@article{AIHPB_2005__41_6_1049_0, author = {Cheridito, Patrick and Nualart, David}, title = {Stochastic integral of divergence type with respect to fractional brownian motion with {Hurst} parameter $H\in (0,\frac{1}{2})$}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1049--1081}, publisher = {Elsevier}, volume = {41}, number = {6}, year = {2005}, doi = {10.1016/j.anihpb.2004.09.004}, mrnumber = {2172209}, zbl = {1083.60027}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.004/} }
TY - JOUR AU - Cheridito, Patrick AU - Nualart, David TI - Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac{1}{2})$ JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 1049 EP - 1081 VL - 41 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.004/ DO - 10.1016/j.anihpb.2004.09.004 LA - en ID - AIHPB_2005__41_6_1049_0 ER -
%0 Journal Article %A Cheridito, Patrick %A Nualart, David %T Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac{1}{2})$ %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 1049-1081 %V 41 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.004/ %R 10.1016/j.anihpb.2004.09.004 %G en %F AIHPB_2005__41_6_1049_0
Cheridito, Patrick; Nualart, David. Stochastic integral of divergence type with respect to fractional brownian motion with Hurst parameter $H\in (0,\frac{1}{2})$. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 6, pp. 1049-1081. doi : 10.1016/j.anihpb.2004.09.004. http://www.numdam.org/articles/10.1016/j.anihpb.2004.09.004/
[1] Stochastic Stratonovich calculus for fractional Brownian motion with Hurst parameter less than , Taiwanese J. Math. 5 (3) (2001) 609-632. | MR | Zbl
, , ,[2] Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than , Stochastic Process Appl. 86 (1) (2000) 121-139. | MR | Zbl
, , ,[3] Stochastic calculus with respect to Gaussian processes, Ann. Probab. 29 (2) (2001) 766-801. | MR | Zbl
, , ,[4] An Itô formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter, Stochastic Process Appl. 104 (1) (2003) 81-106. | MR | Zbl
,[5] Local nondeterminism and local times of Gaussian processes, Indiana Univ. Math. J. 23 (1973) 69-94. | MR | Zbl
,[6] Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist. 39 (1) (2003) 27-68. | Numdam | MR | Zbl
, , ,[7] Tanaka formula for the fractional Brownian motion, Stochastic Process Appl. 94 (2) (2001) 301-315. | MR | Zbl
, , ,[8] Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields 122 (1) (2002) 108-140. | MR | Zbl
, ,[9] Stochastic analysis of the fractional Brownian motion, Potential Anal. 10 (2) (1999) 177-214. | MR | Zbl
, ,[10] Stochastic calculus for fractional Brownian motion I. Theory, SIAM J. Control Optim. 38 (2) (2000) 582-612. | MR | Zbl
, , ,[11] L'integrale stochastique comme opérateur de divergence dans l'espace fonctionnel, J. Funct. Anal. 46 (2) (1982) 230-238. | MR | Zbl
, ,[12] Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index , Ann. Probab. 31 (4) (2003) 1772-1820. | Zbl
, , ,[13] M. Gradinaru, I. Nourdin, F. Russo, P. Vallois, m-order integrals and generalized Itô's formula: the case of a fractional Brownian motion with any Hurst index, Preprint, 2002.
[14] Probability structure preserving and absolute continuity, Ann. Inst. H. Poincaré 38 (4) (2002) 557-580. | Numdam | MR | Zbl
,[15] Fractional white noise calculus and applications to finance, Inf. Dim. Anal. Quant. Probab. Rel. Top. 6 (1) (2003) 1-32. | MR | Zbl
, ,[16] Stochastic integral, Proc. Imperial Acad. Tokyo 20 (1944) 519-524. | MR | Zbl
,[17] Stochastic analysis of fractional Brownian motions, Stochastics Stochastics Rep. 55 (1995) 121-140. | MR | Zbl
,[18] Theory of Martingales, Kluwer Academic, Dordrecht, 1989. | MR | Zbl
, ,[19] Empirical implications of arbitrage-free asset markets, in: (Ed.), Models, Methods and Applications of Econometrics, Blackwell, 1993.
, ,[20] Stochastic Analysis, Springer, 1997. | MR | Zbl
,[21] Stochastic integral equations without probability, Bernoulli 6 (3) (2000) 401-434. | MR | Zbl
, ,[22] The Malliavin Calculus and Related Topics, Springer, 1995. | MR | Zbl
,[23] Stochastic calculus with anticipating integrands, Probab. Theory Related Fields 78 (4) (1988) 535-581. | MR | Zbl
, ,[24] Integration questions related to fractional Brownian motion, Probab. Theory Related Fields 118 (2) (2000) 251-291. | MR | Zbl
, ,[25] Are classes of deterministic integrands for fractional Brownian motion on an interval complete?, Bernoulli 7 (6) (2001) 873-897. | MR | Zbl
, ,[26] Skorohod stochastic integration with respect to non-adapted processes on Wiener space, Stochastics Stochastics Rep. 65 (1998) 13-39. | MR | Zbl
,[27] Continuous Martingales and Brownian Motion, Springer, 1999. | MR | Zbl
, ,[28] Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields 97 (3) (1993) 403-421. | MR | Zbl
, ,[29] The generalized covariation process and Itô formula, Stochastic Process Appl. 59 (1) (1995) 81-104. | MR | Zbl
, ,[30] Itô formula for -functions of semimartingales, Probab. Theory Related Fields 104 (1) (1996) 27-41. | MR | Zbl
, ,[31] Arbitrage with fractional Brownian motion, Math. Finance 7 (1) (1997) 95-105. | MR | Zbl
,[32] Fractional Integrals and Derivatives, Gordon and Breach, 1993. | MR | Zbl
, , ,[33] An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. (Sweden) 67 (1936) 251-282. | MR | Zbl
,[34] Integration with respect to fractal functions and stochasic calculus. I, Probab. Theory Related Fields 111 (3) (1998) 333-374. | MR | Zbl
,Cité par Sources :