@article{AIHPB_2004__40_4_411_0, author = {Haas, B\'en\'edicte}, title = {Regularity of formation of dust in self-similar fragmentations}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {411--438}, publisher = {Elsevier}, volume = {40}, number = {4}, year = {2004}, doi = {10.1016/j.anihpb.2003.11.002}, mrnumber = {2070333}, zbl = {1041.60058}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2003.11.002/} }
TY - JOUR AU - Haas, Bénédicte TI - Regularity of formation of dust in self-similar fragmentations JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 411 EP - 438 VL - 40 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2003.11.002/ DO - 10.1016/j.anihpb.2003.11.002 LA - en ID - AIHPB_2004__40_4_411_0 ER -
%0 Journal Article %A Haas, Bénédicte %T Regularity of formation of dust in self-similar fragmentations %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 411-438 %V 40 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2003.11.002/ %R 10.1016/j.anihpb.2003.11.002 %G en %F AIHPB_2004__40_4_411_0
Haas, Bénédicte. Regularity of formation of dust in self-similar fragmentations. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 4, pp. 411-438. doi : 10.1016/j.anihpb.2003.11.002. http://www.numdam.org/articles/10.1016/j.anihpb.2003.11.002/
[1] Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli 5 (1999) 3-48. | MR | Zbl
,[2] The Gamma Function, Holt, Rinehart, and Winston, New York, 1964. | MR | Zbl
,[3] Ranked fragmentations, ESAIM P&S 6 (2002) 157-176. | Numdam | MR | Zbl
,[4] Subordinators: Examples and applications, in: (Ed.), Lectures on Probability Theory and Statistics, Ecole d'été de probabilités de St-Flour XXVII, Lect. Notes in Maths., vol. 1717, Springer, Berlin, 1999, pp. 1-91. | MR | Zbl
,[5] Homogeneous fragmentation processes, Probab. Theory Related Fields 121 (3) (2001) 301-318. | MR | Zbl
,[6] Self-similar fragmentations, Ann. Inst. Henri Poincaré 38 (2002) 319-340. | Numdam | MR | Zbl
,[7] The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc. 5 (2003) 395-416. | MR | Zbl
,[8] On small masses in self-similar fragmentations, Stochastic Process. Applic. 109 (2004) 13-22. | MR | Zbl
,[9] On subordinators, self-similar Markov processes and factorization of the exponential variable, Elect. Comm. Probab. 6 (10) (2001) 95-106. | MR | Zbl
, ,[10] Proceedings of the Workshop: Fragmentation Phenomena, Les Houches Series, World Scientific, 1995.
, , (Eds.),[11] Regular Variation, Cambridge University Press, 1987. | MR | Zbl
, , ,[12] Fourier Transforms, Princeton University Press, 1949. | MR | Zbl
, ,[13] On the distribution and asymptotic results for exponential functionals of Lévy processes, in: (Ed.), Exponential Functionals and Principal Values Related to Brownian Motion, Biblioteca de la Revista Matematica IberoAmericana, 1997, pp. 73-121. | MR | Zbl
, , ,[14] The Geometry of Fractal Sets, Cambridge University Press, 1986. | MR | Zbl
,[15] On the distribution of the sizes of particles which undergo splitting, Theory Probab. Appl. 6 (1961) 275-294. | Zbl
,[16] On small particles in coagulation-fragmentation equations, J. Statist. Phys. 111 (5) (2003) 1299-1329. | MR | Zbl
, ,[17] Loss of mass in deterministic and random fragmentations, Stochastic Process. Appl. 106 (2) (2003) 245-277. | MR | Zbl
,[18] B. Haas, G. Miermont, The genealogy of self-similar fragmentations with negative index as a continuum random tree, Electron. J. Probab., submitted for publication. | MR | Zbl
[19] Stochastic fragmentation and some sufficient conditions for shattering transitions, J. Korean Math. Soc. 39 (4) (2002) 543-558. | MR | Zbl
,[20] The coalescent, Stochastic Process. Appl. 13 (1982) 235-248. | MR | Zbl
,[21] Self-similar fragmentations derived from the stable tree I: splitting at heights, Probab. Theory Related Fields 127 (2003) 423-454. | MR | Zbl
,[22] Continuous Martingales and Brownian Motion, Springer, 1998. | Zbl
, ,[23] Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, 1999. | MR | Zbl
,[24] Singular Integrals and Differentiability Properties of Functionals, Princeton University Press, 1970. | MR | Zbl
,Cité par Sources :