@article{AIHPB_2005__41_4_725_0, author = {Lifshits, Mikhail and Simon, Thomas}, title = {Small deviations for fractional stable processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {725--752}, publisher = {Elsevier}, volume = {41}, number = {4}, year = {2005}, doi = {10.1016/j.anihpb.2004.05.004}, mrnumber = {2144231}, zbl = {1070.60042}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2004.05.004/} }
TY - JOUR AU - Lifshits, Mikhail AU - Simon, Thomas TI - Small deviations for fractional stable processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2005 SP - 725 EP - 752 VL - 41 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2004.05.004/ DO - 10.1016/j.anihpb.2004.05.004 LA - en ID - AIHPB_2005__41_4_725_0 ER -
%0 Journal Article %A Lifshits, Mikhail %A Simon, Thomas %T Small deviations for fractional stable processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2005 %P 725-752 %V 41 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2004.05.004/ %R 10.1016/j.anihpb.2004.05.004 %G en %F AIHPB_2005__41_4_725_0
Lifshits, Mikhail; Simon, Thomas. Small deviations for fractional stable processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 41 (2005) no. 4, pp. 725-752. doi : 10.1016/j.anihpb.2004.05.004. http://www.numdam.org/articles/10.1016/j.anihpb.2004.05.004/
[1] Rate optimality of wavelet series approximations of fractional Brownian motion, J. Fourier Anal. Appl. 9 (5) (2003) 451-471. | MR | Zbl
, ,[2] Some exact equivalents for the Brownian motion in Hölder semi-norm, Probab. Theory Related Fields 93 (4) (1992) 457-484. | MR | Zbl
, ,[3] Small ball probabilities of fractional Brownian sheets via fractional integration operators, J. Theoret. Probab. 15 (3) (2002) 589-612. | MR | Zbl
, ,[4] Small ball estimates for Brownian motion under a weighted sup-norm, Studia Sci. Math. Hung. 36 (1-2) (2001) 275-289. | MR | Zbl
, ,[5] On the first exit time of a completely asymmetric stable process from a finite interval, Bull. London Math. Soc. 28 (5) (1996) 514-520. | MR | Zbl
,[6] Regular Variation, Cambridge University Press, Cambridge, 1987. | MR | Zbl
, , ,[7] Some theorems on stable processes, Trans. Amer. Math. Soc. 95 (1960) 263-273. | MR | Zbl
, ,[8] On probabilities of small deviations for stochastic processes, Siberian Adv. Math. 1 (1) (1991) 39-63. | MR | Zbl
, ,[9] Small ball constants and tight eigenvalue asymptotics for fractional Brownian motions, J. Theoret. Probab. 16 (1) (2003) 87-100. | MR | Zbl
,[10] A functional LIL for symmetric stable processes, Ann. Probab. 28 (1) (2000) 258-277. | MR | Zbl
, , ,[11] Quadratic functionals and small ball probabilities for the m-fold integrated Brownian motion, Ann. Probab. 31 (2) (2003) 1052-1077. | MR | Zbl
,[12] On maps of bounded p-variation with , Positivity 2 (1) (1998) 19-45. | MR | Zbl
, ,[13] Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (2) (1993) 171-204. | EuDML | MR | Zbl
, , ,[14] Convergence of integrals of uniform empirical and quantile processes, Stochastic Process. Appl. 45 (2) (1993) 283-294. | MR | Zbl
, , ,[15] Ten Lectures on Wavelets, SIAM, 1992. | MR | Zbl
,[16] Symmetric stable processes, Fubini's theorem, and some extensions of the Ciesielski-Taylor identities in law, Stochastic Stochastic Rep. 50 (1-2) (1994) 1-33. | MR | Zbl
, , ,[17] An introduction to p-variation and Young integrals. With emphasis on sample functions of stochastic processes, MaPhySto Lect. Notes, vol. 1, 1998, Univ. of Aarhus. | Zbl
, ,[18] Self-similar Processes, Princeton University Press, Princeton, 2002. | Zbl
, ,[19] Chung's law for integrated Brownian motion, Trans. Amer. Math. Soc. 350 (10) (1998) 4253-4264. | MR | Zbl
, ,[20] Hölder continuity of sample paths of some self-similar stable processes, Tokyo J. Math. 14 (1) (1991) 93-100. | MR | Zbl
, ,[21] Small ball problems for Brownian motion and for the Brownian sheet, J. Theoret. Probab. 6 (3) (1993) 547-577. | MR | Zbl
, ,[22] Small ball probabilities for Gaussian processes with stationary increments under Hölder norms, J. Theoret. Probab. 8 (2) (1995) 361-386. | MR | Zbl
, , ,[23] Existence of small ball constants for fractional Brownian motions, C. R. Acad. Sci. Paris 326 (11) (1998) 1329-1334. | MR | Zbl
, ,[24] Approximation, metric entropy and small ball estimates for Gaussian measures, Ann. Probab. 27 (3) (1999) 1556-1578. | MR | Zbl
, ,[25] Small ball estimates for Gaussian processes under Sobolev type norms, J. Theoret. Probab. 12 (3) (1999) 699-720. | MR | Zbl
, ,[26] Gaussian processes: inequalities, small ball probabilities and applications, in: Stochastic Processes: Theory and Methods, Handbook of Statistics, vol. 19, 2001, pp. 533-597. | MR | Zbl
, ,[27] Asymptotic behavior of small ball probabilities, in: Probab. Theory and Math. Statist., Proc. VII International Vilnius Conference (1998), VSP/TEV, Vilnius, 1999, pp. 453-468. | Zbl
,[28] Approximation and entropy numbers of Volterra operators with application to Brownian motion, Mem. Amer. Math. Soc. 745 (2002). | MR | Zbl
, ,[29] M.A. Lifshits, W. Linde, Small deviations of weighted fractional processes and average non-linear approximation, Trans. Amer. Math. Soc., 2002, in press. | MR | Zbl
[30] Alternative forms of fractional Brownian motion, J. Stat. Plann. Inference 80 (1-2) (1999) 111-122. | MR | Zbl
, ,[31] Wavelets and Operators, Cambridge Studies in Advanced Mathematics, Cambridge, 1992. | MR | Zbl
,[32] Small deviations in a space of trajectories, Theor. Probab. Appl. 19 (1974) 726-736. | MR | Zbl
,[33] Mouvement brownien et espaces de Besov, Stochastic Stochastic Rep. 43 (3-4) (1993) 221-260. | MR | Zbl
,[34] Asymptotic behavior of stable seminorms near the origin, Ann. Probab. 14 (1) (1986) 287-298. | MR | Zbl
,[35] Lower tails of self-similar stable processes, Bernoulli 4 (1) (1998) 127-142. | MR | Zbl
,[36] Stable Non-Gaussian Random Processes, Chapman & Hall, New York, 1994. | MR | Zbl
, ,[37] A note on small ball probability of a Gaussian process with stationary increments, J. Theoret. Probab. 6 (3) (1993) 595-602. | MR | Zbl
,[38] A Gaussian correlation inequality and its application to the existence of small ball constant, Stochastic Process. Appl. 107 (2) (2003) 269-287. | MR | Zbl
,[39] Z. Shi, Lower tails of quadratic functionals of symmetric stable processes, Prépublication de l'Université Paris-VI, 1999.
[40] T. Simon, Small ball estimates in p-variations for stable processes, J. Theoret. Probab., 2003, in press. | MR | Zbl
[41] Une méthode élémentaire pour l'évaluation des petites boules browniennes, C. R. Acad. Sci. Paris 316 (11) (1993) 1217-1220. | MR | Zbl
,[42] Small ball probabilities for Gaussian processes under non-uniform norms, J. Theoret. Probab. 9 (3) (1996) 613-630. | MR | Zbl
,[43] Sample path properties of ergodic self-similar processes, Osaka J. Math. 26 (1) (1989) 159-189. | MR | Zbl
,[44] Sample path properties of a transient stable process, J. Math. Mech. 16 (1967) 1229-1246. | MR | Zbl
,Cité par Sources :