Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems
Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 1, pp. 61-80.
@article{AIHPB_2006__42_1_61_0,
     author = {Valk\'o, Benedek},
     title = {Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {61--80},
     publisher = {Elsevier},
     volume = {42},
     number = {1},
     year = {2006},
     doi = {10.1016/j.anihpb.2005.01.004},
     mrnumber = {2196971},
     zbl = {1092.60042},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.004/}
}
TY  - JOUR
AU  - Valkó, Benedek
TI  - Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2006
SP  - 61
EP  - 80
VL  - 42
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.004/
DO  - 10.1016/j.anihpb.2005.01.004
LA  - en
ID  - AIHPB_2006__42_1_61_0
ER  - 
%0 Journal Article
%A Valkó, Benedek
%T Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2006
%P 61-80
%V 42
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.004/
%R 10.1016/j.anihpb.2005.01.004
%G en
%F AIHPB_2006__42_1_61_0
Valkó, Benedek. Hydrodynamic limit for perturbation of a hyperbolic equilibrium point in two-component systems. Annales de l'I.H.P. Probabilités et statistiques, Tome 42 (2006) no. 1, pp. 61-80. doi : 10.1016/j.anihpb.2005.01.004. http://www.numdam.org/articles/10.1016/j.anihpb.2005.01.004/

[1] M. Balázs, Growth fluctuations in interface models, Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 639-685. | EuDML | Numdam | MR | Zbl

[2] R.N. Bhattacharya, R. Ranga Rao, Normal Approximation and Asymptotic Expansions, Wiley, 1976. | MR | Zbl

[3] C. Cocozza, Processus des misanthropes, Z. Wahrscheinlichkeitstheorie Verw. Gebiete 70 (1985) 509-523. | MR | Zbl

[4] R.J. Diperna, A. Majda, The validity of nonlinear geometric optics for weak solutions of conservation laws, Commun. Math. Phys. 98 (1985) 313-347. | MR | Zbl

[5] R. Esposito, R. Marra, H.T. Yau, Diffusive limit of asymmetric simple exclusion, Rev. Math. Phys. 6 (1994) 1233-1267. | MR | Zbl

[6] J. Fritz, B. Tóth, Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas, Commun. Math. Phys. 249 (2004) 1-27. | MR | Zbl

[7] J.K. Hunter, J.B. Keller, Weakly nonlinear high frequency waves, Commun. Pure Appl. Math. 36 (1983) 547-569. | MR | Zbl

[8] C. Kipnis, C. Landim, Scaling Limits of Interacting Particle Systems, Springer, 1999. | MR | Zbl

[9] C. Landim, S. Sethuraman, S.R.S. Varadhan, Spectral gap for zero range dynamics, Ann. Probab. 24 (1986) 1871-1902. | MR | Zbl

[10] S. Olla, S.R.S. Varadhan, H.T. Yau, Hydrodynamical limit for Hamiltonian system with weak noise, Commun. Math. Phys. 155 (1993) 523-560. | MR | Zbl

[11] V. Popkov, G.M. Schütz, Shocks and excitation dynamics in driven diffusive two channel systems, J. Statist. Phys. 112 (2003) 523-540. | MR | Zbl

[12] F. Rezakhanlou, Microscopic structure of shocks in one conservation laws, Ann. Inst. H. Poincaré Anal. Non Lineaire 12 (1995) 119-153. | Numdam | MR | Zbl

[13] T. Seppäläinen, Perturbation of the equilibrium for a totally asymmetric stick process in one dimension, Ann. Probab. 29 (2001) 176-204. | MR | Zbl

[14] B. Tóth, B. Valkó, Between equilibrium fluctuations and Eulerian scaling. Perturbation of equilibrium for a class of deposition models, J. Statist. Phys. 109 (2002) 177-205. | MR | Zbl

[15] B. Tóth, B. Valkó, Onsager relations and Eulerian hydrodynamic limit for systems with several conservation laws, J. Statist. Phys. 112 (2003) 497-521. | MR | Zbl

[16] B. Tóth, B. Valkó, Perturbation of singular equilibria of hyperbolic two-component systems: a universal hydrodynamic limit, Commun. Math. Phys. 256 (2005) 111-157. | MR | Zbl

[17] H.T. Yau, Logarithmic Sobolev inequality for generalized simple exclusion processes, Probability Theory Related Fields 109 (1997) 507-538. | MR | Zbl

Cité par Sources :