@article{AIHPB_2004__40_3_337_0, author = {Castell, Fabienne}, title = {Moderate deviations for diffusions in a random gaussian shear flow drift}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {337--366}, publisher = {Elsevier}, volume = {40}, number = {3}, year = {2004}, doi = {10.1016/j.anihpb.2003.10.003}, mrnumber = {2060457}, zbl = {1042.60009}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpb.2003.10.003/} }
TY - JOUR AU - Castell, Fabienne TI - Moderate deviations for diffusions in a random gaussian shear flow drift JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2004 SP - 337 EP - 366 VL - 40 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpb.2003.10.003/ DO - 10.1016/j.anihpb.2003.10.003 LA - en ID - AIHPB_2004__40_3_337_0 ER -
%0 Journal Article %A Castell, Fabienne %T Moderate deviations for diffusions in a random gaussian shear flow drift %J Annales de l'I.H.P. Probabilités et statistiques %D 2004 %P 337-366 %V 40 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpb.2003.10.003/ %R 10.1016/j.anihpb.2003.10.003 %G en %F AIHPB_2004__40_3_337_0
Castell, Fabienne. Moderate deviations for diffusions in a random gaussian shear flow drift. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 3, pp. 337-366. doi : 10.1016/j.anihpb.2003.10.003. http://www.numdam.org/articles/10.1016/j.anihpb.2003.10.003/
[1] Quenched large deviations for diffusions in a random Gaussian shear flow drift, Stochastic Process. Appl. 103 (1) (2003) 1-29. | MR | Zbl
, ,[2] A. Asselah, F. Castell, Large deviations for Brownian motion in a random scenery, Probab. Theory Related Fields, in press, DOI:10.1007/s00440-003-0276-0. | MR | Zbl
[3] Mathematical models with exact renormalization for turbulent transport, Comm. Math. Phys. 131 (1990) 381-429. | MR | Zbl
, ,[4] Mathematical models with exact renormalization for turbulent transport II, Comm. Math. Phys. 146 (1992) 139-204. | MR | Zbl
, ,[5] Long-time tails in the parabolic Anderson model with bounded potential, Ann. Probab. 29 (2) (2001) 636-682. | MR | Zbl
, ,[6] Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. | MR | Zbl
,[7] Transport properties of Gaussian velocity fields, in: Real and Stochastic Analysis. Probab. Stochastics Series, CRC, Boca Raton, FL, 1997, pp. 9-63. | MR | Zbl
,[8] Homogenization for time dependent 2-D incompressible Gaussian flows, Ann. Appl. Probab. 7 (1) (1997) 265-279. | MR | Zbl
, ,[9] Annealed large deviations for diffusions in a random Gaussian shear flow drift, Stochastic Process. Appl. 94 (2001) 171-197. | MR | Zbl
, ,[10] The large deviation principle for hypermixing processes, Probab. Theory Related Fields 78 (4) (1988) 627-649. | MR | Zbl
, ,[11] Large Deviations Techniques and Applications, Applications of Mathematics, vol. 38, Springer, New York, 1998. | MR | Zbl
, ,[12] Asymptotic evaluation of certain Markov process expectations for large time, I, II, Comm. Pure Appl. Math. 28 (1975) 1-47, Comm. Pure Appl. Math. 28 (1975) 279-301. | MR | Zbl
, ,[13] Asymptotics for the Wiener sausage, Comm. Pure Appl. Math. 28 (1975) 525-565. | MR | Zbl
, ,[14] A martingale approach to homogenization of unbounded random flows, Ann. Probab. 25 (1997) 1872-1894. | MR | Zbl
, ,[15] An invariance principle for diffusion in turbulence, Ann. Probab. 27 (2) (1999) 751-781. | MR | Zbl
, ,[16] Turbulent diffusion in Markovian flows, Ann. Appl. Probab. 9 (3) (1999) 591-610. | MR | Zbl
, ,[17] Fractional Brownian motion limit for a model of turbulent transport, Ann. Appl. Probab. 10 (2000) 1100-1120. | MR | Zbl
, ,[18] Diffusive and nondiffusive limits of transport in nonmixing flows, SIAM J. Appl. Math. 62 (3) (2002) 909-923. | MR | Zbl
, ,[19] Diffusion in turbulence, Probab. Theory Related Fields 105 (3) (1996) 279-334. | MR | Zbl
, ,[20] Moment asymptotics for the continuous parabolic Anderson model, Ann. Appl. Probab. 10 (1) (2000) 192-217. | MR | Zbl
, ,[21] Almost sure asymptotics for the continuous parabolic Anderson model, Probab. Theory Related Fields 118 (4) (2000) 547-573. | MR | Zbl
, , ,[22] Parabolic problems for the Anderson model I. Intermittency and related topics, Comm. Math. Phys. 132 (1990) 613-655. | MR | Zbl
, ,[23] Parabolic problems for the Anderson model II. Second order asymptotics ans structure of high peaks, Probab. Theory Related Fields 111 (1998) 17-55. | MR | Zbl
, ,[24] Subtle statistical behavior in simple models for random advection-diffusion, J. Math. Sci. Univ. Tokyo 1 (1) (1994) 23-70. | MR | Zbl
, ,[25] A limit theorem related to a new class of self-similar processes, Z. Wahrsch. Verw. Gebiete 50 (1) (1979) 5-25. | MR | Zbl
, ,[26] On the superdiffusive behavior of passive tracer with a Gaussian drift, J. Statist. Phys. 108 (3-4) (2002) 647-668. | Zbl
, ,[27] Convection-diffusion equation with space-time ergodic random flow, Probab. Theory Related Fields 112 (2) (1998) 203-220. | MR | Zbl
, , ,[28] Is transport in porous media always diffusive? A counterexample, Water Resources Res. 16 (1980) 901-907.
, ,[29] Phase transition of the principal Dirichlet eigenvalue in a scaled Poissonian potential, Probab. Theory Related Fields 119 (2001) 475-507. | MR | Zbl
, ,[30] Annealed survival asymptotics for Brownian motion in a scaled Poissonian potential, Stochastic Process. Appl. 96 (2001) 191-211. | MR | Zbl
, ,[31] Infinite volume asymptotics of the ground state energy in a scaled Poissonian potential, Ann. I.H. Poincaré-PR 38 (3) (2002) 253-284. | Numdam | MR | Zbl
, ,[32] Short-correlation approximation in models of turbulent diffusion, in: Stochastic Models in Geosystems, Minneapolis, MN, 1994, IMA Vol. Math. Appl., vol. 85, Springer, New York, 1997, pp. 313-352. | MR | Zbl
,[33] Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, vol. 30, Princeton University Press, Princeton, NJ, 1970. | MR | Zbl
,[34] Brownian Motion, Obstacles and Random Media, Springer Monographs in Mathematics, Springer, Berlin, 1998. | MR | Zbl
,[35] Sharper bounds for Gaussians and empirical processes, Ann. Probab. 22 (1) (1994) 28-76. | MR | Zbl
,Cité par Sources :