http://www.numdam.org/articles/10.1016/j.anihpb.2005.06.002/
[1] Invariant measure for the stochastic Ginzburg Landau equation, NoDEA Nonlinear Differential Equations Appl. 11 (1) (2004) 29-52. | MR | Zbl
,[2] Inviscid limits of the Complex Ginzburg-Landau equation, Comm. Math. Phys. 214 (2000) 201-226. | MR | Zbl
, ,[3] Exponential mixing for the 2D stochastic Navier-Stokes dynamics, Comm. Math. Phys. 230 (1) (2002) 87-132. | MR | Zbl
, , ,[4] Stochastic equations in infinite dimensions, in: Encyclopedia Math. Appl., Cambridge University Press, 1992. | MR | Zbl
, ,[5] A stochastic non-linear Schrödinger equation with multiplicative noise, Comm. Math. Phys. 205 (1999) 161-181. | MR | Zbl
, ,[6] The stochastic non-linear Schrödinger equation in , Stochastic Anal. Appl. 21 (1) (2003) 97-126. | MR | Zbl
, ,[7] Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation, Comm. Math. Phys. 224 (2001) 83-106. | MR | Zbl
, , ,[8] On the theorie of superconductivity, Zh. Eksp. Fiz. 20 (1950) 1064, English transl., in: (Ed.), Men of Physics: L.D. Landau, vol. I, Pergamon Press, New York, 1965, pp. 546-568.
, ,[9] Exponential mixing properties of stochastic PDEs through asymptotic coupling, Probab. Theory Related Fields 124 (3) (2002) 345-380. | MR | Zbl
,[10] Universal decay of vortex density in two dimensions, Physica A 195 (1993) 448-456. | Zbl
, ,[11] On exponential convergence to a stationary measure for nonlinear PDEs, in: The M.I. Viishik Moscow PDE seminar, Amer. Math. Soc. Transl. Ser. (2), vol. 206, Amer. Math. Soc., 2002. | MR
,[12] Stochastic dissipative PDE's and Gibbs measures, Comm. Math. Phys. 213 (2000) 291-330. | MR | Zbl
, ,[13] A coupling approach to randomly forced PDE's I, Comm. Math. Phys. 221 (2001) 351-366. | MR | Zbl
, ,[14] A coupling approach to randomly forced PDE's II, Comm. Math. Phys. 230 (1) (2002) 81-85. | MR | Zbl
, , ,[15] Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl. 1 (2002) 567-602. | MR | Zbl
, ,[16] Randomly forced CGL equation: Stationary measure and the inviscid limit, J. Phys. A 37 (12) (2004) 3805-3822. | MR | Zbl
, ,[17] Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics, Comm. Math. Phys. 230 (2002) 421-462. | MR | Zbl
,[18] On recent progress for the stochastic Navier-Stokes equations, in: Journées Équations aux Dérivées Partielles, Exp. No XI, vol. 52, Univ. Nantes, Nantes, 2003. | Numdam | MR | Zbl
,[19] Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969) 279-303. | Zbl
, ,[20] Review of the finite bandwidth concept, in: (Ed.), Proceedings of the Internat. Union of Theor. and Appl. Math., Springer, Berlin, 1971, pp. 284-289. | Zbl
, ,[21] C. Odasso, Propriétés ergodiques de l'équation de Ginzburg-Landau complexe bruitée, Mémoire de DEA, 2003.
[22] Exponential mixing for 2D Navier-Stokes equation perturbed by an unbounded noise, J. Math. Fluid Mech. 6 (2) (2004) 169-193. | MR | Zbl
,Cité par Sources :