Poisson trees, succession lines and coalescing random walks
Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 2, pp. 141-152.
@article{AIHPB_2004__40_2_141_0,
     author = {Ferrari, P. A. and Landim, C. and Thorisson, H.},
     title = {Poisson trees, succession lines and coalescing random walks},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {141--152},
     publisher = {Elsevier},
     volume = {40},
     number = {2},
     year = {2004},
     doi = {10.1016/j.anihpb.2003.12.001},
     mrnumber = {2044812},
     zbl = {1042.60064},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/}
}
TY  - JOUR
AU  - Ferrari, P. A.
AU  - Landim, C.
AU  - Thorisson, H.
TI  - Poisson trees, succession lines and coalescing random walks
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2004
SP  - 141
EP  - 152
VL  - 40
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/
DO  - 10.1016/j.anihpb.2003.12.001
LA  - en
ID  - AIHPB_2004__40_2_141_0
ER  - 
%0 Journal Article
%A Ferrari, P. A.
%A Landim, C.
%A Thorisson, H.
%T Poisson trees, succession lines and coalescing random walks
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2004
%P 141-152
%V 40
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/
%R 10.1016/j.anihpb.2003.12.001
%G en
%F AIHPB_2004__40_2_141_0
Ferrari, P. A.; Landim, C.; Thorisson, H. Poisson trees, succession lines and coalescing random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 40 (2004) no. 2, pp. 141-152. doi : 10.1016/j.anihpb.2003.12.001. http://www.numdam.org/articles/10.1016/j.anihpb.2003.12.001/

[1] K.S. Alexander, Percolation and minimal spanning forests in infinite graphs, Ann. Probab. 23 (1) (1995) 87-104. | MR | Zbl

[2] R. Arratia, Coalescing Brownian motions and the voter model on Z, Unpublished manuscript, 1981, available from rarratia@math.usc.edu.

[3] R. Arratia, Coalescing Brownian motions on the line, Phd Thesis. Univ. of Madison, Wisconsin, 1981.

[4] R.M. Burton, M.S. Keane, Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989) 501-505. | MR | Zbl

[5] P.A. Ferrari, L.R.G. Fontes, X.-Y. Wu, Poisson trees converge to Brownian web, http://arxiv.org/abs/math.PR/0304247.

[6] L.R.G. Fontes, M. Isopi, C.M. Newman, K. Ravishankar, The Brownian web: characterization and convergence, http://arxiv.org/abs/math.PR/0304119. | MR

[7] S. Gangopadhyay, R. Roy, A. Sarkar, Random oriented trees: a model of drainage networks, Preprint Indian Statistical Institute isid/ms/2002/05 , http://www.isid.ac.in/statmath/eprints/2002/isid200205.pdf. | MR

[8] O. Häggström, R. Meester, Nearest neighbor and hard sphere models in continuum percolation, Random Structures Algorithms 9 (3) (1996) 295-315. | MR | Zbl

[9] A.E. Holroyd, Y. Peres, Trees and matchings from point processes, http://arxiv.org/abs/math.PR/0211455. | MR

[10] C.M. Newman, D.L. Stein, Multiple states and thermodynamic limits in short-ranged Ising spin-glass models, Phys. Rev. B 46 (1992) 973-982.

[11] C.M. Newman, D.L. Stein, Spin-glass model with dimension-dependent ground state multiplicity, Phys. Rev. Lett. 72 (1994) 2286-2289.

[12] I. Rodriguez-Iturbe, A. Rinaldo, Fractal River Networks: Chance and Self-Organization, Cambridge University Press, New York, 1997.

[13] H. Thorisson, Point-stationarity in d dimensions and Palm theory, Bernoulli 5 (5) (1999) 797-831. | MR | Zbl

[14] H. Thorisson, Coupling, Stationarity, and Regeneration. Probability and its Applications, Springer-Verlag, New York, 2000. | MR | Zbl

[15] B. Tóth, W. Werner, The true self-repelling motion, Probab. Theory Related Fields 111 (3) (1998) 375-452. | MR | Zbl

Cité par Sources :