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ABSTRACT. – We compute the Onsager–Machlup functional for a stochastic evolution
equation with additive noise, usingL2-type techniques. The regularity that has to be imposed
to the drift coefficient is a trace type condition on its derivative. The expression of the divergence
part of the functional does not depend on the stochastic convolution related to our evolution
system.
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RÉSUMÉ. – Dans cet article, nous calculons la fonctionnelle d’Onsager–Machlup associée à
une équation d’évolution stochastique avec bruit additif, en utilisant des techniques de typeL2.
Les hypothèses de régularité que l’on impose au coefficient de dérive sont des conditions de trace
sur sa dérivée. Notons que l’expression de la partie divergence de la fonctionnelle ne dépend pas
de la convolution stochastique associée au système d’évolution.
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1. Introduction

Let H be a real separable Hilbert space, and consider the following stochastic
differential equation onH :

{
dX(t)= [AX(t)+ F(t,X(t))]dt +B dW(t), t ∈ [0,1],
X(0)= x, (1)

where x ∈ H , A :D(A) ⊂ H → H generates aC0-semigroup{exp(tA); t � 0}, F
is a Lipschitz function defined on[0,1] × H , B is a non-negative bounded linear
operator fromH to H , andW is a cylindrical Wiener process inH . It is known that
if
∫ 1

0 ‖exp(tA)B‖2
HS dt is finite, then (1) admits a unique solutionX ∈ L2([0,1];H),

in a sense that will be specified later (see [4] for further details). In the remainder of
the paper, we will also denote byWA the stochastic convolution ofA byW , that is the
solution to (1) forF ≡ 0 andx = 0.

This article proposes to study the limiting behaviour of ratios of the form

γε(φ)≡ P(‖X− φ‖ � ε)
P (‖WA‖ � ε)

when ε tends to 0, whereφ is a deterministic function satisfying some regularity
conditions and‖ · ‖ is a suitable norm defined on the functions from[0,1] to H .
When limε→0γε(φ) = exp(J0(φ)) for all φ in a reasonable class of functions, then the
functionalJ0 is called the Onsager–Machlup functional associated to (1) and‖ · ‖. It is
worth noting thatJ0 can easily be interpreted as a generalized likelihood functional in
infinite dimension, which makes its calculation an interesting problem.

For usual stochastic differential equations, namely whenH = R
d , A = 0, B = Id,

the problem of computing the Onsager–Machlup functional for (1) has been widely
investigated. Ikeda and Watanabe [9] gave a rigorous proof for the case of anyφ ∈
C2([0,1];R

d ) for the norm ‖ · ‖∞ defined onC([0,1];R
d). This result has been

enhanced then in two directions: Shepp and Zeitouni proved first in [13] that the function
φ could be taken in the Cameron–Martin spaceW 1,2

0 ([0,1];R
d), and Capitaine proved

in [2] and [3] (basing this last result on some techniques inspired by the computation of
the Onsager–Machlup functional for diffusions on manifolds, see e.g. [8]) that the norm
‖ · ‖ could be taken as any euclidian norm on the functions from[0,1] to R

d making
sense for the solution to (1) and dominating the norm onL2([0,1];R

d). It is important
to note that in the case of finite dimensional diffusions, the functionalJ0 does not depend
on the norm considered.

Our current work fits in a more global project of studying the Onsager–Machlup
functionals for infinite stochastic systems. The first results in that direction have been
obtained by Dembo and Zeitouni [5] for trace class elliptic SPDEs on a bounded domain
of R

d , and then by Mayer-Wolf and Zeitouni [11] in the non trace case. We shall use
some of their techniques in order to get our main result: if‖ · ‖ is chosen as the Hilbert
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norm onL2([0,1];H), then, forφ satisfying some suitable hypothesis,

J0(φ)= −
1∫

0

1

2

∣∣B−1[Aφ(t)+ F (t, φ(t))− φ̇(t)]∣∣2
H
dt − Tr(SPR∗),

whereSPR∗ is a certain bounded linear operator based on∇xF and φ. However, in
case∇xF (s, x) is a trace class linear operator for allx ∈ H and s ∈ [0,1], then
Tr(SPR∗)= 1

2

∫ 1
0 [Tr(∇xF )(s, φ(s))]ds.

With respect to the finite dimensional case, some differences can already be stressed in
this introduction: first, the generality on the kind of norm considered by Capitaine in [3]
seems beyond our hopes at this moment. On the other hand, since an independence of
the functionalJ0 with respect to the norm‖ · ‖ can also be expected in our SPDE case,
we chose to work with the Hilbert norm onL2([0,1];H) for two main reasons:

1. We are working here with the minimal assumptions onA and B under which
Eq. (1) has a unique solution inL2([0,1];H), though we will also make the
additional assumption thatA andB can be diagonalized in the same orthonormal
basis ofH .

2. We will be able to use the conditional exponential moments results stated in [11],
where the conditioning is over an infinite dimensional Gaussian random variable
(these results will be recalled at Section 2). However, the fact that we are dealing
with an evolution type equation will force us to delve deeper into the different
Karhunen decompositions involved in the application of the results of [11]. We
shall give some details about these decompositions at Section 2.

Another relevant difference between the finite and infinite dimensional case is that the
normalizing factor inγε(φ) cannot be a function of the norm of the cylindrical Brownian
motion. This leads us to the natural choice of a normalization byP(‖WA‖ � ε), which
prives us of the rotational invariance type properties of the Brownian motion used by
Ikeda and Watanabe ([9, Lemma 8.2]) and by Capitaine ([2, Lemma 4], [3, Lemma 3])
as a fundamental step towards the computation of the Onsager–Machlup functional.

Our paper is organized as follows: in Section 2, we recall some basic results and fix
our notations for the stochastic evolution equation considered. We recall a basic lemma
of Mayer-Wolf and Zeitouni [11, Lemma 2.5] that we shall use later on, and give the
Karhunen expansion of an Ornstein–Uhlenbeck process in dimension one. In Section 3
we obtain the Onsager–Machlup functional: at Section 3.1 we reduce our problem by
Girsanov’s transform and at Section 3.2 we obtain useful decompositions ofWA and
Wiener integrals. Section 3.3 is then devoted to some details about the linear case, that
is whenF is a linear bounded operator, which will lead us to the general case after
Taylor’s expansion, and is of independent interest, since the conditions given onF in
this case will be more explicit, especially whenF can be diagonalized in the same
complete orthonormal system thanA andB. At Section 3.4, we will deal with the general
nonlinear case.
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2. Notations and preliminary results

2.1. Stochastic evolution systems

2.1.1. The operators A and B
Let H be a real separable Hilbert space andA :D(A) ⊂ H → H an unbounded

operator onH . The norm onH will be denoted by| · |H , and the scalar product by〈·, ·〉.
TheL2 norm inL2([0,1];H) will be denoted by‖ · ‖2. Let L(H) the set of bounded
linear operators onH . The norm‖ · ‖ will be the usual operator norm defined onL(H),
that is,‖T ‖ = supx∈H

|T (x)|H
|x|H . For an operatorT ∈ L(H), ST ≡ 1

2(T + T ∗) will denote
the symmetrized operator based onT . We shall suppose

(H1) The operatorA generates a self adjointC0-semigroup{
exp(tA); t � 0

}
,

of negative type. Moreover, there exists a complete orthonormal system{ej ; j �
1} which diagonalizesA. We shall denote by{−αj ; j � 1} the corresponding
set of eigenvalues and we assume that{αj ; j � 1} is an increasing sequence of
real numbers such thatαj � 0 and limj→∞ αj = ∞. Setj0 = inf{j, αj > 0}.

We shall also consider an operatorB ∈L(H) satisfying
(H2) The operatorB is of non-negative type and is diagonal when expressed in the

orthonormal basis{ej ; j � 1}. We shall denote by{βj ; j � 1} the corresponding
set of eigenvalues. Furthermore, we shall suppose thatβj > 0 for all j � 1 and
that

∞∑
j=1

β2
j

1+ αj <∞.

In our case whereA and B can be diagonalized in the same complete ortho-
normal system, note that the last hypothesis corresponds to the more general one∫ 1

0 ‖exp(tA)B‖2
HS dt < ∞, that can be found in [4] in order to ensure the existence

and uniqueness of a solution to (1).

2.1.2. Stochastic evolution equations
Let ( ,F,Ft , P ) be a stochastic basis and{Wj(t); t ∈ [0,1], j � 1} a sequence

of mutually independent Brownian motions adapted toFt . The cylindrical Brownian
motion onH is defined by the formal series

W(t)=
∞∑
j=1

Wj(t)ej , (2)

where{ej ; j � 1} is the complete orthonormal system ofH introduced at Section 2.1.1.
Note that the series (2) does not converge inH , but for anyh ∈H , {〈W(t), h〉; t ∈ [0,1]}
is a linear Brownian motion with covariance|h|2H (see [4]). We shall consider the
stochastic evolution equation (1), whereA andB have been defined at Section 2.1.1 and
F : [0,1]×H →H is a Lipschitz function with a linear growth condition inx uniformly
in t (some further hypothesis onF will be made at Section 3). Eq. (1) is only formal,
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and has to be interpreted in the usualmild sense: we will say thatX = {X(t); t ∈ [0,1]}
is a solution to (1) if it is anH -valuedFt -adapted square integrable process such that

X(t)= exp(tA)x+
t∫

0

exp
(
(t− s)A)F (s,X(s))ds+ t∫

0

exp((t− s)A)B dW(s), (3)

for all t ∈ [0,1], where the last integral is of Itô’s type. The following proposition is then
a particular case of [4, Theorem 7.4].

PROPOSITION 2.1. –Suppose that(H1) and (H2) are satisfied. Then there exists a
unique solutionX to (3), such thatX ∈ L2( × [0,1];H).
2.2. Some conditioned exponential inequalities

We will recall here some basic lemmae that we shall use for the computation of our
Onsager–Machlup functional. The first one is a crucial, though elementary, inequality
that can be found in [9, p. 537].

LEMMA 2.2. –For a fixedn � 1, let z1, . . . , zn be n random variables defined on
( ,F,P ) and {Aε; ε > 0} a family of sets inF . Suppose that for anyc ∈ R and any
i = 1, . . . , n, we have

lim sup
ε→∞

E
[
exp(czi) |Aε]� 1.

Then

lim
ε→∞E

[
exp

(
n∑
i=1

zi

)∣∣∣∣Aε
]

= 1.

In the sequel of the paper, we shall use some inequalities involving trace class
operators. Let us state now the notion of trace that we shall consider.

DEFINITION 2.3. –LetK be a separable Hilbert space. LetT :K →K be a compact
symmetric operator. Let{τi; i � 1} be the eigenvalues of the operatorT . We will say that
T is a trace class operator if

∑∞
i=1 |τi | is finite.

If T is trace class, we define the trace ofT , Tr(T ), as
∑∞
i=1〈T ei, ei〉 for any basis

{ei; i � 1}. In particular Tr(T )=∑∞
i=1 τi .

We finish this subsection recalling two technical lemmas from [11]: the first one is
a particular case of [11, Lemma 2.4], and the second one is a slight variation of [11,
Lemma 2.5]. We denote here by)2 the set of sequences of real numbers{ηi; i � 1} such
that

∑
i�1η

2
i <∞.

LEMMA 2.4. –Let {zi; i � 1} be a sequence of independentN (0,1) random vari-
ables defined on( ,F,P ), and {ηi; i � 1} and {νi; i � 1} two )2 sequences of real
numbers such thatηi �= 0 for any i � 1. Then

lim
ε→0

E

[
exp

( ∞∑
i=1

ziνi

)∣∣∣∣ ∞∑
i=1

η2
i z

2
i � ε

]
= 1.
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LEMMA 2.5. –Let {zi; i � 1} be a sequence of independentN (0,1) random vari-
ables defined on( ,F,P ), and {ηi; i � 1} a )2 sequence of numbers such thatηi �= 0
for any i � 1. Let T :)2 → )2 be a Hilbert–Schmidt operator,{mi; i � 1} a complete
orthonormal system of)2, and denote〈Tmi,mj 〉 byTi,j .

1. If ST ≡ 1
2(T + T ∗) is trace class, then

lim
ε→0

E

[
exp

( ∞∑
i,j=1

zizjTi,j

)∣∣∣∣ ∞∑
i=1

η2
i z

2
i � ε

]
= 1.

2. If
∑∞
i=1Ti,i = +∞ (respectively−∞), then

lim
ε→0

E

[
exp

(∑
i �=j
zizjTi,j +

∞∑
i=1

(z2
i − 1)Ti,i

)∣∣∣∣ ∞∑
i=1

η2
i z

2
i � ε

]
= 0

(respectively+∞).
Proof. –We refer the reader to the proof of [11, Lemma 2.5]. Note only that for any

j, i � 1,

zizj (Ti,j + Tj,i)= zizj((ST )i,j + (ST )j,i),
where(ST )i,j = 〈ST mi,mj 〉. ✷
2.3. The Karhunen–Loève expansion

We compute here the Karhunen–Loève expansion for a class of one-dimensional
Ornstein–Uhlenbeck processes that will appear in the decomposition ofWA. The
following lemma is presumably fairly standard, but we include it for the sake of
completeness.

LEMMA 2.6. –Let β a standard Brownian motion andλ � 0. Then, the process
X = {X(t) = ∫ t

0 exp(−λ(t − s)) dβ(s), 0 � t � 1} has the following Karhunen–Loève
expansion:

X(t)=
∞∑
k=1

1√
λ2 + x2

k

Yk gk(t)

where, for eachk � 1, xk is the unique positive solution of the equationtan(x)= − 1
λ
x in

the interval[(2k−1)π2 , (2k+1)π2 ), {gk(t)=Ak sin(xkt), k � 1} is an orthonormal basis
ofL2([0,1]) with the normalizing constantsAk satisfyingsupk |Ak| � 2, and{Yk, k � 1}
is a family of orthogonal Gaussian random variables with mean0 and variance1,

defined byYk =
√
λ2 + x2

k

∫ 1
0 X(t) gk(t) dt , for all k � 1.

Proof. –Since the caseλ= 0 is well known, we will assume thatλ > 0. Note thatX
is a Gaussian process with covariance function

K(t, s)=
t∧s∫
0

e−λ(t−u)e−λ(s−u) du= 1

2λ

(
e−λ(t∨s−t∧s)− e−λ(t+s)), (4)
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s, t ∈ [0,1]. To find the eigenvalues and the eigenvectors of the symmetric operator in
L(L2([0,1])) associated with the kernelK , we have to solve the equation

1∫
0

K(t, s)g(t) dt =µg(s), 0 � s � 1, (5)

that is, for 0� s � 1,

1

2λ

(
e−λs

s∫
0

eλtg(t) dt + eλs
1∫
s

e−λtg(t) dt − e−λs
1∫

0

e−λtg(t) dt
)

= µg(s).

Differentiating twice, it is easy to check thatg satisfies(
λ2µ− 1

)
g(s)= µg′′(s), 0� s � 1, (6)

with initial conditionsg(0)= 0 andλg(1)= −g′(1). Observe that Eq. (6) clearly implies
thatµ �= 0.

Setαλ,µ = µ

λ2µ−1. Thenαλ,µ is well-defined and strictly negative. Indeed, suppose that

λ2µ− 1= 0. Theng′′(s)= 0, 0� s � 1, and the initial conditions implyg ≡ 0. Finally,
suppose thatαλ,µ > 0. In this case, the solution of the differential equation (6) is of the
form

g(s)= c1 exp
(

s√
αλ,µ

)
+ c2 exp

(
− s√

αλ,µ

)
,

wherec1, c2 are real constants. Then, the initial conditionsg(0)= 0 andλg(1)= −g′(1)
yield

tanh
(

1√
αλ,µ

)
= −1

λ

1√
αλ,µ

and this equation has no solution.
Consequently, we can assumeµ

λ2µ−1 < 0, and the solution of (6) is of the form

g(s)= c1 sin
(

s√|αλ,µ|
)

+ c2 cos
(

s√|αλ,µ|
)
.

The conditiong(0)= 0 impliesc2 = 0, andλg(1)= −g′(1) yields

tan
(

1√|αλ,µ|
)

= −1

λ

1√|αλ,µ| .

Set x = |αλ,µ|−1/2. The relationαλ,µ = µ

λ2µ−1 implies that the eigenvalues of the

operatorK form a family {µn;n � 1}, whereµn = 1
λ2+x2

n
andxn is the solution of the

equation tan(x)= − 1
λ
x in the interval[(2n− 1)π2 , (2n+ 1)π2 ); and the orthonormalized
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eigenfunctions are of the formgn(s)= An sin(xns), n� 1. An easy computation shows
that |An| � 2 for all n.

The classical Karhunen–Loève Theorem (see e.g. [10]) finishes the proof.✷

3. Onsager–Machlup functional

In this section we compute the Onsager–Machlup functional for our equation,
following the usual scheme used for both finite and infinite cases: we apply first the
Girsanov transform (Section 3.1) in order to reduce our problem to the evaluation of
a functional of the stochastic convolutionWA, up to some easily controlled correction
terms (Section 3.2). We are then left with the evaluation of the conditional exponential
moments of a stochastic integral with respect to the cylindrical Brownian motion, that
can be performed explicitely whenF is a linear operator (Section 3.3). The general case
for F can be deduced then by Taylor’s expansion (Section 3.4).

3.1. Application of Girsanov’s transform

Fix a functionh ∈ L2([0,1];H). Let φh be the solution of the infinite dimensional
equation {

dφh(t)=Aφh(t) dt +Bh(t) dt, t ∈ [0,1],
φh(0)= x. (7)

We will compute the Onsager–Machlup functional onL2([0,1];H) at points of the form
φh. The assumptionh ∈ L2([0,1];H) is required in order to apply Girsanov’s transform.

Assume also the following conditions:
(h1) For anyt ∈ [0,1], F(t,X(t)) ∈ Im(B) a.s. and one of the two following relations

holds: for someδ > 0,

sup
t∈[0,1]

E
[
exp
(
δ
∣∣B−1F

(
t,X(t)

)∣∣2
H

)]
<+∞,

or

E

[
exp

(
1

2

1∫
0

∣∣B−1F
(
t,X(t)

)∣∣2
H
dt

)]
<+∞,

(h2) there exist a positive constantK such that

sup
t∈[0,1]

∣∣B−1F(t, x)−B−1F(t, y)
∣∣
H

�K|x − y|H

and

sup
t∈[0,1]

∣∣B−1F(t, x)
∣∣
H

�K
(
1+ |x|H ),

for anyx, y ∈H.
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Then, using (h1) we can apply Girsanov’s transformation (see [4, Theorem 10.14 and
Proposition 10.17]) witĥW(t) = W(t) + ∫ t

0 B
−1F(s,X(s)) ds and we obtain for any

ε > 0

P
(∥∥X− φh∥∥2 � ε

)=E
[
exp

( 1∫
0

〈
B−1F

(
s,WA(s)+ esAx

)
, dW(s)

〉

− 1

2

1∫
0

∣∣B−1F
(
s,WA(s)+ esAx

)∣∣2
H
ds

)
1{‖e·Ax+WA−φh‖2�ε}

]
.

Note that to simplify the notation we have denoted̂W by W . Sinceh ∈ L2([0,1];H)
we can apply again Girsanov’s transformation, now with�W(t)=W(t)− ∫ t0 h(s) ds.We
get, for anyε > 0,

P
(∥∥X− φh∥∥2 � ε

)=E[exp

( 1∫
0

〈
B−1F

(
s,WA(s)+ φh(s)), dW(s)〉

+
1∫

0

〈
B−1F

(
s,WA(s)+ φh(s)), h(s)〉ds

− 1

2

1∫
0

∣∣B−1F
(
s,WA(s)+ φh(s))∣∣2

H
ds

−
1∫

0

〈
h(s), dW(s)

〉− 1

2

1∫
0

∣∣h(s)∣∣2
H
ds

)
1{‖WA‖2�ε}

]
.

Then

γε
(
φh
)= P(‖X− φh‖2 � ε)

P (‖WA‖2 � ε)
can be written as

exp(7)E

[
exp

(
3∑
i=1

Ti

)∣∣∣ ∥∥WA
∥∥

2 � ε
]
, (8)

with

7 := −
1∫

0

1

2

∣∣B−1[Aφh(t)+F (t, φh(t))− φ̇h(t)]∣∣2
H
dt,

T1 :=
1∫

0

〈
B−1F

(
s,WA(s)+ φh(s)), dW(s)〉,

T2 :=
1∫

0

〈
B−1F

(
s,WA(s)+ φh(s))−B−1F

(
s, φh(s)

)
, h(s)

〉
ds
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− 1

2

1∫
0

(∣∣B−1F
(
s,WA(s)+ φh(s))∣∣2

H
− ∣∣B−1F

(
s, φh(s)

)∣∣2
H

)
ds

and

T3 := −
1∫

0

〈
h(s), dW(s)

〉
.

3.2. Study of WA and Wiener integrals

In this subsection we obtain expressions ofWA and Wiener integrals that will be
useful to study the terms obtained in the Girsanov expansion. We apply these expressions
to reduce the study of the Onsager–Machlup functional to the study ofT1.

Assuming hypothesis (H1) and (H2), by Lemma 2.6 and decomposition (2) we have

WA(t)=
∞∑
j=1

( t∫
0

βj e−αj (t−s) dWj (s)

)
ej

=
∞∑
j=1

∞∑
k=1

µk,jYk,j (gk,j ⊗ ej )(t), (9)

whereµk,j = βj/
√
α2
j + x2

k,j , andxk,j , Yk,j andgk,j are thexk , Yk andgk defined in
Lemma 2.6 whenλ = αj . Moreover,{Yk,j , k � 1, j � 1} is a family of independent
centered random variables with variance 1.

Givenf ∈ L2([0,1]) ande ∈ H , we denote byf ⊗ e the function ofL2([0,1];H)
such that(f ⊗ e)(s)= f (s)e. Note then that{gk,j ⊗ ej , k � 1, j � 1} is an orthonormal
basis ofL2([0,1];H) such that for anyj, k � 1: Cov(〈WA,gk,j ⊗ ej 〉L2([0,1];H))= µ2

k,j .
Thus, ∥∥WA

∥∥2
2 =

∞∑
j=1

∞∑
k=1

µ2
k,jY

2
k,j ,

with
∑∞
j,k=1µ

2
k,j <+∞. Indeed, ifj < j0

∞∑
k=1

µ2
k,j = β2

j

∞∑
k=1

1

x2
k,j

= Cβ2
j .

On the other hand, whenj � j0,

∞∑
k=1

µ2
k,j =

∞∑
k=1

β2
j

α2
j + x2

k,j

�
β2
j

α2
j

∞∑
k=1

1

1+ (2k−1)2π2

4α2
j

<
β2
j

α2
j

∞∫
0

1

1+ π2

4α2
j

x2
dx

= β2
j

αj

∞∫
0

1

1+ π2

4 x
2
dx � C

β2
j

αj
. (10)

So
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∞∑
j,k=1

µ2
k,j �C

(
j0−1∑
j=1

β2
j

αj + 1
+

∞∑
j=j0

β2
j

αj + 1

αj + 1

αj

)

�C
(

1+ 1

αj0

) ∞∑
j=1

β2
j

αj + 1
<∞.

Consider also

hk,j (s) := 1

µk,j

1∫
s

βje
−αj (t−s)gk,j (t) dt,

j � 1, k � 1. Then, for anyj � 1, {hk,j , k � 1} is an orthonormal basis ofL2([0,1]).
Indeed, thehk,j form an orthogonal family since, by (4) and (5),

〈hm,j , hn,j 〉L2[0,1]

= β2
j

µm,jµn,j

1∫
0

( 1∫
s

e−αj (t−s)gm,j (t) dt
)( 1∫

s

e−αj (u−s)gn,j (u) du
)
ds

= β2
j

µm,jµn,j

1∫
0

1∫
0

Kj(t, u)gm,j (t)gn,j (u) dt du

= 〈gm,j , gn,j 〉L2[0,1], (11)

for anym,n� 1, whereKj denotes the covariance function defined at (4) withλ= αj .
Thus, in order to prove that{hk,j , k � 1} is a basis, it is sufficient to show that, if
h ∈ L2([0,1]) satisfies〈hk,j , h〉L2[0,1] = 0 for all k � 1, thenh ≡ 0. But this follows
easily from the fact that if for allk � 1,

0= 〈hk,j , h〉L2[0,1] = 1

µk,j

1∫
0

( 1∫
s

βj e−αj (t−s)gk,j (t) dt
)
h(s) ds

= βj

µk,j

〈
gk,j , ϕ

h
〉
L2[0,1],

thenϕh ≡ 0 with ϕh(t)= ∫ t0 e−αj (t−s)h(s) ds, and of courseh≡ 0.
Furthermore,

Yk,j =
√
α2
j + x2

k,j

1∫
0

( t∫
0

e−αj (t−s) dWj (s)

)
gk,j (t) dt

=
1∫

0

(
βj

µk,j

1∫
s

e−αj (t−s)gk,j (t) dt
)
dWj (s)

= Ij (hk,j ),
where Ij (l) denotes the Wiener integral ofl with respect toWj , that is Ij(l) =∫ 1

0 l(s) dW
j (s).
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From these considerations, we get the following lemma:

LEMMA 3.1. –Let l ∈ L2([0,1];H), and setU = ∫ 1
0 〈l(s), dW(s)〉. Then

lim
ε→0

E
[
exp(U) | ∥∥WA

∥∥
2 � ε

]= 1.

Proof. –Sincel ∈ L2([0,1];H), we have

l =
∞∑
j=1

∞∑
k=1

πk,j (hk,j ⊗ ej ),

with πk,j = 〈l, hk,j ⊗ ej 〉L2([0,1];H) and
∑∞
j=1

∑∞
k=1π

2
k,j <∞. Furthermore, we have

U =
∞∑
j=1

∞∑
k=1

πk,jIj (hk,j )=
∞∑
j=1

∞∑
k=1

πk,jYk,j .

Hence, the result follows easily by Lemma 2.4.✷
Applying Lemma 3.1, sinceh ∈L2([0,1]) we directly get that

lim
ε→0

E
[
exp(cT3) |

∥∥WA
∥∥

2 � ε
]= 1,

for anyc ∈ R. On the other hand, on the set{‖WA‖2 � ε} using (h2) it is easy to check
that |T2| � Cε, and hence

lim sup
ε→0

E
[
exp(cT2) |

∥∥WA
∥∥

2 � ε
]
� 1,

for any c ∈ R. Thus, using Lemma 2.2, the only point remaining in order to determine
limε↓0γε(φ

h) is the study of the termE[exp(T1) | ‖WA‖2 � ε].
3.3. The linear case

In this subsection we discuss the case of a linear functionF that not depend ont . We
obtain the Onsager–Machlup functional and we study carefully the particular case where
F can be diagonalized in the same basis as the operatorsA andB.

The main theorem of this part states as follows:

THEOREM 3.2. –Assume that(H1) and (H2) are satisfied,h : [0,1] → H is a
function such thath ∈ L2([0,1];H), φh is defined by(7) and F ∈ L(H) is such that
P̂ = B−1F is a bounded operator. Denote byP andR the linear operators defined on
L2([0,1];H) such that for anyf ∈L2([0,1]), P(f ⊗ej )= f ⊗ P̂ (ej ) andR(f ⊗ej )=
Rj(f )⊗ ej with

(Rjf )(s) :=
1∫
s

βj e−αj (t−s)f (t) dt.
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Then, for anyj, k � 1,〈
(R∗R)(gk,j ⊗ ej ), gk,j ⊗ ej 〉L2([0,1];H) = Cov

(〈
WA,gk,j ⊗ ej 〉L2([0,1];H)

)
and

(i) if SPR∗ ≡ 1
2(PR

∗ + (PR∗)∗) is trace class, then

lim
ε↓0
γε
(
φh
)= exp

(
−

1∫
0

1

2

∣∣B−1[(A+F)φh(t)− φ̇h(t)]∣∣2
H
dt − Tr(SPR∗)

)
,

(ii) if
∑
j,k〈PR∗(gk,j ⊗ ej ), gk,j ⊗ ej 〉 = +∞ (respectively−∞), then

lim
ε↓0
γε
(
φh
)= 0

(respectively+∞).
Proof. –
Step1. Reduction to a stochastic integral involvingWA andW .
Since P̂ is a bounded operator, condition (h2) is clearly satisfied. On the other

hand, sinceF ∈ L(H) we have that(A + F) generates aC0-semigroup such that∫ 1
0 ‖et (A+F)B‖2

HS ds <∞ (see e.g. Goldberg [7, Chapter 5.1]). Thus, following the proof
of [4, Theorem 10.20] we get

E

[
exp

(
1

2

1∫
0

∣∣B−1F
(
X(t)

)∣∣2
H
dt

)]

� exp

(
C

2

1∫
0

(
1+ ∥∥et (A+F)∥∥2|x|2H

)
dt

)
E

[
exp

(
C

2

1∫
0

∣∣WA+F (t)
∣∣2
H
dt

)]
.

<+∞
and (h1) is clearly satisfied.

Hence, it is sufficient to study limε↓0E[exp(T1)
∣∣‖WA‖2 � ε].

Since we are in the linear case, we can writeT1 := T1(a) + T1(b) with

T1(a) =
1∫

0

〈
B−1F

(
WA(s)

)
, dW(s)

〉
,

T1(b) =
1∫

0

〈
B−1F

(
φh(s)

)
, dW(s)

〉
.

SinceB−1F is a bounded operator,B−1F(φh) ∈ L2([0,1];H) andT1(b) can be handled
using Lemma 3.1.

The study of the termT1(a) will follow the ideas presented by Mayer-Wolf and
Zeitouni [11].
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Step2. Expression ofT1(a) in terms of Skorohod integrals.
Notice first that for anyj � 1, k � 1, hk,j = 1

µk,j
Rjgk,j .

Then, using the decompositions given in Section 3.2 (see (9)) we have

T1(a)=
1∫

0

〈
P̂
(
WA(s)

)
, dW(s)

〉

=
∞∑

i,j,k=1

µk,j

1∫
0

Yk,j
〈
gk,j (s)⊗ P̂ (ej ), ei〉dWi(s)

=
∞∑

i,j,k=1

µk,j 〈P̂ ej , ei〉
1∫

0

Yk,j gk,j (s) dW
i(s). (12)

It is worth noting that the random variablesYk,j areF1-measurable. Hence, some of
the stochastic integrals appearing in (12) are anticipating. When they are of this kind, we
have taken them in the Skorohod sense, and we switch from Itô’s integrals to Skorohod’s
ones using the fact that they coincide on the setL2

a of square integrable adapted processes
(see for instance [12] for an account on Skorohod’s integrals). Moreover, using [12,
Eq. (1.45)], observe that whenj = i

1∫
0

Yk,jgk,j (s) dW
j (s)= Yk,j

∞∑
m=1

〈gk,j , hm,j 〉L2[0,1]Ij (hm,j )− 〈hk,j , gk,j 〉L2[0,1],

and whenj �= i
1∫

0

Yk,jgk,j (s) dW
i(s)= Yk,j

∞∑
m=1

〈gk,j , hm,i〉L2[0,1]Ii(hm,i).

Using the fact thathk,j = µ−1
k,jRjgk,j andYk,j = Ij (hk,j ), we can write (12) in the

following way:

T1(a)=
∑

(k,j) �=(m,i)

µk,j

µm,i
Yk,jYm,i〈P̂ ej , ei〉〈gk,j ,Rigm,i〉L2[0,1]

+
∞∑
j=1

∞∑
k=1

(
Y 2
k,j − 1

)〈P̂ ej , ej 〉〈gk,j ,Rjgk,j 〉L2[0,1]. (13)

Step3. Expression ofT1(a) in terms ofP andR∗.

Define now the operatorT :)2
N2 → )2

N2 by

T(k,j),(m,i) = µk,j

µm,i
〈P̂ ej , ei〉〈gk,j ,Rigm,i〉L2[0,1], (k, j), (m, i) ∈ N

2. (14)
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Then

T1(a) =
∑

(k,j) �=(m,i)
T(k,j),(m,i)Yk,jYm,i +

∞∑
j=1

∞∑
k=1

T(k,j),(k,j)
(
Y 2
k,j − 1

)
. (15)

Let 7 be the linear operator such that7(gk,j ⊗ ej )= µk,j (gk,j ⊗ ej ). Observe that,
for anyj, k � 1,

(R∗R)(gk,j ⊗ ej )=
∞∑
n=1

〈
(R∗
jRj )gk,j , gn,j

〉
L2[0,1](gn,j ⊗ ej )

=
∞∑
n=1

〈Rjgk,j ,Rjgn,j 〉L2[0,1](gn,j ⊗ ej ),

and by (11) this last quantity equalsµ2
k,j (gk,j ⊗ ej ).

Hence72 = R∗R. DefineU = R7−1 = R
|R| , which is clearly a bounded operator

defined inL2([0,1];H). We get

T(k,j),(m,i)= 〈P7(gk,j ⊗ ej ),R7−1(gm,i ⊗ ei)〉L2([0,1];H)
= 〈U ∗PR∗U(gk,j ⊗ ej ), (gm,i ⊗ ei)〉L2([0,1];H). (16)

Then, whenSPR∗ is a trace class operator,
∑
k,j T(k,j),(k,j) = Tr(SPR∗). Indeed,U(gk,j ⊗

ej )= hk,j ⊗ ej so that by (16)

T(k,j),(k,j) = 〈PR∗(hk,j ⊗ ej ), hk,j ⊗ ej 〉L2([0,1];H).

The conclusion follows as{hk,j ⊗ ej , k � 1, j � 1} is an orthonormal basis of
L2([0,1],H).

Step4. Application of Lemma 2.5.
Using Lemma 2.2, (8) and Eq. (15), in order to see part (i) it is sufficient to show that

E

[
exp
(
c
∑
i,k,j,m

Yk,jYm,iT(k,j),(m,i)

)∣∣∣ ∥∥WA
∥∥

2 � ε
]

→ 1

whenε goes to 0, for anyc ∈ R.
Since by assumptionSPR∗ is a trace class operator, by (16), the decomposition ofWA

given in (9), and applying part 1) in Lemma 2.5 we finish easily the proof of part (i).
To prove (ii), we should proceed with the same computations. From (14) we get

T(k,j),(k,j) = 〈PR∗(gk,j ⊗ ej ), gk,j ⊗ ej〉L2([0,1];H).

Applying part 2) of Lemma 2.5 we obtain easily the desired result.✷
We finish this subsection with an important corollary where we study the case where

F is a trace class operator. We also examine the diagonal case.

COROLLARY 3.3. –Assume that(H1) and (H2) are satisfied,h : [0,1] → H is a
function such thath ∈ L2([0,1];H), φh is defined by(7) andF is a trace class operator
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such thatP̂ =B−1F is a bounded operator. Then, ifSPR∗ is trace class

lim
ε↓0
γε
(
φh
)= exp

(
−

1∫
0

1

2

∣∣B−1[(A+ F)φh(t)− φ̇h(t)]∣∣2
H
dt − 1

2
Tr(F )

)
.

Proof. –Using Theorem 3.2 it is enough to prove that ifF is a trace class operator
then Tr(SPR∗)= 1

2 Tr(F ).
We have to study the eigenvalues of the operatorSPR∗ . Denote byR̂j the operator

β−1
j Rj . SetVj ≡ 1

2(R̂
∗
j + R̂j ). First, we can check trivially that for allj � 1,Vj is a linear

operator onL2([0,1]) given by a kernel denoted bŷKj : indeed, for anyh ∈ L2([0,1])

[
Vj(h)

]
(s)=

1∫
0

K̂j (s, t)h(t) dt, s ∈ [0,1],

with K̂j : [0,1]2 → [0,1] defined byK̂j (s, t)= 1
2e−αj |s−t |.

Consider now an operatorV on L2([0,1]) given by a kernelK̂(s, t) = 1
2e−λ|s−t |,

λ > 0, an let us show thatV is a non-negative: indeed, if̂R is the Volterra operator
onL2([0,1]) defined byR̂h= g and

g(t)=
t∫

0

e−λ(t−s)h(s) ds, t ∈ [0,1],

then it is readily seen that

V h= 1

2
〈h,f 〉L2[0,1]f + λR̂∗R̂h,

wheref (t)= e−λ(1−t ) for all t ∈ [0,1]. Therefore,

〈V h,h〉L2[0,1] = 1

2
〈h,f 〉2

L2[0,1] + λ〈R̂h, R̂h〉L2[0,1],

which shows the positivity.
Thus, V is a positive Hilbert–Schmidt operator given by a continuous kernel on

[0,1]2. If we denote by{νk, k � 1} the eigenvalues ofV , it is then well-known [6,
Proposition 10.1] that

∞∑
k=1

νk =
1∫

0

K̂(t, t) dt = 1

2
.

Note that this value does not depend onλ.
On the other hand, for anyh ∈L2([0,1]), j � 1 we have

1

2

(
PR∗ + (PR∗)∗

)
(h⊗ ej )(s)
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= 1

2

{
P

(( s∫
0

e−αj (s−u)h(u) du
)
βj ⊗ ej

)
+R[h⊗ F ∗(β−1

j ej
)]
(s)

}

= 1

2

{( s∫
0

e−αj (s−u)h(u) du
)

⊗ βj (B−1F
)
ej

+
∞∑
i=1

βiβ
−1
j 〈F ∗ej , ei〉

( 1∫
s

e−αi (u−s)h(u) du
)

⊗ ei
}
.

Furthermore, observe that if we denote by{f̂k,j , k � 1} the L2([0,1]) orthonormal
basis that diagonalizesVj , then {f̂k,j ⊗ ej ; j � 1, k � 1} is an orthonormal basis of
L2([0,1];H). So, since〈

βj
(
B−1F

)
ej , ej

〉= 〈(B−1F
)
ej ,Bej

〉= 〈Fej , ej 〉,
we get

Tr
(

1

2

(
PR∗ + (PR∗)∗

))
=

∞∑
j,k=1

〈
1

2

(
PR∗ + (PR∗)∗

)
(f̂k,j ⊗ ej ), f̂k,j ⊗ ej

〉
L2([0,1];H)

= 1

2

∞∑
j,k=1

〈R̂∗
j f̂k,j , f̂k,j 〉L2[0,1]〈Fej , ej 〉 + 〈R̂j f̂k,j , f̂k,j〉L2[0,1]〈F ∗ej , ej 〉

=
∞∑

j,k=1

〈Fej , ej 〉〈Vj f̂k,j , f̂k,j 〉L2[0,1] =
∞∑
j=1

〈Fej , ej 〉Tr(Vj)

= 1

2

∞∑
j=1

〈Fej , ej 〉 = 1

2
Tr(F ).

The proof is now completed.✷
Example3.4. – Consider the case of an operatorF which is diagonal when expressed

in the orthonormal basis{ej ; j � 1}. We denote by{pj ; j � 1} the corresponding set of
eigenvalues. Assume also the other hypothesis of Theorem 3.2. Then:

(i ′) the operatorSPR∗ is trace class if and only ifF is, and in this case, Tr(SPR∗)=
1
2 Tr(F );

(ii ′) if
∑
j�1pj = +∞ and

∑
j,pj<0 |pj |<+∞, then

lim
ε↓0
γε
(
φh
)= 0;

(iii ′) if
∑
j�1pj = −∞ and

∑
j,pj>0pj <+∞, then

lim
ε↓0
γε
(
φh
)= +∞.
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Remark3.5. –
1. Notice that whenh= 0,X− φh =WA+F . So, in the situation (ii′) we have that

lim
ε→0

P(‖WA+F ‖2 � ε)
P (‖WA‖2 � ε) = 0,

and in the situation (iii′)

lim
ε→0

P(‖WA+F ‖2 � ε)
P (‖WA‖2 � ε) = +∞.

2. Since we needB−1F to be a bounded operator, we assume supj

|pj |
βj
<∞.

3. The conditions (i′), (ii ′) and (iii′) only involve the operatorF , and none of the
operatorsA andB.

Proof. –SincePR∗(h⊗ ej )= pj (R̂∗
j (h)⊗ ej) and(PR∗)∗(h⊗ ej )= pj (R̂j (h)⊗ ej )

in our diagonal case, it is easily seen thatSPR∗ is of trace class iffζ ≡∑i,j�1 |pjvi,j |<
∞, where the family{vi,j ; i � 1} denotes the set of eigenvalues of the operatorVj . As
we have seen in Corollary 3.3, for anyj � 1,

∑
i�1 |vi,j | = ∑

i�1 vi,j = 1
2. It is now

easily deduced thatSPR∗ is trace class if and only if
∑
j�1 |pj |<∞.

Assume now that the operatorSPR∗ is not trace class. Observe first that〈
PR∗(gk,j ⊗ ej ), gk,j ⊗ ej〉L2([0,1];H) = pj 〈R̂jgk,j , gk,j 〉L2[0,1].

We can compute easily

R̂jgk,j (s)=
1∫
s

e−αj (t−s)gk,j (t) dt

= Ak,jeαj s

α2
j + x2

k,j

(
e−αj s(xk,j cos(xk,j s)+ αj sin(xk,j s)

)
− e−αj (xk,j cos(xk,j )+ αj sin(xk,j )

))
= Ak,j

α2
j + x2

k,j

(
xk,j cos(xk,j s)+ αj sin(xk,j s)

)
,

usingxk,j cos(xk,j )= −αj sin(xk,j ). Since
∫ 1

0 A
2
k,j sin2(xk,j s) ds = 1, we then obtain

〈R̂j gk,j , gk,j 〉L2[0,1] =
1∫

0

A2
k,j

α2
j + x2

k,j

(
xk,j cos(xk,j s)sin(xk,j s)+ αj sin2(xk,j s)

)
ds

= 1

α2
j + x2

k,j

(
A2
k,j

2
sin2(xk,j )+ αj

)
.

Furthermore, we have that forj � j0

C1

αj
�

∞∑
k=1

1

α2
j + x2

k,j

� C2

αj
,
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for some positive constantsC1 andC2 not depending onj . Indeed, the second inequality
is obtained using similar arguments that in (10). On the other hand,

∞∑
k=1

1

α2
j + x2

k,j

� 1

α2
j

∞∑
k=1

1

1+ (2k + 1)2 π
2

4α2
j

� 1

α2
j

∞∑
k=1

1

1+ k2 9π2

4α2
j

� 1

α2
j

∞∫
1

1

1+ x2 9π2

4α2
j

dx � 1

αj

∞∫
1
αj0

1

1+ x2 9π2

4

dx = C1

αj
.

Using that supk,j |Ak,j | � 2, and

∞∑
j,k=1

〈
PR∗(gk,j ⊗ ej ), gk,j ⊗ ej〉L2([0,1];H)

=
∞∑

j,k=1

pj

α2
j + x2

k,j

(
A2
k,j

2
sin2(xk,j )+ αj

)
, (17)

we can prove that in the situation (ii′) last expression is equal to+∞, since
∞∑

j=j0,k=1

pj

α2
j + x2

k,j

αj �
∞∑
j=j0

C1pj + ∑
j�j0,pj<0

(C2 −C1)pj = +∞,

∞∑
j=j0,k=1

pj

α2
j + x2

k,j

(
A2
k,j

2
sin2(xk,j )

)
� 2C2

α1

∑
j�j0,pj<0

pj >−∞,

and ∣∣∣∣∣
j0−1∑
j=1

∞∑
k=1

pj

α2
j + x2

k,j

(
A2
k,j

2
sin2(xk,j )+ αj

)∣∣∣∣∣� 2
j0−1∑
j=1

|pj |
∞∑
k=1

1

x2
k,j

<∞.

In the situation (iii′), by the same arguments, we can prove that expression (17) is
equal to−∞.

The proofs of the conclusions of (ii′) and (iii′) in our example are now straightforward,
invoking the second part of Lemma 2.5.✷
3.4. The general case

In this subsection we deal with the case of a general functionF , by means of
a linearization procedure, which is usual in Onsager–Machlup type results (see e.g.
[9]). Let us introduce first some notation: given a differentiable functionS :H → H

andx ∈ H we denote byDxS ∈ L(H) the derivative operator ofS at x, and for any
differentiable functionT : [0,1] × H → H and ξ ∈ L2([0,1];H) we define byDξT
the operator defined onL2([0,1];H) by ((DξT )(ψ))(s) := (Dξ(s)T (s, ·))(ψ(s)) for any
ψ ∈ L2([0,1];H).

The main theorem is the following:

THEOREM 3.6. –Assume that(H1) and (H2) are satisfied. Supposeh is an element
of L2([0,1];H), and φh is defined by(7) and F : [0,1] × H → H is a Lipschitz
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continuous function such that̂P = B−1F is C2
b in x uniformly in s ∈ [0,1]. Denote

B−1F(s, ·) by P̂s . LetR be the linear operator defined in Theorem3.2 and denote by
P :L2([0,1];H)→ L2([0,1];H) the operator given by(

P(u⊗ l))(s)= u(s)(Dφh(s)P̂s)(l), u ∈ L2([0,1]), l ∈H.
Assume finally thatSPR∗ is trace class and there existsr > 0 and a deterministic
trace class operator̂T :L2([0,1];H)→ L2([0,1];H) such that, for anyξ satisfying
‖φh − ξ‖2 � r ,∣∣〈(Dξ P̂ −DφhP̂ )R∗ψ,ψ

〉
L2([0,1];H)

∣∣� 〈T̂ ψ,ψ〉L2([0,1];H), (18)

for anyψ ∈ L2([0,1];H).
Then

lim
ε↓0
γε(φ)= exp

(
−1

2

1∫
0

∣∣B−1[Aφh(t)+ F (t, φh(t))− φ̇h(t)]∣∣2
H
dt − Tr(SPR∗)

)
.

Proof. –Since (h1) and (h2) are satisfied, like in the proof of Theorem 3.2 it is enough
to study limε↓0E[exp(T1)|‖WA‖2 � ε].

Taylor’s formula for Hilbert space valued functions gives us

P̂s
(
WA(s)+ φh(s))= P̂s(φh(s))+ (Dφh(s)P̂s)

(
WA(s)

)
+
( 1∫

0

(
Dφh(s)+λWA(s)P̂s −Dφh(s)P̂s

)
dλ

)(
WA(s)

)
.

ThenT1 := T1(c) + T1(d) + T1(e) with

T1(c) =
1∫

0

〈
P̂s
(
φh(s)

)
, dW(s)

〉
,

T1(d) =
1∫

0

〈
(Dφh(s)P̂s)

(
WA(s)

)
, dW(s)

〉
,

T1(e) =
1∫

0

〈( 1∫
0

(Dφh(s)+λWA(s)P̂s −Dφh(s)P̂s) dλ
)(
WA(s)

)
, dW(s)

〉
.

Since P̂ is C2
b uniformly in s, P̂ (φh) ∈ L2([0,1];H) and we can deal withT1(c)

applying Lemma 3.1.
The term T1(d) can be handled in much the same way asT1(a) in the proof of

Theorem 3.2, the only difference being in the analysis ofT1(d) (i.e. the dependence ons
of the operatorDφh(s)P̂s ), but note that the structure of the proof is still valid. Similarly
to (13),T1(d) can be written
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T1(d)=
∑

(k,j) �=(m,i)

µk,j

µm,i
Yk,jYm,i

〈
Mi
k,j ,Rigm,i

〉
L2[0,1]

+
∞∑
j=1

∞∑
k=1

(
Y 2
k,j − 1

)〈
M
j
k,j ,Rjgk,j

〉
L2[0,1],

withMi
k,j (s) := 〈(P (gk,j ⊗ ej ))(s), ei〉. Since〈

Mi
k,j ,Rigm,i

〉
L2[0,1] = 〈P(gk,j ⊗ ej ),Rigm,i ⊗ ei〉L2([0,1];H),

proceeding as in Theorem 3.2 we can then obtain

E
[
exp(T1(d)) |

∥∥WA
∥∥

2 � ε
]= exp

(− Tr(SPR∗)
)
E
[
exp(T1(d,2)) |

∥∥WA
∥∥

2 � ε
]
, (19)

with

T1(d,2) =
∑

(k,j),(m,i)

Yk,jYm,i
〈
(U ∗PR∗U)(gk,j ⊗ ej ), gm,i ⊗ ei〉L2([0,1];H)

whereU is defined in the proof of Theorem 3.2 and by Lemma 2.5

lim
ε→0

E
[
exp(T1(d,2)) |

∥∥WA
∥∥

2 � ε
]= 1.

Finally we have to studyT1(e). We will follow the method used in [11, Theorem 4.1].
Setϕλ = φh + λWA. Just like in the case ofT1(d), we get

1∫
0

〈 1∫
0

(
(Dϕλ(s)P̂s −Dφh(s)P̂s) dλ

)(
WA(s)

)
, dW(s)

〉

=
1∫

0

∑
(k,j),(m,i)

Yk,jYm,iT
λ
(k,j),(m,i) dλ−

1∫
0

∑
j,k

T λ(k,j),(k,j) dλ,

where

T λ(k,j),(m,i) =
〈(
U ∗(DϕλP̂ −DφhP̂ )R∗U

)
(gk,j ⊗ ej ), gm,i ⊗ ei〉L2([0,1];H).

SinceP̂s is C2
b uniformly in s, we clearly have∣∣(Dϕλ(s)P̂s −Dφh(s)P̂s)(y)∣∣� C∣∣ϕλ(s)− φh(s)∣∣H |y|H , (20)

for anyy ∈H . So, fixedλ, (k, j), (m, i) andω ∈ ,

lim
ε→0

1{‖WA‖2�ε}T
λ
(k,j),(m,i) = 0.

Because of (18), by a dominated convergence argument we can prove that

lim
ε→0

1{‖WA‖2�ε}

1∫
0

∞∑
j=1

∞∑
k=1

T λ(k,j),(k,j) dλ= 0.
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Then, by Lemma 2.2, we shall have established the theorem if we prove that, for
all c ∈ R,

lim
ε→0

E

[
exp

(
c

1∫
0

∑
(k,j),(m,i)

Yk,jYm,iT
λ
(k,j),(m,i) dλ

)∣∣∣ ∥∥WA
∥∥

2 � ε
]

� 1. (21)

But, by assumption (18) withψ =∑k,j Yk,jhk,j ⊗ ej we get,

E

[
exp

(
c

1∫
0

∑
(k,j),(m,i)

Yk,jYm,iT
λ
(k,j),(m,i) dλ

)∣∣∣ ∥∥WA
∥∥

2 � ε
]

�E
[
exp
(

|c| ∑
(k,j),(m,i)

Yk,jYm,iT̂(k,j),(m,i)

)∣∣∣ ∥∥WA
∥∥

2 � ε
]
,

where

T̂(k,j),(m,i) = 〈T̂ (hk,j ⊗ ej ), hm,i ⊗ ei〉L2([0,1];H).

Therefore (21) follows from part 1) of Lemma 2.5.✷
Likewise in the linear case, in some situations we can express the trace ofSPR∗ in

terms of∇xF andφ. We give this result in the next proposition.

PROPOSITION 3.7. –Assume the assumptions of Theorem3.6. If for any s ∈ [0,1],
∇xF (s,φh(s)) is a trace class operator and

∫ 1
0 Tr[∇xF (s,φh(s))]ds <+∞, then

Tr(SPR∗)= 1

2

1∫
0

Tr
[∇xF (s, φh(s))]ds.

Proof. –Notice that (Dφh(s)P̂s)ej = (B−1∇xF (s,φh(s)))ej . Following the same
computation we did in the proof of Corollary 3.3 we have

PR∗(f ⊗ ej )(s)=
( s∫

0

e−αj (s−u)f (u) du
)
βj
(
B−1∇xF (s, φh(s)))ej

=
∞∑
i=1

( s∫
0

e−αj (s−u)f (u) du
)
βjβ

−1
i

〈∇xF (s, φh(s))ej , ei〉ei
and

(PR∗)∗(f ⊗ ej )(s)=R[f (s)[∇xF (s, φh(s))]∗(β−1
j ej

)]
=

∞∑
i=1

βiβ
−1
j

( 1∫
s

e−αi (u−s)f (u)
〈[∇xF (u,φh(u))]∗ej , ei〉du

)
ei .
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Let {fk;k � 1} be an orthonormal basis ofL2([0,1]). Then{fk ⊗ ej ; j � 1, k � 1} is an
orthonormal basis ofL2([0,1];H). SinceSPR∗ is a trace class operator

Tr(SPR∗)=
∞∑
j=1

Uj

with

Uj =
∞∑
k=1

〈Mjfk, fk〉L2([0,1])

whereMj denotes the operator defined onL2([0,1]) such that

Mjf (s)= 1

2

[ 1∫
0

(
e−αj (s−u)f (u)

〈∇xF (s, φh(s))ej , ej〉1[0,s](u)

+ e−αj (u−s)f (u)
〈∇xF (u,φh(u))ej , ej〉1[s,1](u)

)
du

]

=
1∫

0

K̃j (s, u)f (u) du

with

K̃j (s, u)= 1

2
e−αj |s−u|〈∇xF (u∨ s, φh(u∨ s))ej , ej〉.

Clearly, sinceSPR∗ is a trace class operator,Mj is a trace class operator for anyj � 1,
and as an operator given by a kernel in[0,1]2, its trace is given by the integral of the
kernel on the diagonal, that is

Uj = Tr(Mj)=
1∫

0

K̃j (s, s) ds = 1

2

1∫
0

〈∇xF (s, φh(s))ej , ej 〉ds.
So,

Tr(SPR∗)=
∞∑
j=1

1

2

1∫
0

〈∇xF (s, φh(s))ej , ej 〉ds = 1

2

1∫
0

Tr
[∇xF (s, φh(s))]ds. ✷

Remark3.8. – In order to stick to the finite dimensional case, we proved our result for
a functionF depending only ont ∈ [0,1] andx ∈H . However, the proof would remain
the same for a functionF satisfying

1. F : [0,1] ×L2([0,1];H)→ L2([0,1];H).
2. B−1F(t, .) :L2([0,1];H)→ L2([0,1];H) is C2

b uniformly in t ∈ [0,1].
3. For allt ∈ [0,1] andξ ∈ L2([0,1];H), F(t, ξ)= F(t, ξ1[0,t ]).

The last condition is imposed to get an adapted solution to the evolution equation, and
corresponds to the usual coefficients depending on the whole past of the process.
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Example3.9. – SupposeH = L2([0,1]) with Neumann boundary conditions, that is
u′(0) = u′(1) = 0, A = H, B = Id, andF : [0,1] × L2([0,1];H) → L2([0,1];H) is
given by

[
F(t, ξ)

]
(t, x)= f (0)1[0, 1

2 ](t)1(x)+ f
( 1/2∫

0

dv

1∫
0

dy ξ(v, y)

)
1[ 1

2 ,1](t)1(x),

wheref :R → R is aC2
b function. Then the conditions of Remark 3.8 are satisfied.

Proof. –We shall concentrate on condition (18), the other ones being easy to verify.
Under the assumptions of our example,P̂ = F , and the operatorR∗ is given by
[R∗(u⊗ ej )] =R∗

j u⊗ ej for all u ∈L2([0,1]) andj � 0, with

[R∗
j u](s)=

s∫
0

e−j2(s−t )u(t) dt, t ∈ [0,1],

andej (y)= cos(2πjy) for all y ∈ [0,1]. Forξ ∈L2([0,1];H), set

)(ξ)=
1/2∫
0

dv

1∫
0

dy ξ(v, y),

which defines a linear functional) on L2([0,1];H), and let us denote byδφh,ξ the
quantity

δφh,ξ = f ′()(ξ))− f ′()(φh)).
Then, for anym ∈ L2([0,1];H), we have∣∣〈(DξF −DφhF )R∗m,m

〉
L2([0,1];H)

∣∣
=
∣∣∣∣∣δφh,ξ

1/2∫
0

1∫
0

R∗m(v, y) dv dy
1∫

1/2

1∫
0

m(v, y) dv dy

∣∣∣∣∣
� 2‖f ′‖∞

∣∣〈T̃ R∗m,m〉L2([0,1];H)
∣∣,

whereT̃ is defined onL2([0,1];H) by

T̃ ξ = )(ξ)1[0, 1
2 ] ⊗ 1.

It is then easily seen that̃T is a trace class operator in the sense of [1]. SinceR∗ is
a bounded operator,̃T R∗ is also trace class, and thus compact. Hence,S

T̃ R∗ can be
diagonalized in an orthonormal basis, and setting nowT = |S

T̃ R∗ |, we get a positive
trace class operator such that∣∣〈(DξF −DφhF )R∗m,m

〉
L2([0,1];H)

∣∣� 2‖f ′‖∞〈Tm,m〉L2([0,1];H),
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which shows that condition (18) is fullfilled. Furthermore, since[
F(t, ξ)

]
(t, x)= f (0)1[0, 1

2 ](t)1(x)+ f
(
)(ξ)

)
1[ 1

2 ,1](t)1(x),

it is easily seen thatF(t, .) is aC2
b(L

2([0,1];H)) function, uniformly int ∈ [0,1]. ✷
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