@article{AIHPB_2003__39_6_919_0, author = {Budhiraja, A.}, title = {Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {919--941}, publisher = {Elsevier}, volume = {39}, number = {6}, year = {2003}, doi = {10.1016/S0246-0203(03)00022-0}, mrnumber = {2010391}, zbl = {02003841}, language = {en}, url = {http://www.numdam.org/articles/10.1016/S0246-0203(03)00022-0/} }
TY - JOUR AU - Budhiraja, A. TI - Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2003 SP - 919 EP - 941 VL - 39 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/S0246-0203(03)00022-0/ DO - 10.1016/S0246-0203(03)00022-0 LA - en ID - AIHPB_2003__39_6_919_0 ER -
%0 Journal Article %A Budhiraja, A. %T Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter %J Annales de l'I.H.P. Probabilités et statistiques %D 2003 %P 919-941 %V 39 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/S0246-0203(03)00022-0/ %R 10.1016/S0246-0203(03)00022-0 %G en %F AIHPB_2003__39_6_919_0
Budhiraja, A. Asymptotic stability, ergodicity and other asymptotic properties of the nonlinear filter. Annales de l'I.H.P. Probabilités et statistiques, Tome 39 (2003) no. 6, pp. 919-941. doi : 10.1016/S0246-0203(03)00022-0. http://www.numdam.org/articles/10.1016/S0246-0203(03)00022-0/
[1] Exponential stability for nonlinear filtering of diffusion processes in non-compact domain, Ann. Probab. 26 (1998) 1552-1574. | MR | Zbl
,[2] Exponential stability for nonlinear filtering, Annales de l'Institut H. Poincaré Probabilites et Statistique 33 (1997) 697-725. | Numdam | MR | Zbl
, ,[3] Lyapunov exponents for finite state nonlinear filtering, SIAM J. Control Optim. 35 (1997) 36-55. | MR | Zbl
, ,[4] Markov property and ergodicity of the nonlinear filter, SIAM J. Control Optim. 39 (2000) 928-949. | MR | Zbl
, , ,[5] Robustness of the nonlinear filter, Stochastic Process. Appl. 81 (1999) 247-254. | MR | Zbl
, , ,[6] Ergodic properties of the nonlinear filter, Stochastic Process. Appl. 95 (2001) 1-24. | MR | Zbl
,[7] Approximation and limit results for nonlinear filters over an infinite time interval, SIAM J. Control Optim. 37 (1997) 1946-1979. | MR | Zbl
, ,[8] Robustness of nonlinear filters over the infinite time interval, SIAM J. Control Optim. 36 (1998) 1618-1637. | MR | Zbl
, ,[9] Approximation and limit results for nonlinear filters over an infinite time interval: Part II, random sampling algorithms, SIAM J. Control Optim. 38 (2000) 1874-1908. | MR | Zbl
, ,[10] Monte Carlo algorithms and asymptotic problems in nonlinear filtering, in: Stochastics in Finite/Infinite Dimensions, Trends Math., Birkhäuser, Boston, 2001, pp. 59-87. | MR | Zbl
, ,[11] Exponential stability of discrete time filters without signal ergodicity, System Control Lett. 30 (1997) 185-193. | MR | Zbl
, ,[12] Exponential stability in discrete time filtering for non-ergodic signals, Stochastic Process. Appl. 82 (1999) 245-257. | MR | Zbl
, ,[13] P. Chigansky, R. Liptser, Private communication.
[14] P. Chigansky, P. Baxendale, R. Liptser, Asymptotic stability of the Wonham filter. Ergodic and nonergodic signals, Preprint in Arxiv. | MR
[15] F. Cérou, Long time asymptotics for some dynamical noise free non linear filtering problems, Rapport de Recherche 2446, INRIA, December, 1994.
[16] Relative entropy and error bounds for filtering of Markov processes, Math. Control Signals Syst. 12 (1999) 346-360. | MR | Zbl
, , ,[17] Asymptotic ergodicity for the Zakai filtering equation, C. R. Acad. Sci. Paris Serie I 321 (1995) 613-616. | MR | Zbl
, , ,[18] On the stability of measure valued processes with applications to filtering, C. R. Acad. Sci. Paris Serie I 329 (1999) 429-434. | MR | Zbl
, ,[19] Lyapunov exponents for filtering problems, in: Applied Stochastic Analysis (London, 1989), Stochastics Monogr., 5, Gordon and Breach, New York, 1991, pp. 511-521. | MR | Zbl
, ,[20] Stochastic Filtering Theory, Springer-Verlag, New York, 1980. | MR | Zbl
,[21] On pathwise stochastic integration, Stochastic Process. Appl. 57 (1995) 11-18. | MR | Zbl
,[22] Asymptotic behavior of the nonlinear filtering errors of Markov processes, J. Multivariate Anal. 1 (1971) 365-393. | MR | Zbl
,[23] Ergodic properties of nonlinear filtering processes, in: , (Eds.), Spatial Stochastic Processes, 1991. | MR | Zbl
,[24] Exponential forgetting and geometric ergodicity in hidden Markov models, Math. Control Signals Syst. 13 (2000) 63-93. | MR | Zbl
, ,[25] F. Le Gland, N. Oudjane, A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals, Preprint. | MR
[26] Asymptotic stability of Benes filters, Stochastic Anal. Appl. 17 (1999) 1053-1074. | MR | Zbl
,[27] Entropy inequalities and entropy dynamics in nonlinear filtering of diffusion processes, in: , , (Eds.), Stochastic Analysis, Control, Optimization and Applications, 1999. | MR | Zbl
,[28] Asymptotic stability of the optimal filter with respect to its initial condition, SIAM J. Control Optim. 34 (1996) 226-243. | MR | Zbl
, ,[29] On invariant measures of filtering processes, in: , , (Eds.), Stochastic Differential Systems, Proc. 4th Bad Honnef Conf., 1988, Lecture Notes in Control and Inform Sci., 1989, pp. 279-292. | MR | Zbl
,[30] Invariant measures of pair: State, approximate filtering process, Colloq. Math. LXII (1991) 347-352. | MR | Zbl
,[31] A class of special flows, Z. Wahr. Verw. Geb. 15 (1970) 157-167. | MR | Zbl
,[32] Exchanging the order of taking suprema and countable intersections of σ algebras, Ann. Inst. Henri Poincaré B 19 (1) (1983) 91-100. | Numdam | Zbl
,[33] Probability with Martingales, Cambridge University Press, 1991. | MR | Zbl
,Cité par Sources :