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ABSTRACT. — We derive deviation inequalities from non-asymptotic bounds of the log-Laplace
transform of a function oN random variables. We assume either that these random variables are
independent or that they form a Markov chain. We assume also that the partial finite difference
of order one and two of the function are suitably bounded, or more generally that they have som
exponential moments. The estimates we get are sharp enough to induce a central limit theore
whenN goes to infinity and to prove non-asymptotic “almost Gaussian” deviation bounds.
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RESUME. — Nous démontrons des inégalités de déviation & partir d’estimées du logarithme de
la transformée de Laplace d’'une fonction Nevariables aléatoires. Nous supposons soit que
ces variables sont indépendantes, soit qu’elles forment une chaine de Markov. Nous supposo
aussi que les différences finies partielles d’ordre un et deux de la fonction sont convenablemel
bornées, ou plus généralement qu’elles ont certains moments exponentiels. Nos estimées s
suffisamment précises pour induire un théoréme de la limite centrale quentd vers I'infini
et pour prouver des inégalités de déviation “presque Gaussiennes”.
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I ntroduction

We are going to give “almost Gaussian” finite sample bounds for the log-Laplace
transform of some functions of the typ& X, ..., X»), where the random variables
(X1, ..., Xy) are assumed to be independent, or to form a Markov chain.

We will use throughout the paper a normalisation that parallels the classical case o
the sum

1 N
—— N,

of real valued random variables. As is usual in these matters, we will deduce from
upper log-Laplace estimates finite sample almost sub-Gaussian deviation inequalitie
for f(Xy,..., Xn). We will also obtain that the central limit theorem holds wh€n
goes to infinity. Although limit laws are not the main subject of this paper, they will be
a guide for using a relevant normalisation of constants.

To make sure that this is feasible, it is necessary to make assumptions not only on th
first order partial derivatives (or more generally first order partial finite differences) of
f, but also on the second order partial derivatives (or more generally on the second orde
partial finite differences) of . Indeed, the simple example of

f(Xla--wXN):g(\/iNng),

should immediately convince the reader that Lipschitz conditions are not enough tc
enforce a Gaussian limit.

A proper normalisation being chosen, we will be interested in expansioﬂs‘i%ff
f(Xq,...,Xy) —E(f(Xyq,..., Xn)) of the type

2
logE(exp(r2)) = %V(Z) +--,

wherex is “of order one”,V(Z) = E{[Z — E(Z)]?} and the remaining terms are small
whenN is large.

Our line of proof will be a combination of the martingale difference sequence
approach initiated by Hoeffding [6] and Yurinskii [21] and the statistical mechanics
philosophy we already used in [4]. The martingale approach to deviation inequalities
is also reviewed in [10, p. 30] and [16]. More precisely, we will decomp@sto
its martingale difference sequenge= Ef\':lFi and we will take appropriate partial
derivatives of the log-Laplace transform

N
(M, ooy Ay) > IogEexp(ZkiF,-)

i=1

We will consider first the case @fidependentandom variables(s, ..., Xy, ranging
in some product of probability spacé®’, (X, B;, i;). In the first section, we will
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assume that the partial finite differences ofx1, ..., xy) of order one and two are
bounded. In the second section, we will assume that they have exponential momen
instead, and in the third section, we will study the case of Markov chains.

1. Bounded range functionals of independent variables

Let the collection of random variable¥ = (X, ..., Xy) take its values in some
product of measurable spac@f\':l(%,-, B;). We will assume in the following that
(X1,...,Xy) is the canonical process. L& = @, u; be a product probability
measure o, (X;, B;).

For any bounded measurable functinof (X4, ..., Xy), we will define the modified
probability distributionPy, by

dPy = M dP,
E[exp(W)]
and we will use the notatioRy, for the expectation operator with respectfty.

On the other hand, i is some sub-sigma algebra &, %B;, thenES will be used
as a short notation for the conditional expectation with respegt to

As (E3)y = (Ey)3, we will simply write E, for this conditional expectation which
we can more explicitely define as

E[U exp(W) | §]
Elexp(W) [ 31

Note that we haveEy (E) = Ey, whereasE(ES) # Ey and Ey (ES) # Ey in
general. In the same way we will use the notafion(U) for Ey {[U — Ey (U)]?} and
the notationM3, (U) for Ew{[U — Ew(U)1®}. Note that for any bounded measurable
function W,

ES (U) =

ad
m log{E[exp(AW)]|} =Ey (W),

2
% log{E[exp(AW)]} =V (W), and
83
e log{E[exp(AW)]} = M}, (W).

Foreach =1,..., N, let3; be the sigma algebra generated(i%, ..., X;) and let
®; be the sigma algebra generated(&y, ..., X;_1, Xix1,..., Xn).

To stress the role of the independence assumption, we will put the superscript
the equalities and inequalities requiring this assumption.

Let us introduce some notations linked with the martingale differences of a boundec
random variablé¥ measurable with respect §y. We will put

G;(W)=W —E® W),
F(W) =ES (W) — ES—(W)
L B (G)).

I on



4 O. CATONI/ Ann. I. H. Poincaré — PR 39 (2003) 1-26
As we explained in the introduction, we will study the log-Laplace transform of
Z=f(X)-E(f(X))

of some bounded measurable real valued funcfiof]"_; X; — R. We will decompose
Z into the sum of its martingale differences

N
z=3) F(2),

i=1

and use the short notatidfy = ESi (Z).
In this context, it is natural to assume that for some positive consBnty =
1,...,N,forany(xy,..., xy) eHj\'zlaej, foranyi=1,..., N, anyy; € X;,

i

f(xlv"'va)_f(xlv"'vxi—lvyivxi-‘rlv"'7xN)<ﬁ'

The reader should understand that we are interested mainly in the case when tt
constantsB; are of order one. Although all these scaling factors are not really needed for
finite sample bounds, we have found them useful to indicate what should be considere
to besmalland what should not.

To ensure thatf (X) is almost Gaussian, we need to make also an assumption on
its second partial differences. This corresponds to conditions on the second partic
derivatives off in the case when the random variab(és, ..., Xy) take their values
in some finite dimensional vector space, are bounded,faisca smooth function.

For simplicity, we will use the short notatior’ for (x1, ..., xy). Let us put for any
.XJI_V € H;V:J_%jv anyy; X;,

Aif(le_va yi) = f(xf’) - f(xi_17yi’xﬁ1)-

For a fixed value ofy;, A; f may be seen as a function ef, and when we will write
AjA; f(x), v, y;), we will mean that we apply ; to this function and to);. (A more
accurate but lengthy notation would have beerA; f (-, y))(x), y;).)

Let us assume that for some nonnegative expoggfar anyi # j, for some positive
constaniC; ;, and for anyx e [T, Xi, yi € X1, y; € X5,

C: .
AiAjf(xiV7 )’17 yl) g N3/12j_§ .
Note thatA;A; f(x, yj. i) = A;A; f(x), yi, y;) and therefore that we can assume
thatC; ; = C; ;. We will moreover assume by convention tidat = 0.

The normalisation is made so that= 0 corresponds to the case of

X X
f(Xl,...,XN):\/Ng<Wl,...,WN>,
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whereg:[0,1]Y — R is a smooth real function oN real bounded arguments with
bounded first and second partial derivatives.
Another class of functions satisfying these hypotheses are the functions of the type

1
fx) = N32 Z Vi (xi, x;5),

1<i<j<N

wherey; ; are bounded measurable functions. Hgee 0, and we can take

(Z||w,,||oo+2||w,,||oo)

J<i Jj>i
and
Cij=Cji=4Vijllc, i</
More generally

fx) = NYZET Z Wiig,oi) Xigs o os X4,

1<it<<iy <N

also satisfies our hypotheses, when the functipns. ;. are bounded.

.....

THEOREM 1.1. — Under the previous hypotheses, for any positiye

)\.2
IO exp( (X)) ~ AE(f (X)) — = ¥ f(X))’
< 23 BCB A3 ;
SN AN TN — 3N’

COROLLARY 1.1. —Thus f (X) satisfies the following deviation inequalities

2
P(f(X) > E(f(X)) +e¢) <exp< Z(V(f(X)g)Jr )>
V(f(X))

2
P(f(X) <E(f(X)) —¢) gexp( 2(V(f(X)8)+ )>
THE)

with
1 B/CB N B3
INL/2-¢ N2 «/— Z N

Remark1.1. — We obtain for some constaik dependlng on max;<y B; and
max; j<n Ci j, but not onn, that

T]:

K23

logE exp(if (X)) — AE(f (X)) — _V(f( )| < S N2

Therefore if we consider a sequence of problems indexed bych that the constanis
andC; ; stay bounded, and such thé( f (X)) converges, we get a central limit theorem
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as soon ag < 1/2 (with the caveat that the limiting distribution may degenerate to a
Dirac mass if the asymptotic variance is §XX) — E(f (X)) converges in distribution
to a Gaussian measure.

Remark1.2. — The critical valug. = 1/2 is sharp, since when

f(X)zg(Tlﬁéxi),

the central limit theorem obviously does not hold in general, @aadl/2.

Proof. —After decomposing into the sum of its martingale differences, we can view
the log-Laplace transform & as a function ofV equal “temperatures”:

N
logE exp(AZ) = IogE(exp(ZA,-F,-(Z))), ri=Ai=1...,N.
i=1
The first step is to take three derivatives with respect;tofor i ranging fromN
backward to 1:

A
IOgE expirz;) = |OgEeX[XkZi_1) + /EAZ;_1+aFi(Z) [E (Z)] do.
0

Therefore

N A
logEexpAZ) = Z/EAZ;_1+(1F,-(Z) [Fi(Z)] da
=19

N
=1

A
=3 [ G BVizsprin [Fi2)] dp
=179

2

>

(A—y)?
2

Mz iy r [Fi(D)] dy.

.Fﬁz

I
N

A
E., . [F(2)) + /
0

1

Thus, using the fact that for any real random variable

E{[¢§ - E(S)]B} < 2l& B [& - E(E)]Z} <2lEE(E) <2013,
we obtain
LEMMA 1.1.—
2 N N 33B3

A
IOgEeXFX)»Z) — ?ZEAE&*I(Z) [E(Z)z] < ZW
i=1 i=1
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Remark1.3. — The upper bound can easily be improved in the following way: notice
that for any nonnegative, E; 7, .+, r)[Fi(Z)] > 0, because this expression is equal
to zero wheny = 0 and is nondecreasing with respectjto As moreover for any
real random variable — E[(¢ — r)®] is nonincreasing, we see that whEg) > 0,

E{[¢ —E&)®} <EE3) < |£]13,. This shows that indeed

)\2 N )\333
logE exp(r.Z) — ZEME& Lo [Fi(2)?] < Z SN

To proceed in the proof of Theorem 1.1, we have now to approxitbgie, [ F; (Z)?]
by E[F;(Z)?], in order to get the variance &f, that can be written as

N
Y E[Fi(2)?].
i=1

Let us put for shor¥; = F;(Z)? and let us introduce its martingale differences:

i—1

Eiz o [Vi—E(V)] =) Bz, [F;(V)].
j=1

To deal with thejth term of this sum, we introduce the conditional expectation with

respect tad;:

=E® [Fj (V)] +/EaG (Zi_ 1){Fj(Vi)[Gj(Zi—l)
—_—

—O
&
— Eaé_/(zi—l) G] (Zi—l)] } da. (1)
As a consequence, letting = F;(V;) andW = (G,(Z;_1) — aG (Z G,(Zi_1) and
applying the Cauchy—Schwartz inequality, we get

E®
’Exz LLE ]| /\/ oGz (U Eo (7, (W?) da.

Reminding that we are analysing the case wjeni, we can now observe that
G(Zi—1) =ESG(2),
and therefore that its conditional range is upper bounded by

esssupG;(Z;_1) | ;) —essinfG;(Z;-1) | &;) <

B

2
This implies that its variance is bounded gy
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(Let us remind that by definition, for any real random varialdeon a probability
space(2, §, P), and any sub sigma algeb&ac 3,

def

esssupW | &) = sup{r e R: P(W > A | &) > 0}.

It can equivalently be defined by the relation
{esssupW |®) > A1} ={P(W >1|®8) >0}, 1eQ,

which shows that it belongs ©°($2, &, P) — the set of measurable functions factorised
by almost sure equality with respect & Here and below, inequalities involving
conditional expectations and conditional essential suprema and infima are meant withot
further notice to hold almost surely.)

Let us consider now on some enlarged probability space two independent randor
variables X! and X;, such that(Xl,...,XN,X;,le) is distributed according to

g ik ® i ® w;. We have
Fi[Fi(2)°) = Fi{ [ES [A 7 (XY XD]))
Moreover for any functiork (X1),
|Fy (XD = [ES A h2(XY, X))
= |ES {[n(x{) +h(X{ X, XN D] ARXY, X))}
< 2esssufi(X)| ES/|Ah(Xy, X5)].
Applying this toh(X) = ESi (A, f(XY, X)), we get

2BiCi,j
N2t~

B; .
|F;(F;i(2)%)| < 2ﬁE@f B3 A A f(XY, X[, X)| <

Therefore
B,’ Ci,j Bj
N5/2—; :
This, combined with Lemma 1.1, ends the proof of Theorem 1.1. The derivation of its
corollary is standard: it is obtained by taking

Bz, . F; (V)| <A

&
)\, = )
V() +ne/V(f)
and by applying successively the theorenytand—f. 0O

2. Extension to unbounded ranges

The boundedness assumption of the finite differencesf ofan be relaxed to
exponential moment assumptions. To achieve this, we will suitably modify the bounds
of the previous section, still assuming thats bounded, and will afterwards let more
general functions be approximated by bounded ones.
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THEOREM 2.1. —Let A be a positive real constant. L@f\’zl(%i,%i,ui) be some
product of probability spaces. Lete L? (Q._;(X;, B;, ;) be such that

E{exp[rf(X)]) < +oo,

whereX = (X3, ..., Xy) is the canonical process. L&, ..., Xy, X3, ..., X)) be the
canonical process o(®f\’:1(3€i, B,))®? and letE be the expectation with respect to the

probability measurg®?"_; 11;)®? defined on this enlarged space. Let us introduce the
short notations

A=A f(X),X), 1<i<N,
Aji=A0Af(XY, X[, X)), 1<j<i<N,

N2
d)(r):exp(r)—l—r—%:/(r Zu) exp(u) du,
0

and let us decide by convention titak (+o00) = +oo. Then

)\‘2
logEexpAf (X)] — AE[f(X)] — EV[f(X)]’

N
<5 esssufE® [@(A|A;])]
i=1
N i-1

+V2023° Y esssufE® (A2)] " ess sufEdi (A2 )]V

i=1j=1
x essSUPE®/ [A|A | (exp2r]A ;) — 1))},
Let us begin with a lemma.

LEMMA 2.1. —In the case wherf € L*°,

2 N N
logEexp(AZ) — K—ZEAZ, [Fi(2)?]| <5 _esssuEs @ (x|F(2)]).
i=1 i=1

Proof. —We can notice that for any bounded real random varigble
E{[§ —E®} <E[£]¢ — EE)?] +E(EDE[¢E — E©))?]
<E(&1®) + 2BEDE(ED) + E(ED® + E(EDEE?)
<BE(E]%).

(Indeed E(£H)E(|£]) < E(J€]%), from the convexity ofg: B — log[E(|£]#)], which
implies thatg (1) — g(0) <g(3) — (2).)

Coming back to the proof of Lemma 1.1 we can write the following chain of
inequalities:

A
(A —y)?
‘/ 2 Mizi,1+VF,‘(Z) [E(Z)] d]/
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A
5
< EO/()\ - V)ZEAZ;_1+yE(Z)(|F}(Z)|3) dy
5 A
< Ekzi_l{ > / (h — )’ ES-t[exp(y | F;(2)|) | Fi(Z) ] dy}
0

A
5
< jess SUfESi-1 ( / = VAF(Z2)Pexp(y | F(2))) dy)-
0

(As in the case of Lemma 1.1 — see Remark 1.3 — the upper bound can be improvec
noticing that for any real random variabtR{[¢ — E(£)]°} < E(¢°) as soon af(¢) >
0) O

Proof of Theorem 2.1. ket us prove the theorem first wheghe IL*°. In addition to
those introduced in Theorem 2.1, we will need the following short notation:

A=A ((Xn e X X XN XD, 1<) <i <N
Let us come back to Eq. (1) and notice that
, . J .
Fj(V) = ES [ES (A + A)ES (A})],
G(Zi1) =ES(A)),
and therefore, from the Cauchy—Schwartz inequality and the convexity-of-2, that
, J\291/2 12
[F )] < (B3 [(a+ 20) ]} P [ES (82,))7

We can thus bound the integrandlb(‘f-jf(zi_l) in the last term of Eq. (1) by

’F (V)[G (Zi-1) — G (z, l)G (Zi- 1)” SAXB,
where

A=[ES (Aii)]l/z exp[_ng(Zi—l)],

B =exp| 36,20 (Y [(&: + A1} YH{1G (20| + [EE) s, G-}

Applying the Cauchy—Schwartz inequality and noticing that for any real random variable
& such that(¢) > 0,

E[expa§)] = explaEE)] > 1,
we get

A
&; 121 ®; 1/2
|Exzi,1 [Fj(‘/l)] ’ < E)»Zil{/ [Eanj(Zi—l) (Az)] [Ea(]}j(zl‘,]_) (Bz)] da}
0
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A
s E{/ {E® [explaG; (7, )] AZ]}” [Efé,<z,.l><32>]”2da}
0

X /{Efé,-(z;_l) [exp(@G(Zi-1)) [G(Zi-1)?
0

FESL 0 Gz }”Zda}

x [essSUES/ (A?) + ess SUES/ (&2)] vz

where we have also used the fact that- b)? < 2(a? + b?). To simplify the bound, we
can now notice that for any random variablsuch thaft(£) > 0, [E(£)]? E[expa£)] <
E[£2expaé)] (becausgE(£)]? < [Eq: (6)1% < Eque (62) which is the inequality we seek).
We can also notice that
esssufiES/ (A2) = essSUES’ (A2) < essSUE® (A2).
These two remarks lead to
[Esz, o [Fi (VD]

< 4Exz,»1{ [Eg’;l (Afzﬂ i

A
« [{2% [exn(22G, (2, 2)G (710 }”Zda} lesssuE® (a7)]""2.
0

Remembering thaG ;(Z;_1) = ESi-1(A), using the convexity of > r?exp(2ar) on
the positive real axis and another round of the Cauchy—Schwartz inequality, we get
A

/{Eéi [exp(20G;(Z;_1))G;(Zi_1)?] }1/2d0t
0

]\
< \@{Eﬁfﬁ,&—l [(exp21|A;]) — 1)1A,[]} 2

/2
< E{GSSSUFTE®j [(exp21lA;]) — 1)1A,(]}2.
Thus

Bz, [Fi (VD]
<2V2E;7, {[ES(a2))]%}
x {essSUE® [A|A;|(exp21|A,]) — 1)]}7*[ess sue® (a2)] ",
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This combined with Lemma 2.1 proves the following slight improvement of Theorem
2.1 in the case wheyi € L°°:

2

A
‘IogEexp[Af(X)] —AE[f (0] = ZV[f(X)]

N
<5) esssufEs [ (x|A])]
i=1
N i-1

+/223° 3 esssufiE® (a2)]V7E Z,-,l{[ESj_l(Aiiﬂl/z}

i=1j=1

x essSUPE®/ [A|A | (exp(2x|A,]) — 1)] 12,

(@)

When f satisfies only the weaker assumptions of Theorem 2.1, we can introduce the
bounded functiong’” (X) = min{max f(X), —T}, T}, T e N.

The terms of the left-hand side of Eq. (2) fgi’ converge from the dominated
convergence theorem to their counterpart fotndeed

exp[rfT (X)] < max{1, exp[Lf (X)]} € LY,
OOl I fF (X)) e L2,

In the right-hand side, we can use the bounds

A FT(X, XD| <

and apply the dominated convergence theorem to prove that, introducing the notations
A] l(f) =A Alf(X7 X/a X/)a
Zi(f) =ES[f ()] = ELf (X)),
Am Bz o {ES 2 ([Ag DY) =Baz s { B9 (141 (O],

as soon as esssBY (A?) < +oo (in the other case, Theorem 2.1 is trivial). Indeed
Eiz 1p= EAEgi—l[f(X)]’

exp[AES 1 (fT(X))] < max{1, ES[exp(Af(X))]} e L
and, puttingA, (f) = A, £ (X', X2, (S0 thatA ,; (f) = A (f) — Ai(f)),

52 (1A (1)) < 28572 (A (fT)2 + Ai(fT)?2] < AesssUBE® [A; (/).

This proves that inequality (2), and consequently Theorem 2.1 which is weaker, hold:
for f. O
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3. Generalisation to Markov chains

We will study here the case whéi,, ..., Xy) is a Markov chain. The assumptions
on f will be the same as in the first section. Therefore we will assume throughout this
section that

B;

Aif(xiv, yi) <

and that

)

AN (13 3)) S s ISU<iSN.

When the random variable€X, ..., Xy) are dependent, we have to modify the
definition of the operators;;(Z) and of the sigma algebras;. Indeed to generalise
the first part of the proof we would like to have the identity

ES(G(2)) = F;(2),

wheregG; is “as small as possible”. This identity does not hold in the general case with
the definition we had fo6;, so we will have to change it.

To generalise the second part of the proof, we need to consider a new definition of th
sigma algebrab ; for which

E®i (F;(W)) =0,

andZ —E®i(Z) is as small as possible.

We propose a solution here where the two objegtand & ; are built with the help
of coupled processes. This use of coupling was inspired by the works of Katalin Marton
[11-13].

Let us remind first some general facts about maximal coupling: given some probability
space(2, &), and two probability measurgs and v on (2, &), a maximal coupling
betweenu andv is a probability measure on (2 x 2,6 ® &) such thato(dw1) =
w(dwy), p(dwy) = v(dw,) and p(w1 = wy) is maximal (wherev,; andw, are the first
and second coordinates éhx €2). In words, a maximal coupling is a joint distribution
with prescribed marginals and a maximal weight given to the diagonal. The maximal
Weightdof the diagonal is obviouslge A v)(2), whereu A v is defined asi(u A v) =

" dv

min{m, m}d(“ + v) and is necessarily the trace of any maximal coupling

distribution on the diagonal; it is also related to the variation distdhce- v|var def

%m — v|(R2) betweenu andv by the formula(u A v)(2) =1 — || — v]lvar- A maximal
coupling betweerw andv is not unique (its off diagonal behaviour being arbitrary, as
long as the marginal constraints are satisfied), however one possible explicit constructio
is the following: consider on the product spagex Q x [0, 1], 52 ® B), whereB is

the Borel sigma algebra, the product probability meaguge||u — v||\7alr(v — iU,
where(v — u). =v — (v A ) is the positive part of the signed measure- 1 and
whereU is the Lebesgue measure i 1]. Let (w1, w2, ) be the three coordinates of
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(2 x  x [0, 1]) and define the random variablﬁsd:efwl, T =F(W, (w2, 1)), Where

w ifr< d(s—ﬁ")(a)l),

_ (w1, w2) € Q%, r €0, 1], (3)
w> otherwise.

F(wy, (w2, 1)) = {

Then it is elementary to check that the distribution(®f, 7') is a maximal coupling
betweernu andv, equal indeed to

(ke AVYAW)3w (@T) + |1t = vilar(pe = 1)+ (@W) ® (v — ). (dT). 4)

We will define auxiliary random variables that will be coupled with the process
(X1, ..., Xy) in a suitable way. For this, we will enlarge the probability space: instead
of working on the canonical spacg[\; X; ., B;), we will work on some enlarged
probability spacg<2, 2B), where we will jointly define the proces¥y, ..., Xy), and

N other processe{sil/y:l; i =1, ...,N} that will be useful for the construction of
the operatordG;; i =1,..., N}. In the following the symbolE will stand for the
expectation orf2.

The basic construction of coupled processes we will need is the following: we
consider, on some augmented probability spaze N + 1 stochastic processes

(X1,...,Xn) and{(f/l, el ll/N); i=1,..., N} satisfying the following properties:
e The distribution of eachl’ is equal to the distribution aX.

Almost surelyyi ™ = xi1,

GivenX, theN processefsf/; i=1,..., N} are independent.
GivenXxi™, f/{v is independent ok; (but not of X", ;, the interesting thing will be

on the contrary to have a maximal coupling betwéféim1 andXx},).
The general method to build such processes is the following:

e Choice of Q: Take for @ the canonical space ofX}, (f/j\’zl)f"zl), that is
(RN ,(%:,B,)® NV For any random variabl& defined ong2, we will use the
notationP(dW) to denote the distribution ofV. We will assume without further
notice that all the conditional distributions we need exist and have regular versions
This will always be the case when we deal with Polish spaaes®;) (see [17,
p. 146]).

e Construction of the distribution of the pa{X, f/): We are going to construct the
joint distributionP(d X, df/) of X andy by defining each term of the decomposition
into conditional probabilities

. . N . .
P(dX,dy) =P(dx; Pyt | XY [[Pax;,dy; | X vi™).

j=i

(All the conditional distributions present in this definition are assumed to exist and
have regular versions, which is always the case when the base sffac®s) are
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Polish). _ ‘

The distributionP(d X ™) is given. We defin@’(df/;;ll | Xi™1) by letting y' ! =
xi~t as.

For j =i we build the conditional distribution

P(dX;.dy; | X{ ™ v
by putting
P(dX;.dy: | X8 ¥ich) = P(dX; | X7 @ P(dY, | vi7h).

whereIP’(d)?,- | 1;"1‘1) is defined by the requirement that the margﬂﬁedl);) be the
same a®(dX). For eachj > i, we choose for

P(dX;.dy; | Xyl
some maximally coupled distribution with marginals

{IP’(de | xi7 1, f{‘l) =P(dX; | X{_l%
P(dy; | X] ' vih) =Py, | v]h),

where the second marginal is defined by the requiremenM) be the same
aslP(dX). (An explicit construction of a maximal coupling distribution is given by
Eq. (4)).

e Last step of the constructio®nce we have built the distribution of each couple
of processe®(dX, dY), separately for each, we build the joint distribution of

(X, f/ i=1,..., N)onits canonical space. For the time being, we will not really
use this joint distribution, but it is simpler to deal with one probability sp2ce

than with N probability spaces?;, so let us say thaf?(d X) and}P’(df/ | X) being
defined as previously explained (on separate probability spaces), we let

1 N i
P(dX.dY.....dY) =PdX)QP(dY | X),
i=1

on the joint probability space®’ (X, B;))®V+D,
It is immediate to see from this construction that

P(dX;,dyY | Xi ™) =P(dX; | X, YP(dy; | X\ DPy N, | XL, v))

P(dX; | X Y)P(dy; | X P(dyY, | YY)

P(X; | XY @ Py | vih). (5)
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This proves that conditionally ofX4, ..., X;_1), the random variablg; is independent
of the sigma algebra generated (dy e, f/N).

Remark3.1. — We have also exactly in the same way
PdxY,dy; | XY =PdxY | XY @P(dy; | v, (6)

Remark3.2. — Instead of building distributions on the canonical spa((é(of/) we
could also have bunY as a function ofX and auxnlary random variables, in the spirit of
formula (3). We could thus have reallze@Ll, . YN asYk = F. (X, o), Where each

random variabley, is independent oX,, conditionally on(X’{‘l, f/’{‘l). However, this
construction would not help much in proving the conditional independence statement:
of Egs. (5) and (6).

As in the previous sectiong; will be the sigma algebra generated @Y., ..., X;),
and we will put

Z(X)=f(X)—E(f(X)).
For any bounded measurable functiogX) we will define
G (h(X)) = h(X) — E3* (h(y)),
Fi (h(X)) =E% (h(X)) — ESi1(h(X)) = ES (G, (h(X))).
The last line holds because
ESES (h(Y)) =E(h(Y) | X1..... X;)
=E(h(Y)| X1..... Xi_1)
=ES-1(h(X)).

Remark3.3. — In the case when the random variabYa_s ., Xy are independent,

we can take foyl an independent copy &f; and we can pu1/l+l = X}, a.s. With this
choice, the definition o&;; given here coincides with that given in the first section.

We have
5 i s (s 5
Gi(Z)| = |E3V (f(X) — <E®Y 1(X;
|Gi(D)| = E™ (£(X) = f(1)] (Zl 1)) W)
Consequently

. N i . B;
]F,-(Z)|<esssumg'<;1X #Y;) ﬁ)
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Let us introduce the notation

N
E,-:esssuﬁi(ZlX ;EY] )B; |5, Y ,-). 7)
j=1
We have established that
|Fi(2)| < B
1 ~X \/ﬁ

We can now proceed exactly in the same way as in the independent case to prove that
LEMMA 3.1. -

)\‘2 N N ABBB
logEexp(AZ) — ZE ESi- 1<Z)(F(Z) <z:3N3/2

To go further, we would like to bound

E, 5512 (Fi(2)?) = E(F:(2)?),

which we will decompose as in the independent case into

ZEAZ, [F (F(2)9)].

Among other things, we will have to bound ess $jpF; (Z)?). Let us start with this.
For any bounded measurable functiofX), we have

5, (h609)] = B9 (007 — ()|
= [ES (h(X) +h (NG = h(D)|

< 2ess suf(X)|E [h(X) — h(Y)].
We will apply this to h(X) = F;(Z), and in this case, we will try to express

h(X) — h(lj/) as a difference “of order two” of four coupled processes. Let us build
these processes right now, since we cannot proceed without them. We will call then

(X, Y Y Y) The distribution of(X, Y) and(X, Y) on their canonical spaces will be as
previously defined. Let us repeat this construction here, to make precise the fact that w
can build them in such a way that they satisfy the Markov property, wheboes:

o WebuildP@Xi ™%, dyi™ as}P’(dXi‘l)SXi_l(df/"l‘l), wheres, - is the Dirac mass
at pointxi~tin [I\22 %
e We then put

P(dX;.dY; | XiL viY) = P(dX; | Xi-1) @ P(dY: | Vi),
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and fork > i we buildP(d X, d)?k | (X, 1;)’?1) as some maximal coupling between
PAX; | Xi—1) andIP’(d)?k | );k_l), which we choose in a fixed way, independent of
(X, 1;)’{‘2. Thus built, (X, );) is a Markov chain.

e We build (X, 11?) in the same way, with the indexreplaced by;j. Then we define
the distribution of(ljf, 1;) on its canonical space to be the same as the distribution
of (X, 1?)

These preliminaries being set, we are ready to define the dlstrlbutloxi Qf f/ f/)

on its canonical space. Let us put for conveniefice- (X, Yk, Yk, Yk) We set

IP’(ka,dYk | 7571 = P(ka,dYk | Xi—1, Yk 1),

which we have already defined, and we take for
IP’(dll/k, AU, | 7571, Xi, I]/k)
some maximally coupled distribution depending only(@p_1, X, fk) with marginals

P(d)l/k | Xk—1, Ylk—la Xk)
and

i i j
P(dUy | Yi-1, Uk-1, Y&)
which we have already defined.

Remark3.4. — The processefs and)J/ are independent knowing, therefore this
construction is compatible with the previous one. Indeed

. . N . . PR
P(dX,d7,dy) = [ P(dXs, dVi,dYi | (X, ¥, )5
k=1
N J J i i
= HP(ka | Xe—D)P(dY i | Xi, Xp—1, Yie1)P(dY i | Xk, Xi—1, Yi-1),
k=1

thus
i N j j N i i
P(dy,dy | X)= HP(dYk | Xk, Xp—1, Y1) HP(dYk | Xi, Xp—1, Y1)
k=1 k=1
—P(dY | X) @ P(dY | X).

The following lemma will be important to carry the computations (let us recall that in
this discussior (X) defF (Z) and thatj < i):
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LEMMA 3.2.—
hX) =E(F(X) — £(7) | X1) = E(f(X) — £(¥) | X}, 1)
and in the same way
J J i J. j i ..
hY)=E(f¥)— f(¥) Y1) =E(f(¥)— f¥)| X}, V).
Proof. —Let us remark first that
E(f(X) | X}) =E(£(X) | XL ¥4).

becauseX , I )j/"l | X1), (we use this short notation here and below to mean thift,"

is independent of"l conditionally onX}”").
Moreover, from the construction of the coupled procEssve see that

i . J. i j j
P(dyY,dX},dyi) = [[PAXy | X—DP(d ¥k | Xe, Xk—1. V1)

k=1
i i N i i
xP(dYy | Xe, Xe—1, Yi—1) H P(dYk | Yi-1)
k=i+1
and therefore that
. . i . . N . .
l . J. 1 l 1 l
P(dyy | X1, V1) =] P@Yi | Xk, Xi1, Yier) [] P(dYi| Yio1)
k=1 k=i+1

=P(dy) | Xi).

As the couples of random variabléX, f/) and (jj/, f/) play symmetric roles (they
can be chosen to be exchangeable by a proper constructibntaft even without this

refinement, the proof applies mutatis mutandis when the rol¢¥ ,of') and()j/ , 11/) are
exchanged), we have in the same way

E(f(7) | X5) =E(/(7) | X1, 7}).

E(fW)| X}) =E(f(0) | Xy 7). ©

We deduce from the previous lemma that
ES [h(X) — h(7)| =ESI[E(F(X) — F(¥) = () + F @) | (X, 1)})|

<SES(|f(X) = F(F) = ) + £D)).
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To write the right-hand side of this last inequality as far as possible as a function of the
second differencea A, f, we need one more lemma: let us introduce the two stopping
times

=inf{k >i|Yi=X:),
Inf{k Jl Yk—Xk}
LEmMMA 3.3. —With the previous construction, we have

i

IP’(Uf-V=)l/f-V|rj<i)=1.
In other words, on the evelit; < i) it is almost surely true thaUN YN

. J .
Proof. ~We have obwouslyy% = Xg almost surely. Now when; < i, then a.s.

)j/i_l =X,_1= f/l-_l = (l]l-_l, and sollj,- andf/,- knowing the past are maximally coupled
and have the same marginals, therefore they are almost surely equal. Then we can cal
on the same reasonlng foe=i +1,..., N and thus prove by induction that for all these

values ofk, Yk = Yk a.s. O

Resuming the previous chain of inequalities, we can write, as a consequence of thi
lemma, that

ES h(X) — h(P)|

ZB . i
Pz, > i)\/ﬁl +ES (L <D FX) — f(X7 YY)

RGN IS AR St SIS Gl 20])

2B;
< IP’S/(IJ- > i)ﬁ (1(r] <)

Tj

. Jr:—1 i i

;-1

Z Akf ka Yk+1) Yk)

k=i
ri—lf'—l i

J 1 i
14 J
SN AAF((XE, Ye+1 ,X" Yii1) Yi Ye)
k=i t=j

2B;
VN

+ES (1(rj <)

<PSi(r; =)

)

T 2 T L Cex
<P ( +E ZZNs/Z;

k=i {=j
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Let us put
_ r—17;—1
C;; = esssuf’i (Z > Ck,e> . (8)
k=i =)
We get
Zgiéi,' ; . 4E12
|Fj(Fi(2)%)| < =g + PV (x> D— -

Let us now defines; to beG()j/), the sigma algebra generated Cr}jyl e IJKN). We
have

E® [F;(F(2)%)] =0,

becauseX ; andf/?’ are conditionally independent knowirigj . Let moreover

Gi=Zi-1(X) - Zi_l(IJ?)
—E(f(X) | X{Y) —E(F (D) | (i)
—E(F(0 - £ | X8 9470,
We have
Bz, [Fi (Fi(2)?)] =Bz, (B, [F;(F(2)?)]}
=Eiz,{E} [Fi(F(2))]}

A
=Eiz_, / Eféj{Fj (F(2)*)[G, — Efé/_ (G))]} da.
) _
Therefore
sz, [F; (Fi(Z)%)]]

A
< esssuij(E(z)2)|Eu[_l/Eféj]éj —Eféj((;j)]da
0

A
< 2esssulF; (Fi(2)%) Bz, / E} |G,|da
0

A

< 2essSufF; (F;(Z)?)| esssufie®s (/exp(aéj)|§j|da> (E® (exp(r|G,]))
0

< 2esssufF; (F;(2)?)| esssufE®’ (exp(x|G;|) — 1)E® [exp(r|G;])].

Moreover
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E® [exp.1G )] = E{exp(A[E(f(X) — £(7) | XL 7i7Y))) | 7}
<E{E{exp[A|f(X) — f()|] | XL VY | V)
—E{exp[A|f(X) — F(1)|] | ¥i71)

becausd X~ lJLYNIY b

;-1
< esssufE® [exp(k > j—%)] .

k=j
Let us put
= VN OB =B
B;(A) =esssup—E% lexp[ A Y — | —1|E% |exp[ 2> —||. (9
We have
2 = N,E, 4B?
Eiz_, (Fi(Fi(Z2)?)) < \/—_ (A) J 4 esssupdi(z; > )T'
Thus
N i-1,2 3 == 5
A A 2B;C; iB;(})
> Bz [Fi(F(2)7)] < Y, ——L—
i=1j=1 l N*/2= §1<j<i<N N?
4B2B;(
Z Z esssufp®i (z; > 7()
] =li=j+1 N
Therefore if we put
N ~
=.| > B?esssufpSi(r; > i), (10)
i=j+1

we obtain the following theorem:

THEOREM 3.1. -When(X7y, ..., Xy) satisfies the Markov property and the function
f satisfies

B;
SUpA; f(x, yi) < ’
P e S g
Cij
SuijAif(x,yhyj)gW’

X, Vi Yj

then
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A2 23 2B,C. B (%)
ogE(exph2)) - —E(22)| < 2y 2BCuB®
2 N1/2 ¢ 1<j<i<N N2
Z B3 4él?§i(x)
f antT TN )

where the constants; are defined by(7), the constantsCl-, ; are defined by8), the
constantsB; (1) are defined by9) and the constants; are defined by10).

COROLLARY 3.1.-Letus assume th&i,, ..., Xy) is a Markov chain such that for
some positive constantsandp < 1

P(r; >i+k|®;, X)) < Ap*, a.s., (1))

P(Ti>i+k|3N,Yi)<A,0 , as, (12)
and let us putB = max B; andC =max ; C; ;. Then

2
‘IogE(exp(kZ)) - LRz

A3 BCA3 /plog(p™l) A \*
YRR (1—p>3< 2AB _W>+

N 23 ( B3A3 N 4B2A3 (plog(p—l) L )‘1>
VN\31-p?® (1A-p)3\ 24B VN )

Consequently
2

P(f(X)>E(f(X))+e)<eXD( Z(V(f(X;JF o )),
V(X))

82
V(Fo0)

where

1 BCA3 (plog(p—l) e )‘1
n= -

N/2=¢ (1 - p)3 2AB V(f(X)VN/ +

1 ( B3A3 N 4B2A3 < plog(p~b) e >—1>
VN\3(1-p)® (1A-p)3\ 24B V(fF(X)VN/+ /)
Remark 3.5. — If we choose the distribution of the pdix, 1;) to be exchangeable,

and this can always be done, then the two conditions (11) and (12) are equivalent an
one is of course superfluous.

+

Remark 3.6. — The hypotheses are for example fulfilled by any irreducible aperiodic
homogeneous Markov chain on a finite state space.

Proof of the corollary. We have
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" +o00 +o00 BA
B; < BesssUESV(r; — j)=B > esssufP"(t; > j+k) <ABY pf=—".
k=0 k=0 1-p

In the same way
Ci; < CesssufEs ((z; —i)(z; — j))
CcA3
(1-p)?%

where we have used the fact tmafthL)J/ | X). We also have

7j—1 +00 -1
E®) (exp(k Z %) - 1) / Poi (exp(k Z «/—> —-1> 5) d&
k=j 5

+oo

< [we ((r,—J) £|Og(l+§)>d§
0

= CessSufiEs” (r; —i)ES¥ (z; — j) <

+00
</ éexp<@|og(p> Iog<1+s>) d
/ I ALB

gé(M_l)‘f
o +

AB
Thus
A VNlog(p™h) tro A/JINloge™h N\t
TB W< ( AB 1>+ <1+F< »B _1>+>
L2 (f log(p~1) 2A)‘1_ (Wp log(p™ 1) -t
0 AB o)+ 2.AB L
and
= plogip™> A\
B < ("0 _W)+'

On the other hand

Z A3/2
ApITt < 1 _ \3/2°
1-p farrd] S A-p¥

Substituting all these upper bounds in the theorem proves its corollary.

Conclusion

We have shown that under quite natural boundedness or exponential momer
assumptions, it is possible to get non-asymptotic bounds for the distance between tt
log-Laplace transform of a function af random variables and the transform of the
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corresponding Gaussian random variable. In particular, no convexity assumption i
required and we can deal not only with independent random variables, but also witt
a large class of Markov chains. We hope to present some applications of these bounds
forthcoming studies.
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