Aggregated estimators and empirical complexity for least square regression
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 6, pp. 685-736.
@article{AIHPB_2004__40_6_685_0,
     author = {Audibert, Jean-Yves},
     title = {Aggregated estimators and empirical complexity for least square regression},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {685--736},
     publisher = {Elsevier},
     volume = {40},
     number = {6},
     year = {2004},
     doi = {10.1016/j.anihpb.2003.11.006},
     mrnumber = {2096215},
     zbl = {1052.62037},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.006/}
}
TY  - JOUR
AU  - Audibert, Jean-Yves
TI  - Aggregated estimators and empirical complexity for least square regression
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 685
EP  - 736
VL  - 40
IS  - 6
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.006/
DO  - 10.1016/j.anihpb.2003.11.006
LA  - en
ID  - AIHPB_2004__40_6_685_0
ER  - 
%0 Journal Article
%A Audibert, Jean-Yves
%T Aggregated estimators and empirical complexity for least square regression
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 685-736
%V 40
%N 6
%I Elsevier
%U https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.006/
%R 10.1016/j.anihpb.2003.11.006
%G en
%F AIHPB_2004__40_6_685_0
Audibert, Jean-Yves. Aggregated estimators and empirical complexity for least square regression. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 6, pp. 685-736. doi : 10.1016/j.anihpb.2003.11.006. https://www.numdam.org/articles/10.1016/j.anihpb.2003.11.006/

[1] L. Breiman, Bagging predictors, Machine Learning 24 (2) (1996) 123-140. | Zbl

[2] L. Breiman, Arcing classifiers, Ann. Statist 26 (3) (1998) 801-849. | MR | Zbl

[3] O. Catoni, Statistical Learning Theory and Stochastic Optimization, in: Probability Summer School, Saint Flour, 2001, Springer-Verlag, submitted for publication. | MR | Zbl

[4] Y. Freund, R.E. Schapire, Experiments with a new boosting algorithm, in: Machine Learning: Proceedings of the Thirteenth International Conference, 1996, pp. 148-156.

[5] J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: a statistical view of boosting, Technical Report, Dept. of Statistics, Stanford University, 1998.

[6] A. Juditsky, A. Nemirovski, Functional aggregation for nonparametric estimation, Ann. Statist 28 (2000) 681-712. | MR | Zbl

[7] E. Mammen, A.B. Tsybakov, Smooth discrimination analysis, Ann. Statist 27 (1999) 1808-1829. | MR | Zbl

[8] D.A. Mcallester, PAC-bayesian stochastic model selection, Machine Learning J (2001), submitted for publication. | Zbl

[9] A. Nemirovski, Lectures on Probability Theory and Statistics. Part II: Topics in Non-Parametric Statistics, in: Probability Summer School, Saint Flour, Springer-Verlag, Berlin, 1998. | MR | Zbl

[10] G. Rätsch, M. Warmuth, S. Mika, T. Onoda, S. Lemm, K.-R. Müller, Barrier boosting, in: Proc. COLT'00, Morgan Kaufmann, Palo Alto, 2000, pp. 170-179.

[11] R.E. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated predictions, 1998, pp. 80-91.

[12] A.B. Tsybakov, Optimal aggregation of classifiers in statistical learning, 2001.

[13] Y. Yang, Aggregating regression procedures for a better performance, 2001.

  • Chen, Duan; Zhengwei, Huang; Jintao, Min; Khanal, Ribesh Sentiments analysis for intelligent customer service dialogue using hybrid word embedding and stacking ensemble, Soft Computing, Volume 28 (2024) no. 19, p. 11619 | DOI:10.1007/s00500-024-09899-2
  • Wang, Qingyong; Zhou, Yun; Ding, Weiping; Zhang, Zhiguo; Muhammad, Khan; Cao, Zehong Random Forest with Self-Paced Bootstrap Learning in Lung Cancer Prognosis, ACM Transactions on Multimedia Computing, Communications, and Applications, Volume 16 (2020) no. 1s, p. 1 | DOI:10.1145/3345314
  • Fischer, Aurélie; Mougeot, Mathilde Aggregation using input–output trade-off, Journal of Statistical Planning and Inference, Volume 200 (2019), p. 1 | DOI:10.1016/j.jspi.2018.08.001
  • Guedj, Benjamin; Robbiano, Sylvain PAC-Bayesian high dimensional bipartite ranking, Journal of Statistical Planning and Inference, Volume 196 (2018), p. 70 | DOI:10.1016/j.jspi.2017.10.010
  • Sun, Ming; Ruan, Jun; Wang, Jianlian; He, Simin; Yue, Junqiu, 2017 10th International Symposium on Computational Intelligence and Design (ISCID) (2017), p. 91 | DOI:10.1109/iscid.2017.102
  • Lecué, Guillaume; Mendelson, Shahar On the optimality of the empirical risk minimization procedure for the Convex aggregation problem, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 49 (2013) no. 1 | DOI:10.1214/11-aihp458
  • Lecué, Guillaume Empirical risk minimization is optimal for the convex aggregation problem, Bernoulli, Volume 19 (2013) no. 5B | DOI:10.3150/12-bej447
  • Guedj, Benjamin; Alquier, Pierre PAC-Bayesian estimation and prediction in sparse additive models, Electronic Journal of Statistics, Volume 7 (2013) no. none | DOI:10.1214/13-ejs771
  • Alquier, Pierre; Wintenberger, Olivier Model selection for weakly dependent time series forecasting, Bernoulli, Volume 18 (2012) no. 3 | DOI:10.3150/11-bej359
  • Dai, Dong; Rigollet, Philippe; Zhang, Tong Deviation optimal learning using greedy Q-aggregation, The Annals of Statistics, Volume 40 (2012) no. 3 | DOI:10.1214/12-aos1025
  • Alquier, Pierre; Lounici, Karim PAC-Bayesian bounds for sparse regression estimation with exponential weights, Electronic Journal of Statistics, Volume 5 (2011) no. none | DOI:10.1214/11-ejs601
  • Higgs, Matthew; Shawe-Taylor, John A PAC-Bayes Bound for Tailored Density Estimation, Algorithmic Learning Theory, Volume 6331 (2010), p. 148 | DOI:10.1007/978-3-642-16108-7_15
  • Goldenshluger, Alexander A universal procedure for aggregating estimators, The Annals of Statistics, Volume 37 (2009) no. 1 | DOI:10.1214/00-aos576
  • Audibert, Jean-Yves Fast learning rates in statistical inference through aggregation, The Annals of Statistics, Volume 37 (2009) no. 4 | DOI:10.1214/08-aos623
  • Alquier, Pierre Iterative feature selection in least square regression estimation, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 44 (2008) no. 1 | DOI:10.1214/07-aihp106
  • Bunea, Florentina; Nobel, Andrew Sequential Procedures for Aggregating Arbitrary Estimators of a Conditional Mean, IEEE Transactions on Information Theory, Volume 54 (2008) no. 4, p. 1725 | DOI:10.1109/tit.2008.917657
  • Alquier, P. PAC-Bayesian bounds for randomized empirical risk minimizers, Mathematical Methods of Statistics, Volume 17 (2008) no. 4, p. 279 | DOI:10.3103/s1066530708040017
  • Bunea, Florentina; Tsybakov, Alexandre B.; Wegkamp, Marten H. Aggregation for Gaussian regression, The Annals of Statistics, Volume 35 (2007) no. 4 | DOI:10.1214/009053606000001587
  • Etyngier, P.; Paragios, N.; Keriven, R.; Genc, Y.; Audibert, J., 18th International Conference on Pattern Recognition (ICPR'06) (2006), p. 421 | DOI:10.1109/icpr.2006.953
  • Bunea, F.; Ombao, H.; Auguste, A. Minimax Adaptive Spectral Estimation From an Ensemble of Signals, IEEE Transactions on Signal Processing, Volume 54 (2006) no. 8, p. 2865 | DOI:10.1109/tsp.2006.877639
  • Audibert, Jean-Yves A Randomized Online Learning Algorithm for Better Variance Control, Learning Theory, Volume 4005 (2006), p. 392 | DOI:10.1007/11776420_30
  • Tsybakov, A. B.; van de Geer, S. A. Square root penalty: Adaptation to the margin in classification and in edge estimation, The Annals of Statistics, Volume 33 (2005) no. 3 | DOI:10.1214/009053604000001066
  • Koltchinskii, Vladimir; Panchenko, Dmitry Complexities of convex combinations and bounding the generalization error in classification, The Annals of Statistics, Volume 33 (2005) no. 4 | DOI:10.1214/009053605000000228

Cité par 23 documents. Sources : Crossref