@article{AIHPB_2004__40_5_513_0, author = {Fleischmann, Klaus and Sturm, Anja}, title = {A super-stable motion with infinite mean branching}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {513--537}, publisher = {Elsevier}, volume = {40}, number = {5}, year = {2004}, doi = {10.1016/j.anihpb.2003.09.004}, mrnumber = {2086012}, zbl = {1052.60065}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2003.09.004/} }
TY - JOUR AU - Fleischmann, Klaus AU - Sturm, Anja TI - A super-stable motion with infinite mean branching JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 513 EP - 537 VL - 40 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2003.09.004/ DO - 10.1016/j.anihpb.2003.09.004 LA - en ID - AIHPB_2004__40_5_513_0 ER -
%0 Journal Article %A Fleischmann, Klaus %A Sturm, Anja %T A super-stable motion with infinite mean branching %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 513-537 %V 40 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2003.09.004/ %R 10.1016/j.anihpb.2003.09.004 %G en %F AIHPB_2004__40_5_513_0
Fleischmann, Klaus; Sturm, Anja. A super-stable motion with infinite mean branching. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 5, pp. 513-537. doi : 10.1016/j.anihpb.2003.09.004. http://www.numdam.org/articles/10.1016/j.anihpb.2003.09.004/
[1] Stopping times and tightness, Ann. Probab. 6 (2) (1978) 335-340. | MR | Zbl
,[2] The Bolthausen-Sznitman coalescent and the genealogy of continuous-state branching processes, Probab. Theory Related Fields 117 (2000) 249-266. | Zbl
, ,[3] On Ruelle's probability cascades and an abstract cavity method, Comm. Math. Phys. 197 (2) (1998) 247-276. | MR | Zbl
, ,[4] A. Bovier, I. Kurkova, Derrida's generalized random energy models 4: Continuous state branching and coalescents, WIAS Berlin, Preprint 854, 2003. | MR
[5] Measure-valued Markov processes, in: École d'Été de Probabilités de Saint-Flour XXI, 1991, Lecture Notes in Math., vol. 1541, Springer, Berlin, 1993, pp. 1-260. | MR | Zbl
,[6] Almost-sure path properties of (2,d,β)-superprocesses, Stochastic Process. Appl. 51 (2) (1994) 221-258. | Zbl
, ,[7] An Introduction to Branching Measure-Valued Processes, CRM Monograph Series, vol. 6, AMS, 1994. | MR | Zbl
,[8] Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures, Stochastic Process. Appl. 38 (1991) 239-266. | Zbl
, ,[9] An Introduction to Superprocesses, University Lecture Series, vol. 20, American Mathematical Society, Providence, RI, 2000. | MR | Zbl
,[10] Markov Processes: Characterization and Convergence, Wiley Series in Probability and Mathematical Statistics, Wiley, 1986. | MR | Zbl
, ,[11] Construction and regularity of measure-valued Markov branching processes, Israel J. Math. 64 (3) (1988) 337-361. | MR | Zbl
,[12] Corrections to “Construction and regularity of measure-valued Markov branching processes”, Israel J. Math. 73 (1) (1991) 127. | Zbl
,[13] Critical behaviour of some measure-valued processes, Math. Nachr. 135 (1988) 131-147. | MR | Zbl
,[14] Occupation time processes at a critical point, Math. Nachr. 125 (1986) 275-290. | MR | Zbl
, ,[15] The biodiversity of catalytic super-Brownian motion, Ann. Appl. Probab. 10 (1) (2000) 1121-1136. | MR | Zbl
, ,[16] K. Fleischmann, L. Mytnik, Regularity and irregularity of densities for super-α-stable motion with Neveu's branching mechanism, WIAS Berlin, Preprint (in preparation), 2004.
[17] K. Fleischmann, V. Vakhtel, Large scale behavior of a spatial version of Neveu's branching process, WIAS Berlin, Preprint (in preparation), 2004.
[18] Almost sure convergence in Markov branching processes with infinite mean, J. Appl. Probab. 14 (1977) 702-716. | MR | Zbl
,[19] Ordinary Differential Equations, Wiley-Interscience, New York, 1969. | MR | Zbl
,[20] A weighted occupation time for a class of measure-valued branching processes, Probab. Theory Related Fields 71 (1) (1986) 85-116. | MR | Zbl
,[21] On the Skorokhod topology, Ann. Inst. Henri Poincaré 22 (3) (1986) 263-285. | Numdam | MR | Zbl
,[22] Random Measures, Academic Press, 1976. | MR | Zbl
,[23] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Birkhäuser Verlag, Basel, 1999. | MR | Zbl
,[24] Regularity and irregularity of (1+β)-stable super-Brownian motion, Ann. Probab. 31 (3) (2003) 1413-1440. | Zbl
, ,[25] J. Neveu, A continuous state branching process in relation with the GREM model of spin glasses theory, Rapport Interne no 267, CMP École Polytechnique, 1992.
[26] Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44, Springer, Berlin, 1983. | MR | Zbl
,[27] Dawson-Watanabe superprocesses and measure-valued diffusions, in: (Ed.), École d'été de probabilités de Saint Flour XXIX-1999, Lecture Notes in Mathematics, vol. 1781, Berlin, Springer, 2002, pp. 125-329. | Zbl
,[28] Coalescents with multiple collisions, Ann. Probab. 27 (4) (1999) 1870-1902. | MR | Zbl
,[29] A mathematical reformulation of Derrida's REM and GREM, Comm. Math. Phys. 108 (1987) 225-239. | MR | Zbl
,[30] Shock Waves and Reaction-Diffusion Equations, A Series of Comprehensive Studies in Mathematics, vol. 258, Springer, Berlin, 1983. | MR | Zbl
,[31] A limit theorem of branching processes and continuous state branching, J. Math. Kyoto University 8 (1968) 141-167. | MR | Zbl
,[32] Functional Analysis, A Series of Comprehensive Studies in Mathematics, vol. 123, Springer, Berlin, 1971. | MR | Zbl
,[33] One-Dimensional Stable Distributions, Translations of Mathematical Monographs, vol. 65, American Mathematical Society, Providence, RI, 1986. | MR | Zbl
,Cité par Sources :