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ABSTRACT. — We compute the Onsager—Machlup functional for a stochastic evolution
equation with additive noise, usin?-type techniques. The regularity that has to be imposed
to the drift coefficient is a trace type condition on its derivative. The expression of the divergence
part of the functional does not depend on the stochastic convolution related to our evolutior
system.
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RESUME. — Dans cet article, nous calculons la fonctionnelle d’Onsager—Machlup associée ¢
une équation d’évolution stochastique avec bruit additif, en utilisant des techniques de’type
Les hypothéses de régularité que I'on impose au coefficient de dérive sont des conditions de tra
sur sa dérivée. Notons que I'expression de la partie divergence de la fonctionnelle ne dépend p
de la convolution stochastique associée au systeme d’évolution.
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1. Introduction

Let H be a real separable Hilbert space, and consider the following stochastic
differential equation orH .

dX(@)=[AX(@)+ F(t,X(@®)]dt+ BdW (), te]0,1], 1
{ X(0) =x, @

wherex € H, A:D(A) C H — H generates ag-semigroup{exp(tA);t > 0}, F

is a Lipschitz function defined of0, 1] x H, B is a non-negative bounded linear

operator fromH to H, andW is a cylindrical Wiener process if. It is known that

if fol || exp(t A) B35 dt is finite, then (1) admits a unique solution e L3([0, 1]; H),

in a sense that will be specified later (see [4] for further details). In the remainder of

the paper, we will also denote By the stochastic convolution of by W, that is the

solution to (1) forF =0 andx = 0.

This article proposes to study the limiting behaviour of ratios of the form

P(X-¢ll<e)
P(IWAl < e)

Ye (@) =

when ¢ tends to 0, wherep is a deterministic function satisfying some regularity
conditions and| - || is a suitable norm defined on the functions frgf1] to H.
When lim._q y. (¢) = exp(Jo(¢)) for all ¢ in a reasonable class of functions, then the
functional Jj is called the Onsager—Machlup functional associated to (1) ardIt is
worth noting thatJy can easily be interpreted as a generalized likelihood functional in
infinite dimension, which makes its calculation an interesting problem.

For usual stochastic differential equations, namely wkes- R, A =0, B = Id,
the problem of computing the Onsager—Machlup functional for (1) has been widely
investigated. Ikeda and Watanabe [9] gave a rigorous proof for the case af any
C?([0, 1]; R¢) for the norm]| - || defined onC([0, 1]; R?). This result has been
enhanced then in two directions: Shepp and Zeitouni proved first in [13] that the function
¢ could be taken in the Cameron—Martin spaﬁéz([o, 1]; R%), and Capitaine proved
in [2] and [3] (basing this last result on some techniques inspired by the computation of
the Onsager—Machlup functional for diffusions on manifolds, see e.g. [8]) that the norm
| - || could be taken as any euclidian norm on the functions ffonm] to R¢ making
sense for the solution to (1) and dominating the nornL.é(0, 1]; R?). It is important
to note that in the case of finite dimensional diffusions, the functidnedbes not depend
on the norm considered.

Our current work fits in a more global project of studying the Onsager—-Machlup
functionals for infinite stochastic systems. The first results in that direction have beer
obtained by Dembo and Zeitouni [5] for trace class elliptic SPDEs on a bounded domair
of R¢, and then by Mayer-Wolf and Zeitouni [11] in the non trace case. We shall use
some of their techniques in order to get our main result:-iff is chosen as the Hilbert
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norm onL?([0, 1]; H), then, for¢ satisfying some suitable hypothesis,

1

1 .
Jo(¢) = —/§|B_1[A¢(t) +F(1.¢(0) = $ 0] 3, dt = Tr(Spre),

0

where Spp+ is a certain bounded linear operator basedVait’ and ¢. However, in
caseV,F(s,x) is a trace class linear operator for alle H and s € [0, 1], then
Tr(Spre) = 3 o [TH(VL F)(s, ¢ (s)]ds.

With respect to the finite dimensional case, some differences can already be stressed
this introduction: first, the generality on the kind of norm considered by Capitaine in [3]
seems beyond our hopes at this moment. On the other hand, since an independence
the functionalJy with respect to the normi - || can also be expected in our SPDE case,
we chose to work with the Hilbert norm di?([0, 1]; H) for two main reasons:

1. We are working here with the minimal assumptions Arand B under which

Eq. (1) has a unique solution ih?([0, 1]; H), though we will also make the
additional assumption that and B can be diagonalized in the same orthonormal
basis ofH.

2. We will be able to use the conditional exponential moments results stated in [11],
where the conditioning is over an infinite dimensional Gaussian random variable
(these results will be recalled at Section 2). However, the fact that we are dealing
with an evolution type equation will force us to delve deeper into the different
Karhunen decompositions involved in the application of the results of [11]. We
shall give some details about these decompositions at Section 2.

Another relevant difference between the finite and infinite dimensional case is that the
normalizing factor iny. (¢) cannot be a function of the norm of the cylindrical Brownian
motion. This leads us to the natural choice of a normalizatio®byw“ || < ¢), which
prives us of the rotational invariance type properties of the Brownian motion used by
Ikeda and Watanabe ([9, Lemma 8.2]) and by Capitaine ([2, Lemma 4], [3, Lemma 3])
as a fundamental step towards the computation of the Onsager—Machlup functional.

Our paper is organized as follows: in Section 2, we recall some basic results and fi
our notations for the stochastic evolution equation considered. We recall a basic lemm
of Mayer-Wolf and Zeitouni [11, Lemma 2.5] that we shall use later on, and give the
Karhunen expansion of an Ornstein—Uhlenbeck process in dimension one. In Section
we obtain the Onsager—Machlup functional: at Section 3.1 we reduce our problem by
Girsanov’s transform and at Section 3.2 we obtain useful decompositioi&*aind
Wiener integrals. Section 3.3 is then devoted to some details about the linear case, th
is when F is a linear bounded operator, which will lead us to the general case after
Taylor's expansion, and is of independent interest, since the conditions givéhimon
this case will be more explicit, especially wheéh can be diagonalized in the same
complete orthonormal system tharand B. At Section 3.4, we will deal with the general
nonlinear case.
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2. Notationsand preliminary results
2.1. Stochastic evolution systems

2.1.1. Theoperators A and B

Let H be a real separable Hilbert space andD(A) ¢ H — H an unbounded
operator onH . The norm onH will be denoted by - | 5, and the scalar product Qy; -).
The L2 norm in L?([0, 1]; H) will be denoted by - ||,. Let £L(H) the set of bounded
linear operators o#Z. The norm|| - || will be the usual operator norm defined 60H),
that is, || T|| = sup,..y % For an operatofl” € L(H), Sy = 3(T + T*) will denote
the symmetrized operator based BnWe shall suppose

(H1) The operatoX generates a self adjoiit;-semigroup

{exp(tA); t > 0},

of negative type. Moreover, there exists a complete orthonormal syster>
1} which diagonalizesA. We shall denote by—c«;; j > 1} the corresponding
set of eigenvalues and we assume fagt j > 1} is an increasing sequence of
real numbers such that; > 0 and lim;_, ., «; = 0o. Setjo =inf{j, o; > O}.
We shall also consider an operai®re £(H) satisfying
(H2) The operatomB is of non-negative type and is diagonal when expressed in the
orthonormal basi¢e;; j > 1}. We shall denote byg;; j > 1} the corresponding
set of eigenvalues. Furthermore, we shall supposepthatO for all j > 1 and
that
3 < 0.
=1 1 + Olj

In our case whereA and B can be diagonalized in the same complete ortho-
normal system, note that the last hypothesis corresponds to the more general or
fol | exp(tA)B||%,dt < oo, that can be found in [4] in order to ensure the existence
and uniqueness of a solution to (1).

2.1.2. Stochastic evolution equations

Let (2, F, F, P) be a stochastic basis af#’/(¢);t € [0,1], j > 1} a sequence
of mutually independent Brownian motions adapted#o The cylindrical Brownian
motion onH is defined by the formal series

W) => W (e, 2

j=1

where{e;; j > 1} is the complete orthonormal system#mfintroduced at Section 2.1.1.
Note that the series (2) does not convergé&irbut for anys € H, {{W (¢), h); t € [0, 1]}

is a linear Brownian motion with covariandé|?, (see [4]). We shall consider the
stochastic evolution equation (1), wheteand B have been defined at Section 2.1.1 and
F:[0,1] x H — H is a Lipschitz function with a linear growth conditioniruniformly

in ¢ (some further hypothesis af will be made at Section 3). Eg. (1) is only formal,
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and has to be interpreted in the usmald sense: we will say thaX = {X (¢); ¢ € [0, 1]}
is a solution to (1) if it is anH -valuedF;-adapted square integrable process such that

X (1) =exp(tA)x+/exp((t—s)A)F(s,X(s))ds+/exp((t—s)A)BdW(s), 3)
0 0

for all t € [0, 1], where the last integral is of It6’s type. The following proposition is then
a particular case of [4, Theorem 7.4].

PROPOSITION 2.1. —Suppose tha(H1) and (H2) are satisfied. Then there exists a
unique solutionX to (3), such thatX € L?(Q x [0, 1]; H).

2.2. Some conditioned exponential inequalities

We will recall here some basic lemmae that we shall use for the computation of our
Onsager—Machlup functional. The first one is a crucial, though elementary, inequality
that can be found in [9, p. 537].

LEMMA 2.2.—For a fixedn > 1, let z4, ..., z, be n random variables defined on
(2, F, P)and{A,; ¢ > 0} a family of sets inF. Suppose that for any € R and any
i=1,...,n,we have

limsupE [exp(cz;) | A¢] < 1.

E—>00

Then

lim E

E—>00

o) 0] 1.

i=1
In the sequel of the paper, we shall use some inequalities involving trace class
operators. Let us state now the notion of trace that we shall consider.

DEFINITION 2.3.-LetK be a separable Hilbert space. LEt K — K be a compact
symmetric operator. Lgt;; i > 1} be the eigenvalues of the operarWe will say that
T is a trace class operator ¥ 2, |z;| is finite.

If T is trace class, we define the trace ®f Tr(T), as > ;-,(Te;, ¢;) for any basis
{e;;1 > 1}. In particular Tr(T) =372, 7.

We finish this subsection recalling two technical lemmas from [11]: the first one is
a particular case of [11, Lemma 2.4], and the second one is a slight variation of [11,
Lemma 2.5]. We denote here 6y the set of sequences of real numbgrsi > 1} such
that", -, n? < oc.

LEMMA 2.4.—-Let{z;;i > 1} be a sequence of independexi0, 1) random vari-
ables defined oriQ2, F, P), and {n;;i > 1} and {v;;i > 1} two £ sequences of real
numbers such thaf; # 0 for anyi > 1. Then

oo S50

i=1

o]

2.2
Znizi <S¢

i=1

lim E =1
e—0
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LEMMA 2.5.—-Let{z;;i > 1} be a sequence of independeXii0, 1) random vari-
ables defined o, F, P), and{n;; i > 1} a £2 sequence of numbers such that4 0
for anyi > 1. Let T : €% — ¢? be a Hilbert—-Schmidt operatofm;;i > 1} a complete
orthonormal system af, and denoteTm;, mj) by T, ;.

1. If Sy = 3(T + T*) is trace class, then

exp(Zzzj,]>| > nii<e

i,j=1

I|m E =1

2. If 372, T; ; = +oo (respectively—o0o), then

eXp( ZZiZjTi,j + Z(Ziz - 1)Ti,i>

i#j i=1

lim E
e—0

(respectivelyoo).
Proof. —We refer the reader to the proof of [11, Lemma 2.5]. Note only that for any
j’ l 2 11
z2iz; (T + 1) = 2iz;((Sr)ij + (S1)ji),
Where(ST),-,j = (Srm;, mj). O

2.3. The Karhunen—L oéve expansion

We compute here the Karhunen-Loéve expansion for a class of one-dimensionz
Ornstein—Uhlenbeck processes that will appear in the decompositiol “of The
following lemma is presumably fairly standard, but we include it for the sake of
completeness.

LEMMA 2.6.—-Let B8 a standard Brownian motion ané > 0. Then, the process
={X@) = fé exp(—A(t — s))dB(s), 0 <t < 1} has the following Karhunen—Loéve
expansion

where, for eaclt > 1, x, is the unique positive solution of the equatian(x) = —%x in

theinterval[(2k—1) 7, (2k+1) %), {gx(t) = Ax Sin(xt), k > 1} is an orthonormal basis
of L2([0, 1]) with the normallzmg constants; satisfyingsup, |Ax| < 2, and{Yy, k > 1}
is a family of orthogonal Gaussian random variables with m&aand variancel,

defined byr; = /A2 +x2 [ X (1) gx () dt, for all k > 1.

Proof. —Since the casg = 0 is well known, we will assume that> 0. Note thatX
is a Gaussian process with covariance function

tAS

K(t,s) = / e Mi—wgAs—u) g %(e—k(t\/s—ms) _ e‘“’*”), (4)

o
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s,t € [0, 1]. To find the eigenvalues and the eigenvectors of the symmetric operator in
L(L?([0, 1])) associated with the kerndl, we have to solve the equation

1
/ K(t.9)g()di = ug(s), 0<s<1, (5)
0

that is, for 0< s < 1,

1

K 1
1
> (e‘“ O/ elg(t)dt + €+ / eMg(t)dt —e ™ O/ e—“g(t)dz> = 1g(s).

Differentiating twice, it is easy to check thatsatisfies
(M —1)g() =pg"(s), 0<s<1, (6)

with initial conditionsg(0) = 0 andig (1) = —g’(1). Observe that Eq. (6) clearly implies
thatu # 0.

Setw; , = # Thena, , is well-defined and strictly negative. Indeed, suppose that
A% —1=0. Theng”(s) =0, 0< s < 1, and the initial conditions imply = 0. Finally,
suppose that, , > 0. In this case, the solution of the differential equation (6) is of the
form

s s
gls)=c1 exp( Ol;\,u) +co exp(— a;\,u)’

wherecy, ¢, are real constants. Then, the initial conditignt®) = 0 andrg(1) = —g’(1)
yield

1 1 1
tanh( ) =——
/ak,u A /O(A,u

and this equation has no solution.
Consequently, we can assurﬁgg‘_—l < 0, and the solution of (6) is of the form

s

. S
8(s) = ﬂﬁ”(mu) o2 COS(FW,M)

The conditiong (0) = 0 impliesc, =0, andig (1) = —g’(1) yields

1 1 1
tan(7> -1
vV |O(k,u| A vV |O(k,u|

Setx = |a; |72 The relatione;, , = 54— implies that the eigenvalues of the
operatorkK form a family {u,; n > 1}, whereu,, = Wle andzx, is the solution of the
equation tatx) = —%x in the interval[(2n — 1) 7, (2n + 1) %); and the orthonormalized
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eigenfunctions are of the forg, (s) = A, sin(x,s), n > 1. An easy computation shows
that|A,| < 2 for all n.
The classical Karhunen—Loéve Theorem (see e.g. [10]) finishes the proof.

3. Onsager—-Machlup functional

In this section we compute the Onsager—Machlup functional for our equation,
following the usual scheme used for both finite and infinite cases: we apply first the
Girsanov transform (Section 3.1) in order to reduce our problem to the evaluation of
a functional of the stochastic convolutidki“, up to some easily controlled correction
terms (Section 3.2). We are then left with the evaluation of the conditional exponential
moments of a stochastic integral with respect to the cylindrical Brownian motion, that
can be performed explicitely whef is a linear operator (Section 3.3). The general case
for F can be deduced then by Taylor's expansion (Section 3.4).

3.1. Application of Girsanov’s transform

Fix a functionx e L?([0, 1]; H). Let ¢" be the solution of the infinite dimensional
equation

{ de"(t) = A¢"(t)dt + Bh(t)dt, t€]0,1], @)

¢"(0) = x.
We will compute the Onsager—Machlup functionallof([0, 1]; H) at points of the form
¢". The assumption e L?([0, 1]; H) is required in order to apply Girsanov’s transform.
Assume also the following conditions:

(h1) Forany € [0, 1], F(z, X(¢)) € Im(B) a.s. and one of the two following relations
holds: for somé& > 0,

sup E[exp(8|B1F (1, X (1)) [5)] < +oo,
t€[0,1]

or

E

1
1
exp( > / |BYF (1, X (1)) ’Zdt)] < 400,
0
(h2) there exist a positive constakitsuch that

sup |[B'F(t,x) — BT'F(t,y)|, <K|x —ylu
te€[0,1]

and

sup [B~F(t,x)|,; <K (1+ Ix|n),
t€[0,1]

foranyx,y e H.
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Then, using (h1) we can apply Girsanov’s transformation (see [4, Theorem 10.14 anc
Proposition 10.17]) withW (1) = W(r) + fo ~1F(s, X(s))ds and we obtain for any
e>0
1

=E exp</<B-1F(s, WA(s) +€7x),dW(s))

0

P(|X —¢"[,<e)

1
1 _ 2
— E / |B lF(S, WA (S) + eYA)C) |H dS) 1{||e‘Ax+WA—¢h||2<8}‘| .

Note that to simplify the notation we have deno@dbl W. Sinceh e L%([0, 1]; H)
we can apply again Girsanov's transformation, now Witky) = W (z) — fé h(s)ds. We
get, for anye > 0,

P(|X —¢"[,<e)=E

1
exp( / (B7YF (s, WA(s) + 9" (s)),dW(s))
0

1

+/ B7YF (s, WA(s) + ¢"(5)), h(s)) ds
0

1
/yB LF (s, WA(s) + 9" (5)) yH

I\JII—‘

1

1
1
/ h(s),dW(s)) — _/|h(s)|Hds> 1{||WA||2<8}1
0

0
Then
ve(¢") = P(IX —¢"2<¢)
‘ P([WA2<¢)

can be written as

exp(A)E (8)

3
exp( 371) |14l <<

i=1

with

1
l .
Ni== [ SB[ @)+ F (14" 1) = 0] .

0

O\H O\H

Ty: (B7YF (s, WA(s) + ¢"(5)),dW (s)),

o
|

(B7YF (s, WA(s) + ¢"(s)) — B™F (s, ¢"(5)), h(s)) ds
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I\)IH

1

/!B LF (s, WAS) + 0" )] — BT (5.¢"(9)) [5,) ds
0

and

1
Ts:= — / (h(s),dW (s)).
0

3.2. Study of W4 and Wiener integrals

In this subsection we obtain expressionsVsf and Wiener integrals that will be
useful to study the terms obtained in the Girsanov expansion. We apply these expressiol
to reduce the study of the Onsager—Machlup functional to the stu@y. of

Assuming hypothesis (H1) and (H2), by Lemma 2.6 and decomposition (2) we have

WA =>" (/,6 e %= V>de(s)>
=1

=

=2 Ve (g ®e)), 9)

j=1k=1

where . j = B;/ /a5 + x¢ ;, andx j, Y ; and g ; are thex;, ¥, andg, defined in
Lemma 2.6 whenk = «;. Moreover,{Y; ;, k > 1, j > 1} is a family of independent
centered random variables with variance 1.

Given f € L?([0,1]) ande € H, we denote byf ® e the function of L2([0, 1]; H)
such that( f ® e)(s) = f(s)e. Note then thafg, ; ® e;, k > 1, j > 1} is an orthonormal
basis ofL%([0, 1]; H) such that for any, k > 1: CoM(W*, g ; ® €;) 120,15 1)) = M,fj
Thus,

||WA||2_ZZ'“M k.j

j=1k=1

with 3% _; uf ; < +oo. Indeed, ifj < jo

=
o0
SRR B LS. § S S
k.j— 2 2 2 2k—1)272 2 2
k=1 el R W e 4a32-ﬂ %% 1+47£T/2'-X2
o
B2 1 2
o) 1+ 5x? o

So
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o0 jool g2 . B? a;j+1

T D

jk=1 et e tl o
1\ B

<Cl1+—

<+ )Za,Jrl

o j, =

< Q.

Consider also
1

1 .
hi j(s) = —— [ B;& Vg (1) dt,
Mk,j

j=1k>1 Then, foranyj > 1, {h ;, kK > 1} is an orthonormal basis dt?([0, 1)).
Indeed, ther, ; form an orthogonal family since, by (4) and (5),

(B, js ) L2101

1 1 1

2
— 'BiJ/(/e“"./’(’_s)gm’j(t)dt> (/e_"‘f(”_‘?)gn,j(u)du> ds
Mm,jMn,j 0

s s

p2 11

= [ K000 1 du

Mm,jMn,j
00

= (&m.j> &n,j) 20,1 (11)
foranym,n > 1, whereK ; denotes the covariance function defined at (4) Wwith «;.
Thus, in order to prove tha{rhk,], k > 1} is a basis, it is sufficient to show that, if
h € L*([0, 1]) satisfies(hy. ;, h) 201 = O for all k > 1, thenk = 0. But this follows
easily from the fact that if for alt > 1,

1 1
1 o
0=(hk’]’h>L2[o’l]=MT/</ﬁ] e_aj(l )gk’](t)dt>h(s)ds
] ¢

B
=1 ——(8kj» ¢ >L2[Ol
k,j
theng" = 0 with " (t) = [; €% ~*)h(s) ds, and of coursé: = 0.
Furthermore,

1 t
Y, ]=\/O(J2~+x,g’j/(/e_af'(t_‘v)de(s)>gk,j(t)dt
0
— / ( / e =g j(t)dt> dW/ (s)
/J'k j

:Ij(hk,j)»
where 7;(I) denotes the Wiener integral of with respect toWw/, that is I;(/) =
Jo1(s)dWi(s).
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From these considerations, we get the following lemma:

LEMMA 3.1.-Letl € L%([0, 1]; H), and setU/ = fol(l(s),dW(s)). Then

lim E [exp(U) | [|[W*||, <] =1.
e—

Proof. —Sincel € L%([0, 1]; H), we have

(o<l e]

l:ZZﬂk,j(hk,j ®€j),

j=lk=1

with 7y j = (1, he j ® ;) 120,15,y ANA Y524 302 2 ; < oo. Furthermore, we have

x X 0o 00
u :szajlj(hk,j) = Zzﬂk,ij,j-

j=lk=1 j=1k=1

Hence, the result follows easily by Lemma 2.43

Applying Lemma 3.1, sincé € L?([0, 1]) we directly get that

lim E[exp(cTs) | W[l <] =1,
e—

for anyc € R. On the other hand, on the ¢itW | > < ¢} using (h2) it is easy to check
that|7>| < Ce¢, and hence

limsupE [exp(cT2) | |[W*|, <e] <1,
e—=0

for any c € R. Thus, using Lemma 2.2, the only point remaining in order to determine
lim,,0y.(¢") is the study of the terniz[exp(T1) | | W4l2 < &].

3.3. Thelinear case

In this subsection we discuss the case of a linear fundtidhat not depend on We
obtain the Onsager—Machlup functional and we study carefully the particular case wher
F can be diagonalized in the same basis as the operatarsl B.

The main theorem of this part states as follows:

THEOREM 3.2. —Assume that(H1) and (H2) are satisfied,n:[0,1] - H is a
function such that € L?([0, 1]; H), ¢" is defined by7) and F € £(H) is such that
P = B~'F is a bounded operator. Denote #yand R the linear operators defined on
L?([0, 1]; H) such that for anyf e L?([0, 1)), P(f®ej)=fQ®P(e;) andR(f Qe;) =
R;(f) ® e; with

1
(R, f)(s) = / B &= £(1) dt.
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Then, for anyj, k > 1,

((R*R)(gk,j ®€)), 8k, ®€) 20011 11) = Cov((W", g ® ¢j) 2o m)

and
(i) if Sppe= Z(PR* + (PR*)*) is trace class, then

I|m Ve(o") = exp( / YA+ F)o"t) — ")) ]i,dt - Tr(SPR*)>,

(i) i 32 (PR*(gr; ®e)), 8. ® ;) = +00 (respectively—o0), then
. h _
lim . (¢") =0

(respectivelytoo).

Proof. —

Stepl. Reduction to a stochastic integral involvifig' andw.

Since P is a bounded operator, condition (h2) is clearly satisfied. On the other
hand, sinceF € L(H) we have that(A + F) generates ap-semigroup such that
Jy1eA+P B2 ds < oo (see e.g. Goldberg [7, Chapter 5.1]). Thus, following the proof
of [4, Theorem 10.20] we get

1
E exp(%/]B‘lF(X(t))ﬁldtﬂ
0

1
< exp(%/(lJr ||et(A+F)H2|x|i,)dt>
0

< 400

1

exp( /]WA+F(t)|Hdt>]

0

and (hl) is clearly satisfied.
Hence, it is sufficient to study limo E[exp(Ty) || W]l < ¢].
Since we are in the linear case, we can wiife= Ty ,) + T With

1

Ti(a) :/<B—1F(WA(s)),dW(s)>,
0
1

Ti :/<B-1F(¢h(s)),dW(s)>.
0
SinceB~1F is a bounded operatoB 1 F (¢") € L*([0, 1]; H) and Ty can be handled
using Lemma 3.1.
The study of the ternily,, will follow the ideas presented by Mayer-Wolf and
Zeitouni [11].
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Step2. Expression of’y, in terms of Skorohod integrals.
Notice first that for anyj > 1,k > 1, hy j = = R;gx.;-
Then, using the decompositions given in Section 3.2 (see (9)) we have

1

Tl(a):/<13(WA(s)),dW(s)>

0

00 1
= Mk,j/Yk,j<gk,j(s)®ﬁ(ej),e,->dW"(s)
0

i, jk=1
= > miPesa) [ Yo g ()W o) (12)
i, jk=1 0

It is worth noting that the random variabl&s ; are 71-measurable. Hence, some of
the stochastic integrals appearing in (12) are anticipating. When they are of this kind, wi
have taken them in the Skorohod sense, and we switch from It6’s integrals to Skorohod’
ones using the fact that they coincide on thelSesf square integrable adapted processes
(see for instance [12] for an account on Skorohod’s integrals). Moreover, using [12,
Eqg. (1.45)], observe that when=i

1 o0

/Yk,jgk,j(s)de () =Ye; > (8kjs ) rzon i im, 1) — (hic j 8k.) 121011
0 m=1

and whenj #i

1 o0
[ ¥eige W)=Y Y ge s hmabizo it o).
0

m=1

Using the fact thaty ; = M,;%Rjgk,j and Y ; = I;(h ;), we can write (12) in the
following way:

Mk, j ~
Tin= Y. LY Ymi(Pej, €)(g.js Rigm.i) 1201

(k) m, iy Homd

o0 o
+ ZZ(Y;(Z,J- —1)(Pej,e;)(gk.j» Rj&k ;) 1210.1- (13)
imli=1

Step3. Expression of’y, in terms of P and R*.

Define now the operatdf : (3, — (3, by

m,i

Mi,j & . .
T, jy,omiy = P L(Pej,e;) gk, Rigm.i)r201), (k. j),(m,i) € NZ. (14)
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Then

o0 o0
2
Tio= Y, TapmiYeYmit+ DD Tujnwi(Yi;—1). (15)
(k. j)0m. i) Sl

Let A be the linear operator such thatg, ; ® e;) = s j(g,; ® e;). Observe that,
foranyj, k> 1,

o0

(R*R)(gxj ® ¢)) =Y ((R}R)8k.j>8&n.j) 20,1 (8n.j @ €})
n=1

—Z j8k.js Rj&n.j)r210,11(8n.j ®€)),

and by (11) this last quantity equalé (8, j ® e;).
Hence A? = R*R. DefineU = RA™" = 3, which is clearly a bounded operator
defined inL2([0, 1]; H). We get
T(k,j),(m,i) = <PA(gk,j ® ej)v RA_l(gm,i ® ei)>L2([O,l];H)
= <U*PR*U(81<] ® ej)v (&m.i ® ei)>L2([Q,1];H)- (16)

Then, whenSp- is a trace class operator,, ; T, j).«.j) = Tr(Spr+). Indeed,U (gx.; ®
e;j) = hyj ® e; so that by (16)

T jyk.jy = (PR (hij ®€), hi j ® €) 120,15 1)

The conclusion follows agh; ; ® e;,k > 1,j > 1} is an orthonormal basis of
L?([0, 1], H).

Step4. Application of Lemma 2.5.

Using Lemma 2.2, (8) and Eq. (15), in order to see part (i) it is sufficient to show that

E |:eXp<C Z Yk,ij,iT(k,j),(m,i)) ‘ HWAH2 < 8:| —1

ik,j,m

whene goes to 0, for any € R.
Since by assumptioSp ;- is a trace class operator, by (16), the decompositiow tf
given in (9), and applying part 1) in Lemma 2.5 we finish easily the proof of part (i).
To prove (i), we should proceed with the same computations. From (14) we get

T ey = (PR™(8x,j ® €)), 8k,j ® €j) 240,13 1)

Applying part 2) of Lemma 2.5 we obtain easily the desired resuit.

We finish this subsection with an important corollary where we study the case where
F is a trace class operator. We also examine the diagonal case.

COROLLARY 3.3. —Assume thatH1) and (H2) are satisfied,s : [0,1] — H is a
function such thak € L2([0, 1]; H), ¢" is defined by7) and F is a trace class operator
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such thatP = B~1F is a bounded operator. Then,§% 3+ is trace class

1
, 1 , 1
lim y:(¢") = exp(— / SIB7HA+ )¢ 0) =" )] dr = 5 Tr(F)) :

0

Proof. —Using Theorem 3.2 it is enough to prove thatFifis a trace class operator
then T(Spg+) = 3 Tr(F).

We have to study the eigenvalues of the operdlpg-. Denote byR; the operator
Bi'R;. SetV; = 2(R*+R)). First, we can check trivially that for afi > 1, V; is a linear
operator on.%([0, 1]) given by a kernel denoted tﬁj: indeed, for any: € L?([0, 1])

1
[Vi()](s) / (s,0)h(t)dt, sel0,1],
0

with K, : [0, 1] — [0, 1] defined byK; (s, 1) = Se~ebs—l,
Consider now an operatof on L2([0, 1]) given by a kerneIK(s 1) =3 —“Y f,

A > 0, an let us show tAhaV is a non-negative: indeed, i is the VoIterra operator
on L2([0, 1]) defined byRh = g and

t

g(t) = / e "' =In(s)ds, tel0,1],
0

then it is readily seen that
1 PN
Vl’l = E(h, f)LZ[O,l]f +)\.R Rl’l,
where f (1) = e for all r € [0, 1]. Therefore,

1 ~ o~
(Vh,h) o= 5, iz + MR, RE) 1204,

which shows the positivity.

Thus, V is a positive Hilbert—Schmidt operator given by a continuous kernel on
[0, 1]%. If we denote by{v, k > 1} the eigenvalues of/, it is then well-known [6,
Proposition 10.1] that

(t ) dt =

o\»—-

0
P
k=1

Note that this value does not depend)on
On the other hand, for anye L?([0, 1]), j > 1 we have

l * EN
é(pR + (PR**)(h ®e;)(s)
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_ %{P << /e—aj(s—u)h(u)du> ﬁj R ej> + R[h X F*(ﬂj_lej)](s)}
0
_ %{ ( /e—a./(s—“)h(u)du> ® B (B F)e,
0

1

+> BB HFrej. ) ( /e‘“"(”_s)h(u) du> ® e,}.

i=1 S

Furthermore, observe that if we denote bﬁ(,j,k > 1} the L?([0, 1]) orthonormal
basis that diagonalize¥;, then {fk,j ®ej; j = 1L k> 1} is an orthonormal basis of
L?([0, 1]; H). So, since

(Bi(B™'F)ej,e;) =((B'F)e;, Bej) = (Fej, ),

o 1 X A
= Z <§(PR*+(PR*)*)(fk,j®ej),fk’j®ej>

L2([0,1]; H)

1 . A ~ A A
5 > (Rifejs fiphizon(Fej, )+ (R; fjs fr)zoa(Frej, e))
jk=1

Z(Fe]7e]>(v fkjafkj L2[0,1] — ZFej’ej Tr(V)
; =1

~
bl

™e L

1
(Fej,ej) = éTr(F).

NI -

j=1

The proof is now completed. O
Example 3.4. — Consider the case of an operdtowmhich is diagonal when expressed
in the orthonormal basi;; j > 1}. We denote by p;; j > 1} the corresponding set of
eigenvalues. Assume also the other hypothesis of Theorem 3.2. Then:
(i") the operatoiSpg+ is trace class if and only if is, and in this case, (6pg+) =
3 Tr(F);
(i") if 32,51 pj =+ocand}; , olp;l <+oo, then

. h _ .
lim v (¢") =0:
(@i") if 3,51 pj=—00 andzj,ppopj < 400, then

. hy _
Isl??) Ye(9") = +o0.
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Remark3.5. —
1. Notice that wherk =0, X — ¢" = WA*F . So, in the situation (ij we have that

P(IWAF |, <e)
e>0 P(|WAp<e)

and in the situation (if)

P(IWA*F < &)
e=0 P([[WA2<¢)

:+OO

2. Since we need 1 F to be a bounded operator, we assume, é%{-b< 0.

3. The conditions (), (ii’) and (ii') only involve the operato’, and none of the

operatorsA andB.

Proof. —SincePR*(h ®¢;) = p;(Ri(h) ® e;) and(PR*)*(h ® e;) = p;(R;(h) ® ;)
in our diagonal case, it is easily seen tak- is of trace class ift =3, ;> |pjvi ;| <
oo, where the family{v; ;; i > 1} denotes the set of eigenvalues of the oper&torAs
we have seen in Corollary 3.3, for any> 1, 37,5 [vijl = > s v = % It is now
easily deduced thap - is trace class ifand only i~ | p;| < oo.

Assume now that the operatS z+ is not trace class. Observe first that

(PR*(gr; ®e€)), &) ®61>L2([Ol PJ(Rjgkmgk,j)Lz[O,l]-

We can compute easily
1

Rige(s) = / e g (1) dr

N

Ay €7
= 2, 2

o+ Xp

— € % (xx,; COx ;) + o Sin(xx ;)))

Ay .
= m (-xk,j Cos(xk,js) +«; Sln(xk,js)) s
J k.j

(€7 (xx,j cOLxg ;5) + o SIN(xy ;5))

usingxy ; COS(xy ;) = —oj SiN(xg ;). Sincefol AZ sir(x ;s) ds = 1, we then obtain

1

R _ [ i?

(R;&k,j>8k.j) L2101 = m(xk j COS(x ;8) SiN(x j8) + o SINC(xy ;) ds
5 %t

1 A
= (ﬁsmz(xk,j) +O(j).

of +Xi 2
Furthermore, we have that fgr> jo
o
1
g < Z — < 2
k=1

2 .2 =
o ot
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for some positive constant&, andC, not depending orji. Indeed, the second inequality
is obtained using similar arguments that in (10). On the other hand,

PP r— D Dp——

o +ka o (G 1+ @+ 12 Jk11+k29”

00 00
1 1 1 Cl
_2/ 92 o 29n2 dx = .
“iy 1+ _jz 1 1+ o

"./’o

Using that sup; |[Ar il <2, and

o0

(PR™(grj®e)), g ® ej>L2([O,l];H)
k=1

AZ
= Z (—’fsinz(xk,j)Jraj), (17)
jk=1 ]+ kJ 2

we can prove that in the situation’Jilast expression is equal tpoo, since

o0

Pj
Z n 2 o) > ZC1PJ+ Z (Co—Cypj =
Jj=Jjo.k= 1a1 Y, j=Jo j=Jjo.pj<0
> : Az 2C
S (—k” sz(xk,j)) >=2 N pi>—oo,
joioiea @ X\ 2 %1 j>jo.pj<0
and
Jjo—1 oo jo—1

A2
(% Sinz(xk,j) + Olj)

o0
<2 Z p;l Z T
= k=1 Yk, j
In the situation (|||), by the same arguments, we can prove that expression (17) is
equal to—oo
The proofs of the conclusions of'fiand (iii') in our example are now straightforward,
invoking the second part of Lemma 2.50

3.4. Thegeneral case

In this subsection we deal with the case of a general funciorby means of
a linearization procedure, which is usual in Onsager—-Machlup type results (see e.c
[9]). Let us introduce first some notation: given a differentiable functforlH — H
andx € H we denote byD, S € L(H) the derivative operator af at x, and for any
differentiable functionT :[0,1] x H — H and & e L?([0, 1]; H) we define byD:T
the operator defined ab?([0, 1]; H) by ((D:T)(¥))(s) := (DT (s, ) (¥ (s)) for any
¥ € L*([0,1]; H).

The main theorem is the following:

THEOREM 3.6. —Assume thafH1) and (H2) are satisfied. Supposeis an element
of L2([0,1]; H), and ¢" is defined by(7) and F:[0,1] x H — H is a Lipschitz
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continuous function such tha = B~1F is CZ in x uniformly ins € [0, 1]. Denote
B71F(s,-) by P,. Let R be the linear operator defined in Theorg12 and denote by
P:L%([0,1]; H) — L?([0, 1]; H) the operator given by

(Pu®1))(s) =u(s)(Dgi ey P)(D), ueL?([0,1]), [ € H.

Assume finally thatSApR* is trace class and there exisis> 0 and a deterministic
trace class operatofl : L([0, 1]; H) — L?([0, 1]; H) such that, for any satisfying
l¢" —&ll2<r,

’<(D$ﬁ - D¢h ﬁ)R*W7 W>L2([O,l];H)’ < (fwa wl)Lz([O,l];H)’ (18)

foranyy € L2([0,1]; H).
Then

1
. 1 .
im y.(¢) = exp(—§ [ 18744080+ F (1.9 ®) = " 0]} a1 - Tr(spm) .
0

Proof. —Since (h1) and (h2) are satisfied, like in the proof of Theorem 3.2 it is enough
to study lim 0 E[exp(T)|[|W*1l> < e].
Taylor's formula for Hilbert space valued functions gives us

P(WA(s) 4+ ¢"(5)) = P (¢"(5)) + (D) P (WA(s))
1

+ (/(Dqsh(smwm)ﬁv - Dqsh(‘v)ﬁv)d’\) (W(s).
0

ThenT; := Tl(c) + Tl(d) + Tl(e) with

1

Ty = / (B(¢" (). dW(s)),
0
1

Ty = / ((Dyrisy B (WA (5)). dW (s)).
0

1 1
Tye) = / < ( / (D gi (54w (s) Ps — Dd,h@ﬁs)dA) (WA(s)), dW(s>>.
0 0

Since P is CZ uniformly in s, P(¢") € L%([0,1]; H) and we can deal with,,,
applying Lemma 3.1.

The term Ty, can be handled in much the same way Zag, in the proof of
Theorem 3.2, the only difference being in the analysi#gf, (i.e. the dependence an
of the operatod)q,h(s)ﬁs), but note that the structure of the proof is still valid. Similarly
to (13), Ty ) can be written
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Mk,
Tl(d) Z / Yk ]Ym 1<Mk j? R 8m, ’>L2[O,l]
ky j)m iy Homd

+ Z Z(Ykz,j - 1)<Mlg,jv Rjgk,j>L2[o,1]’
=1 k=1

with M,’;’j(s) = ((P(gk,j ®ej))(s),e). Since
<M;( It Rigm,i>L2[0,l] = <P(gk,j ®ej), Rigmi® ei>L2([O,l];H)’
proceeding as in Theorem 3.2 we can then obtain
E[exp(Tya) | [|WA|, <e] =exp(—Tr(Spro)) E[exp(Tya2) | [|[WA],<e], (19)
with

Tl(d»2): Z Yk,ij,i<(U*PR*U)(gk,j ®ej)v 8m,i ®ei>L2([0,l];H)
(k, j),(m,i)

whereU is defined in the proof of Theorem 3.2 and by Lemma 2.5

lim E[exp(Tia.2) | [ W], <] =1

Finally we have to study?,. We will follow the method used in [11, Theorem 4.1].
Setp* = ¢" + AWA. Just like in the case dfy,), we get

1 1
/ < / (D) Py —D,,)h(‘v)ﬁs)dx)(WA(s>),dW(s)>
0 0
1
:/ Y Yo YuiT{ ) oy dr — /Z Gnkpd
0o k.j),(m,0)

where
Té poniy = (U (D P = Dy PYR'U) (81, ® €)). 8m.i ® €0) 20,1511
SinceP; is C2 uniformly in s, we clearly have
(D5 P = Dy P < Clo* () — " (5)| 1y (20)
foranyy € H. So, fixedx, (k, j), (m,i) andw € €,
M 2w <e) T gy, omiy = 0
Because of (18), by a dominated convergence argument we can prove that

l o0 o0
A _
M 3w <) /Z > Tk dr =0.
0

j=1k=1
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Then, by Lemma 2.2, we shall have established the theorem if we prove that, for

all c e R,

im E <1 (21)

exp( / Z Yk}Y T()/:])(mt) )‘HWAH2<8

(k. j),(m,i)

But, by assumption (18) witky = >, ; Y; jhi ; ® e; we get,

E exp(/ Z YkJY T(;‘(])(ml)d)»>’“WAH2§8
0 (k,j),(m,i)

<E [exp(lcl > Yk,ij,if(k,j),(m,i)) ‘ WA, < 8]’
(k. ) m.i)

where

T(k,j),(m,i) = <T(hk,j X ej)7 hm,i ® ei>L2([O,l];H)'

Therefore (21) follows from part 1) of Lemma 2.50

Likewise in the linear case, in some situations we can express the trateoin
terms ofV, F and¢. We give this result in the next proposition.

PrROPOSITION 3.7. —Assume the assumptions of Theorg® If for any s € [0, 1],
V. F(s, ¢"(s)) is a trace class operator anjf\i)1 TI[V, F(s, ¢"(s))]1ds < +oo, then

1
1
Tr(SPR*) = E/TI’[VXF(S, d)h(s))] ds
0

Proof. —Notice that (Dyi,Py)e; = (B~1V,F(s,¢"(s)))e;. Following the same
computation we did in the proof of Corollary 3.3 we have

S

PR*(f® ej)(s) = ( /e—aj(S—u)f(u) du> B; (B_leF(s, ¢h(s)))ej
0

S

:Z(/ —Ot/(S u)f(u)du>,3]ﬂ <V F( ¢h(s))ej,ei>€i

and

(PR (f ®e€j)(s)=R[f(s)[VF(s,¢"(5)] (B} "¢;)]

00 1
=Z (/ —a; (u— Y)f(u) [V F( ¢h(”))]*€j,ei>du>ei_
i=1

s
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Let { fi; k > 1} be an orthonormal basis ([0, 1]). Then{ f; ® ej;j=Lk>1}isan
orthonormal basis of.2([0, 1]; H). SinceSpx- is a trace class operator

Tr(Spre) = _U;
j=1

with

o
U;=> (M fe. fidrzqo.m

k=1
whereM; denotes the operator defined DbA([0, 1]) such that

1
1
Mif(s) =5 l / (€707 f ) (V. F (5, 9" (5))e;, ej) L0, (1)
0
+ e Fu)(VF (1, ¢" u))e;. ;)L 1)) du

1
:/I?j(s,u)f(u)du
0

with
~ 1
K;(s,u)= ée_“fls_”|<VxF(u Vs, ¢"(uVs))e;,e;).

Clearly, sinceSpg+ is a trace class operata¥{; is a trace class operator for afy> 1,
and as an operator given by a kernel[@1]?, its trace is given by the integral of the
kernel on the diagonal, that is

1 1
~ 1
Uj =Tr(MJ)=/K](S,S)dS=§/<vxF(s7¢h(s))ej’e]>ds
0 0

So,

NI~

o0 1 1
Tr(Spg+) = Z /<VXF(S, ¢h(s))ej, ej)ds = }/TF[VXF(S, (,bh(s))] ds. O
=170 2 0

Remark 3.8. — In order to stick to the finite dimensional case, we proved our result for
a function F depending only om € [0, 1] andx € H. However, the proof would remain
the same for a functiod satisfying

1. F:[0,1] x L?([0, 1]; H) — L?([0, 1]; H).

2. BYF(¢,.): L%([0,1]; H) — L?([0, 1]; H) is C? uniformly in ¢ € [0, 1].

3. Forallr €[0,1] and¢ € L2([0, 1]; H), F(t,&) = F(t, £Lj0.).
The last condition is imposed to get an adapted solution to the evolution equation, an
corresponds to the usual coefficients depending on the whole past of the process.
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Example 3.9. — Supposéf = L?([0, 1]) with Neumann boundary conditions, that is
') =u'() =0, A=A, B=1d, and F:[0, 1] x L*([0, 1]; H) — L*([0, 1]; H) is
given by

1/2 1
[F(, 8], %) = f (0L 1,()1(x) + f ( / dv / dy&(v, y)) 11.4(010),
0 0
wheref :R — R is aC? function. Then the conditions of Remark 3.8 are satisfied.

Proof. —We shall concentrate on condition (18), the other ones being easy to verify.
Under the assumptions of our example,= F, and the operatoR* is given by
[R*(u ® ej)] = Rju ® e, for all u € L*([0, 1]) andj > 0, with

s

[Riul(s) = /e‘jz(s_’)u(t)dt, 1 €0, 1],

0
ande; (y) = co2rjy) for all y € [0, 1]. For& € L2([0, 1]; H), set

12 1

o) = [ dv [ayew.y.
0 0

which defines a linear functional on L?([0, 1]; H), and let us denote by, ¢ the
guantity

Sne = f(L(&)) — f(£(¢"))-
Then, for anym € L([0, 1]; H), we have
(D F — D¢hF)R*m’m>L2([Ol'H)|

/2 1 1
= |8ph ¢ //R m(v, y)dvdy//m(v y)dvdy
0 1/2 0

<20 f oo (T R*m, m) 120,11,
whereT is defined onL%([0, 1]; H) by

T& =01y @1

It is then easily seen thaf is a trace class operator in the sense of [1]. SiR¢ds

a bounded operatof R* is also trace class, and thus compact. Heitg,. can be
diagonalized in an orthonormal basis, and setting fow |S~ .|, we get a positive
trace class operator such that

TR*

[((DgF — Dy F)Rm,m) 20 1. 1y | < 201 f oo (T, m) L20,13: 1)
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which shows that condition (18) is fullfilled. Furthermore, since

[F(t,8)](t,x) = f(OLg 1,()1(x) + f(£E)) L1 1y ()1(x),

1
25

NI

itis easily seen thak (¢, .) is aCZ(L?([0, 1]; H)) function, uniformly inz € [0, 1]. O
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