
Ann. I. H. Poincaré – PR39, 1 (2003) 1–26

 2003 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

S0246-0203(02)00017-1/FLA

LAPLACE TRANSFORM ESTIMATES AND DEVIATION
INEQUALITIES

ESTIMÉES DE LA TRANSFORMÉE DE LAPLACE ET
INÉGALITÉS DE DÉVIATION

Olivier CATONI

Laboratoire de probabilités et modèles aléatoires, U.M.R. 7599 du C.N.R.S., case 188,
Université Paris 6, bureau 4 E 19, bât Chevaleret, 4, place Jussieu, 75252 Paris cedex 05, France

Received 16 February 2000, revised 11 December 2001

ABSTRACT. – We derive deviation inequalities from non-asymptotic bounds of the log-Laplace
transform of a function ofN random variables. We assume either that these random variables are
independent or that they form a Markov chain. We assume also that the partial finite differences
of order one and two of the function are suitably bounded, or more generally that they have some
exponential moments. The estimates we get are sharp enough to induce a central limit theorem
whenN goes to infinity and to prove non-asymptotic “almost Gaussian” deviation bounds.
 2003 Éditions scientifiques et médicales Elsevier SAS

MSC:60E15; 60F05; 94A17; 60G42
Keywords:Concentration of product measures; Deviation inequalities; Markov chains;

Maximal coupling; Central limit theorem

RÉSUMÉ. – Nous démontrons des inégalités de déviation à partir d’estimées du logarithme de
la transformée de Laplace d’une fonction deN variables aléatoires. Nous supposons soit que
ces variables sont indépendantes, soit qu’elles forment une chaîne de Markov. Nous supposons
aussi que les différences finies partielles d’ordre un et deux de la fonction sont convenablement
bornées, ou plus généralement qu’elles ont certains moments exponentiels. Nos estimées sont
suffisamment précises pour induire un théorème de la limite centrale quandN tend vers l’infini
et pour prouver des inégalités de déviation “presque Gaussiennes”.
 2003 Éditions scientifiques et médicales Elsevier SAS

E-mail address:catoni@ccr.jussieu.fr (O. Catoni).



2 O. CATONI / Ann. I. H. Poincaré – PR 39 (2003) 1–26

Introduction

We are going to give “almost Gaussian” finite sample bounds for the log-Laplace
transform of some functions of the typef (X1, . . . ,XN), where the random variables
(X1, . . . ,XN) are assumed to be independent, or to form a Markov chain.

We will use throughout the paper a normalisation that parallels the classical case of
the sum

1√
N

N∑
i=1

Xi

of real valued random variables. As is usual in these matters, we will deduce from
upper log-Laplace estimates finite sample almost sub-Gaussian deviation inequalities
for f (X1, . . . ,XN). We will also obtain that the central limit theorem holds whenN

goes to infinity. Although limit laws are not the main subject of this paper, they will be
a guide for using a relevant normalisation of constants.

To make sure that this is feasible, it is necessary to make assumptions not only on the
first order partial derivatives (or more generally first order partial finite differences) of
f , but also on the second order partial derivatives (or more generally on the second order
partial finite differences) off . Indeed, the simple example of

f (X1, . . . ,XN) = g

(
1√
N

N∑
i=1

Xi

)
,

should immediately convince the reader that Lipschitz conditions are not enough to
enforce a Gaussian limit.

A proper normalisation being chosen, we will be interested in expansions ofZ
def=

f (X1, . . . ,XN)− E(f (X1, . . . ,XN)) of the type

logE
(
exp(λZ)

)= λ2

2
V(Z)+ · · · ,

whereλ is “of order one”,V(Z) = E{[Z − E(Z)]2} and the remaining terms are small
whenN is large.

Our line of proof will be a combination of the martingale difference sequence
approach initiated by Hoeffding [6] and Yurinskii [21] and the statistical mechanics
philosophy we already used in [4]. The martingale approach to deviation inequalities
is also reviewed in [10, p. 30] and [16]. More precisely, we will decomposeZ into
its martingale difference sequenceZ =∑N

i=1Fi and we will take appropriate partial
derivatives of the log-Laplace transform

(λ1, . . . , λN) 
→ logE exp

(
N∑
i=1

λiFi

)
.

We will consider first the case ofindependentrandom variablesX1, . . . ,XN , ranging
in some product of probability spaces

⊗N
i=1(Xi ,Bi ,µi). In the first section, we will
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assume that the partial finite differences off (x1, . . . , xN) of order one and two are
bounded. In the second section, we will assume that they have exponential moments
instead, and in the third section, we will study the case of Markov chains.

1. Bounded range functionals of independent variables

Let the collection of random variablesX = (X1, . . . ,XN) take its values in some
product of measurable spaces

⊗N
i=1(Xi ,Bi). We will assume in the following that

(X1, . . . ,XN) is the canonical process. LetP = ⊗N
i=1µi be a product probability

measure on
⊗N

i=1(Xi ,Bi).
For any bounded measurable functionW of (X1, . . . ,XN), we will define the modified

probability distributionPW by

dPW = exp(W)

E[exp(W)] dP,

and we will use the notationEW for the expectation operator with respect toPW .
On the other hand, ifF is some sub-sigma algebra of

⊗N
i=1 Bi , thenEF will be used

as a short notation for the conditional expectation with respect toF.
As (EF)W = (EW)F, we will simply write E

F
W for this conditional expectation which

we can more explicitely define as

E
F
W(U) = E[U exp(W) | F]

E[exp(W) | F] .

Note that we haveEW(E
F
W) = EW , whereasE(E

F
W) = EW and EW(EF) = EW in

general. In the same way we will use the notationVW(U) for EW {[U − EW(U)]2} and
the notationM3

W(U) for EW {[U − EW(U)]3}. Note that for any bounded measurable
functionW ,

∂

∂λ
log
{
E
[
exp(λW)

]}= EW(W),

∂2

∂λ2
log
{
E
[
exp(λW)

]}= VW(W), and

∂3

∂λ3
log
{
E
[
exp(λW)

]}= M3
W(W).

For eachi = 1, . . . ,N , let Fi be the sigma algebra generated by(X1, . . . ,Xi) and let
Gi be the sigma algebra generated by(X1, . . . ,Xi−1,Xi+1, . . . ,XN).

To stress the role of the independence assumption, we will put the superscript “i” on
the equalities and inequalities requiring this assumption.

Let us introduce some notations linked with the martingale differences of a bounded
random variableW measurable with respect toFN . We will put

Gi(W)=W − EGi (W),

Fi(W)= EFi (W) − EFi−1(W)

i= EFi (Gi).
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As we explained in the introduction, we will study the log-Laplace transform of

Z = f (X) − E
(
f (X)

)
of some bounded measurable real valued functionf :

∏N
i=1 Xi → R. We will decompose

Z into the sum of its martingale differences

Z =
N∑
i=1

Fi(Z),

and use the short notationZi = EFi (Z).
In this context, it is natural to assume that for some positive constantsBj , j =

1, . . . ,N , for any(x1, . . . , xN) ∈∏N
j=1 Xj , for anyi = 1, . . . ,N , anyyi ∈ Xi ,

f (x1, . . . , xN)− f (x1, . . . , xi−1, yi, xi+1, . . . , xN) � Bi√
N

.

The reader should understand that we are interested mainly in the case when the
constantsBi are of order one. Although all these scaling factors are not really needed for
finite sample bounds, we have found them useful to indicate what should be considered
to besmalland what should not.

To ensure thatf (X) is almost Gaussian, we need to make also an assumption on
its second partial differences. This corresponds to conditions on the second partial
derivatives off in the case when the random variables(X1, . . . ,XN) take their values
in some finite dimensional vector space, are bounded, andf is a smooth function.

For simplicity, we will use the short notationxN
1 for (x1, . . . , xN). Let us put for any

xN
1 ∈∏N

j=1 Xj , anyyi ∈ Xi ,

�if
(
xN

1 , yi
)= f

(
xN

1

)− f
(
xi−1

1 , yi, x
N
i+1

)
.

For a fixed value ofyi , �if may be seen as a function ofxN
1 , and when we will write

�j�if (xN
1 , yi, yj ), we will mean that we apply�j to this function and toyj . (A more

accurate but lengthy notation would have been�j(�if (·, yi))(xN
1 , yj ).)

Let us assume that for some nonnegative exponentζ , for anyi = j , for some positive
constantCi,j , and for anyxN

1 ∈∏N
k=1 Xk , yi ∈ Xi , yj ∈ Xj ,

�i�jf
(
xN

1 , yj , yi
)
� Ci,j

N3/2−ζ
.

Note that�i�jf (xN
1 , yj , yi) = �j�if (xN

1 , yi, yj ) and therefore that we can assume
thatCi,j = Cj,i . We will moreover assume by convention thatCi,i = 0.

The normalisation is made so thatζ = 0 corresponds to the case of

f (X1, . . . ,XN) = √
Ng

(
X1

N
, . . . ,

XN

N

)
,
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whereg : [0,1]N → R is a smooth real function ofN real bounded arguments with
bounded first and second partial derivatives.

Another class of functions satisfying these hypotheses are the functions of the type

f
(
xN

1

)= 1

N3/2

∑
1�i<j�N

ψi,j (xi, xj ),

whereψi,j are bounded measurable functions. Hereζ = 0, and we can take

Bi = 2

N

(∑
j<i

‖ψj,i‖∞ +∑
j>i

‖ψi,j‖∞
)
,

and

Ci,j = Cj,i = 4‖ψi,j‖∞, i < j.

More generally

f (xN
1 ) = N1/2−r

∑
1�i1<···<ir�N

ψ(i1,...,ir )(xi1, . . . , xir )

also satisfies our hypotheses, when the functionsψ(i1,...,ir ) are bounded.

THEOREM 1.1. – Under the previous hypotheses, for any positiveλ,∣∣∣∣logE exp
(
λf (X)

)− λE
(
f (X)

)− λ2

2
V
(
f (X)

)∣∣∣∣
� λ3

N1/2−ζ

B ′CB

4N2
+ λ3

√
N

N∑
i=1

B3
i

3N
.

COROLLARY 1.1. –Thusf (X) satisfies the following deviation inequalities:

P
(
f (X) � E

(
f (X)

)+ ε
)
� exp

(
− ε2

2(V(f (X))+ ηε

V(f (X))
)

)
,

P
(
f (X) � E

(
f (X)

)− ε
)
� exp

(
− ε2

2(V(f (X))+ ηε

V(f (X))
)

)
,

with

η = 1

2N1/2−ζ

B ′CB

N2
+ 2

3
√
N

N∑
i=1

B3
i

N
.

Remark1.1. – We obtain for some constantK depending on max1�i�N Bi and
max1�i,j�N Ci,j , but not onN , that∣∣∣∣logE exp

(
λf (X)

)− λE
(
f (X)

)− λ2

2
V
(
f (X)

)∣∣∣∣� Kλ3

N1/2−ζ
.

Therefore if we consider a sequence of problems indexed byN such that the constantsBi

andCi,j stay bounded, and such thatV(f (X)) converges, we get a central limit theorem



6 O. CATONI / Ann. I. H. Poincaré – PR 39 (2003) 1–26

as soon asζ < 1/2 (with the caveat that the limiting distribution may degenerate to a
Dirac mass if the asymptotic variance is 0):f (X) − E(f (X)) converges in distribution
to a Gaussian measure.

Remark1.2. – The critical valueζc = 1/2 is sharp, since when

f (X) = g

(
1√
N

N∑
i=1

Xi

)
,

the central limit theorem obviously does not hold in general, andζ = 1/2.

Proof. –After decomposingZ into the sum of its martingale differences, we can view
the log-Laplace transform ofZ as a function ofN equal “temperatures”:

logE exp(λZ) = logE

(
exp
( N∑

i=1

λiFi(Z)

))
, λi = λ, i = 1, . . . ,N.

The first step is to take three derivatives with respect toλi , for i ranging fromN

backward to 1:

logE exp(λZi) = logE exp(λZi−1)+
λ∫

0

EλZi−1+αFi(Z)

[
Fi(Z)

]
dα.

Therefore

logE exp(λZ)=
N∑
i=1

λ∫
0

EλZi−1+αFi(Z)

[
Fi(Z)

]
dα

=
N∑
i=1

λ∫
0

(λ − β)VλZi−1+βFi (Z)

[
Fi(Z)

]
dβ

=
N∑
i=1

λ2

2
EλZi−1

[
Fi(Z)2]+ λ∫

0

(λ− γ )2

2
M3

λZi−1+γFi (Z)

[
Fi(Z)

]
dγ.

Thus, using the fact that for any real random variable

E
{[
ξ − E(ξ)

]3}� 2‖ξ‖∞E
{[

ξ − E(ξ)
]2}� 2‖ξ‖∞E

(
ξ2)� 2‖ξ‖3

∞,

we obtain

LEMMA 1.1. –∣∣∣∣∣logE exp(λZ)− λ2

2

N∑
i=1

EλE
Fi−1(Z)

[
Fi(Z)2]∣∣∣∣∣�

N∑
i=1

λ3B3
i

3N3/2
.
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Remark1.3. – The upper bound can easily be improved in the following way: notice
that for any nonnegativeγ , EλZi−1+γFi(Z)[Fi(Z)] � 0, because this expression is equal
to zero whenγ = 0 and is nondecreasing with respect toγ . As moreover for any
real random variabler 
→ E[(ξ − r)3] is nonincreasing, we see that whenE(ξ) � 0,
E{[ξ − E(ξ)]3} � E(ξ3) � ‖ξ‖3∞. This shows that indeed

logE exp(λZ)− λ2

2

N∑
i=1

EλE
Fi−1(Z)

[
Fi(Z)2]� N∑

i=1

λ3B3
i

6N3/2
.

To proceed in the proof of Theorem 1.1, we have now to approximateEλZi−1[Fi(Z)2]
by E[Fi(Z)2], in order to get the variance ofZ, that can be written as

N∑
i=1

E
[
Fi(Z)2].

Let us put for shortVi = Fi(Z)2 and let us introduce its martingale differences:

EλZi−1

[
Vi − E(Vi)

]= i−1∑
j=1

EλZi−1

[
Fj(Vi)

]
.

To deal with thej th term of this sum, we introduce the conditional expectation with
respect toGj :

E
Gj

λZi−1

[
Fj(Vi)

]= E
Gj

λGj (Zi−1)

[
Fj(Vi)

]
= EGj

[
Fj (Vi)

]︸ ︷︷ ︸
i=0

+
λ∫

0

E
Gj

αGj (Zi−1)

{
Fj (Vi)

[
Gj(Zi−1)

− E
Gj

αGj (Zi−1)
Gj (Zi−1)

]}
dα. (1)

As a consequence, lettingU = Fj(Vi) andW = (Gj(Zi−1) − E
Gj

αGj (Zi−1)
Gj (Zi−1)) and

applying the Cauchy–Schwartz inequality, we get

∣∣EGj

λZi−1

[
Fj (Vi)

]∣∣� λ∫
0

√
E

Gj

αGj (Zi−1)

(
U2
)
E

Gj

αGj (Zi−1)

(
W 2
)
dα.

Reminding that we are analysing the case whenj < i, we can now observe that

Gj(Zi−1)
i= EFi−1Gj(Z),

and therefore that its conditional range is upper bounded by

ess sup
(
Gj(Zi−1) | Gj

)− ess inf
(
Gj(Zi−1) | Gj

)
� Bj√

N
.

This implies that its variance is bounded by
B2
j

4N .
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(Let us remind that by definition, for any real random variableW on a probability
space(),F,P), and any sub sigma algebraG ⊂ F,

ess sup(W | G)
def= sup

{
λ ∈ R: P(W � λ | G) > 0

}
.

It can equivalently be defined by the relation{
ess sup(W | G) > λ

}= {P(W � λ | G) > 0
}
, λ ∈ Q,

which shows that it belongs toL0(),G,P) – the set of measurable functions factorised
by almost sure equality with respect toP. Here and below, inequalities involving
conditional expectations and conditional essential suprema and infima are meant without
further notice to hold almost surely.)

Let us consider now on some enlarged probability space two independent random
variables X′

i and X′
j , such that (X1, . . . ,XN,X

′
j ,X

′
i) is distributed according to⊗N

k=1µk ⊗ µj ⊗µi . We have

Fj

[
Fi(Z)2]= Fj

{[
EFi
[
�if (XN

1 ,X′
i )
]]2}

.

Moreover for any functionh(XN
1 ),∣∣Fj(h(X)2)

∣∣= ∣∣EFj�jh
2(XN

1 ,X′
j )
∣∣

= ∣∣EFj
{[

h(XN
1 ) + h(X

j−1
1 ,X′

j ,X
N
j+1)

]
�jh(X

N
1 ,X′

j )
}∣∣

� 2ess sup
∣∣h(X)

∣∣ EFj
∣∣�jh(X

N
1 ,X′

j )
∣∣.

Applying this toh(X) = EFi (�if (XN
1 ,X′

i)), we get∣∣Fj

(
Fi(Z)2)∣∣� 2

Bi√
N

EFj
∣∣EFi�j�if (XN

1 ,X′
i ,X

′
j )
∣∣� 2BiCi,j

N2−ζ
.

Therefore ∣∣EλZi−1Fj (Vi)
∣∣� λ

BiCi,jBj

N5/2−ζ
.

This, combined with Lemma 1.1, ends the proof of Theorem 1.1. The derivation of its
corollary is standard: it is obtained by taking

λ = ε

V(f ) + ηε/V(f )
,

and by applying successively the theorem tof and−f . ✷
2. Extension to unbounded ranges

The boundedness assumption of the finite differences off can be relaxed to
exponential moment assumptions. To achieve this, we will suitably modify the bounds
of the previous section, still assuming thatf is bounded, and will afterwards let more
general functions be approximated by bounded ones.
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THEOREM 2.1. –Let λ be a positive real constant. Let
⊗N

i=1(Xi ,Bi ,µi) be some
product of probability spaces. Letf ∈ L2 (

⊗N
i=1(Xi ,Bi ,µi)) be such that

E
{
exp
[
λf (X)

])
< +∞,

whereX = (X1, . . . ,XN) is the canonical process. Let(X1, . . . ,XN,X
′
1, . . . ,X

′
N) be the

canonical process on(
⊗N

i=1(Xi ,Bi))
⊗2 and letE be the expectation with respect to the

probability measure(
⊗N

i=1µi)
⊗2 defined on this enlarged space. Let us introduce the

short notations

�i = �if (XN
1 ,X′

i ), 1 � i � N,

�j,i = �j�if (XN
1 ,X′

i ,X
′
j ), 1� j < i � N,

,(r) = exp(r) − 1− r − r2

2
=

r∫
0

(r − u)2

2
exp(u) du,

and let us decide by convention that0× (+∞) = +∞. Then∣∣∣∣logE exp
[
λf (X)

]− λE
[
f (X)

]− λ2

2
V
[
f (X)

]∣∣∣∣
� 5

N∑
i=1

ess supEGi
[
,
(
λ|�i|)]

+ √
2λ2

N∑
i=1

i−1∑
j=1

ess sup
[
EGi (�2

i )
]1/2

ess sup
[
EFj−1(�2

j,i )
]1/2

× ess sup
{
EGj

[
λ|�j |(exp(2λ|�j |) − 1

)]}1/2
.

Let us begin with a lemma.

LEMMA 2.1. –In the case whenf ∈ L∞,∣∣∣∣∣logE exp(λZ)− λ2

2

N∑
i=1

EλZi−1

[
Fi(Z)2]∣∣∣∣∣� 5

N∑
i=1

ess supEFi−1,
(
λ
∣∣Fi(Z)

∣∣).
Proof. –We can notice that for any bounded real random variableξ∣∣E{[ξ − E(ξ)]3}∣∣� E

[|ξ |(ξ − E(ξ))2]+ E(|ξ |)E[(ξ − E(ξ))2]
� E(|ξ |3) + 2E(ξ2)E(|ξ |)+ E(|ξ |)3 + E(|ξ |)E(ξ2)

� 5E(|ξ |3).
(Indeed E(ξ2)E(|ξ |) � E(|ξ |3), from the convexity ofg :β 
→ log[E(|ξ |β)], which
implies thatg(1) − g(0) � g(3) − g(2).)

Coming back to the proof of Lemma 1.1 we can write the following chain of
inequalities:∣∣∣∣

λ∫
o

(λ− γ )2

2
M3

λZi−1+γ Fi(z)

[
Fi(Z)

]
dγ

∣∣∣∣
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� 5

2

λ∫
0

(λ− γ )2EλZi−1+γFi(Z)

(|Fi(Z)|3)dγ
� EλZi−1

{
5

2

λ∫
0

(λ− γ )2EFi−1
[
exp
(
γ |Fi(Z)|)|Fi(Z)|3]dγ}

� 5

2
ess supEFi−1

( λ∫
0

(λ − γ )2|Fi(Z)|3 exp
(
γ |Fi(Z)|)dγ).

(As in the case of Lemma 1.1 – see Remark 1.3 – the upper bound can be improved,
noticing that for any real random variableE{[ξ − E(ξ)]3} � E(ξ3) as soon asE(ξ) �
0.) ✷

Proof of Theorem 2.1. –Let us prove the theorem first whenf ∈ L∞. In addition to
those introduced in Theorem 2.1, we will need the following short notation:

j

�i = �if
(
(X1, . . . ,Xj−1,X

′
j ,X

N
j+1),X

′
i

)
, 1 � j < i � N.

Let us come back to Eq. (1) and notice that

Fj (Vi) = EFj
[
EFi
(
�i + j

�i

)
EFi (�j,i)

]
,

Gj(Zi−1) = EFi−1(�i),

and therefore, from the Cauchy–Schwartz inequality and the convexity ofr 
→ r2, that

∣∣Fj (Vi)
∣∣� {EFj

[(
�i + j

�i

)2]}1/2[
EFj
(
�2

j,i

)]1/2
.

We can thus bound the integrand ofE
Gj

Gj (Zi−1)
in the last term of Eq. (1) by

∣∣Fj (Vi)
[
Gj(Zi−1)− E

Gj

Gj (Zi−1)
Gj (Zi−1)

]∣∣� A×B,

where

A = [EFj
(
�2

j,i

)]1/2
exp
[
−α

2
Gj(Zi−1)

]
,

B = exp
[
α

2
Gj(Zi−1)

]{
EFj
[(
�i + j

�i

)2]}1/2{∣∣Gj(Zi−1)
∣∣+ ∣∣EGj

Gj (Zi−1)
Gj (Zi−1)

∣∣}.
Applying the Cauchy–Schwartz inequality and noticing that for any real random variable
ξ such thatE(ξ) � 0,

E
[
exp(αξ)

]
� exp

[
αE(ξ)

]
� 1,

we get

∣∣EλZi−1

[
Fj (Vi)

]∣∣� EλZi−1

{ λ∫
0

[
E

Gj

αGj (Zi−1)

(
A2)]1/2[

E
Gj

αGj (Zi−1)

(
B2)]1/2

dα

}
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� EλZi−1

{ λ∫
0

{
EGj

[
exp
[
αGj(Zi−1)

]
A2

0

]}1/2[
E

Gj

αGj (Zi−1)

(
B2)]1/2

dα

}

� 2EλZi−1

{[
EFj−1

(
�2

j,i

)]1/2

×
λ∫

0

{
E

Gj

αGj (Zi−1)

[
exp
(
αGj(Zi−1)

)[
Gj(Zi−1)

2

+ [EGj

αGj (Zi−1)
Gj (Zi−1)

]2]]}1/2
dα

}

× [ess supEFj
(
�2

i

)+ ess supEFj
( j

�
2
i

)]1/2
,

where we have also used the fact that(a + b)2 � 2(a2 + b2). To simplify the bound, we
can now notice that for any random variableξ such thatE(ξ) � 0, [E(ξ)]2 E[exp(αξ)] �
E[ξ2 exp(αξ)] (because[E(ξ)]2 � [Eαξ (ξ)]2 � Eαξ (ξ

2) which is the inequality we seek).
We can also notice that

ess supEFj
(
�2

i

)= ess supEFj
( j

�
2
i

)
� ess supEGi

(
�2

i

)
.

These two remarks lead to∣∣EλZi−1

[
Fj (Vi)

]∣∣
� 4EλZi−1

{[
EFj−1

(
�2

j,i

)]1/2

×
λ∫

0

{
EGj

[
exp
(
2αGj(Zi−1)

)
Gj(Zi−1)

2]}1/2
dα

}[
ess supEGi

(
�2

i

)]1/2
.

Remembering thatGj(Zi−1) = EFi−1(�j), using the convexity ofr 
→ r2 exp(2αr) on
the positive real axis and another round of the Cauchy–Schwartz inequality, we get

λ∫
0

{
EGj

[
exp
(
2αGj(Zi−1)

)
Gj(Zi−1)

2]}1/2
dα

�
√

λ

2

{
EGj EFi−1

[(
exp(2λ|�j |)− 1

)|�j |]}1/2

�
√

λ

2

{
ess supEGj

[(
exp(2λ|�j |)− 1

)|�j |]}1/2
.

Thus ∣∣EλZi−1

[
Fj (Vi)

]∣∣
� 2

√
2EλZi−1

{[
EFj−1

(
�2

j,i

)]1/2}
× {ess supEGj

[
λ|�j |(exp(2λ|�j |) − 1

)]}1/2[
ess supEGi

(
�2

i

)]1/2
.
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This combined with Lemma 2.1 proves the following slight improvement of Theorem
2.1 in the case whenf ∈ L∞:∣∣∣∣logE exp

[
λf (X)

]− λE
[
f (X)

]− λ2

2
V
[
f (X)

]∣∣∣∣
� 5

N∑
i=1

ess supEFi−1
[
,
(
λ|�i|)]

+ √
2λ2

N∑
i=1

i−1∑
j=1

ess sup
[
EGi
(
�2

i

)]1/2
EλZi−1

{[
EFj−1

(
�2

j,i

)]1/2}
× ess sup

{
EGj

[
λ|�j |(exp

(
2λ|�j |)− 1

)]}1/2
. (2)

Whenf satisfies only the weaker assumptions of Theorem 2.1, we can introduce the
bounded functionsf T (X) = min{max{f (X),−T }, T }, T ∈ N.

The terms of the left-hand side of Eq. (2) forf T converge from the dominated
convergence theorem to their counterpart forf . Indeed

exp
[
λf T (X)

]
� max

{
1,exp

[
λf (X)

]} ∈ L1,∣∣f T (X)
∣∣� |f (X)| ∈ L2.

In the right-hand side, we can use the bounds∣∣�if
T (X,X′

i)
∣∣� ∣∣�if (X,X′

i)
∣∣,

and apply the dominated convergence theorem to prove that, introducing the notations

�j,i(f ) = �j�if (X,X′
i ,X

′
j ),

Zi(f ) = EFi [f (X)] − E[f (X)],

lim
T→+∞ EλZi−1(f

T )

{[
EFj−1

([
�j,i(f

T )
]2)]1/2}= EλZi−1(f )

{[
EFj−1

([�j,i (f )]2)]1/2}
,

as soon as ess supEGi (�2
i ) < +∞ (in the other case, Theorem 2.1 is trivial). Indeed

EλZi−1(f ) = EλE
Fi−1[f (X)],

exp
[
λEFi−1

(
f T (X)

)]
� max

{
1,EFi−1

[
exp
(
λf (X)

)]} ∈ L1

and, putting
j

�i(f ) = �if (
j

X
′,X′

i), (so that�j,i(f ) = �i(f )− j

�i(f )),

EFj−1
([�j,i(f

T )]2)� 2EFj−1
[
�i(f

T )2 + j

�i(f
T )2]� 4ess supEGi

[
�i(f )2].

This proves that inequality (2), and consequently Theorem 2.1 which is weaker, holds
for f . ✷
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3. Generalisation to Markov chains

We will study here the case when(X1, . . . ,XN) is a Markov chain. The assumptions
on f will be the same as in the first section. Therefore we will assume throughout this
section that

�if
(
xN

1 , yi
)
� Bi√

N
, i = 1, . . . ,N,

and that

�j�if
(
xN

1 , yi, yj
)
� Ci,j

N3/2−ζ
, 1� j < i � N.

When the random variables(X1, . . . ,XN) are dependent, we have to modify the
definition of the operatorsGi(Z) and of the sigma algebrasGi . Indeed to generalise
the first part of the proof we would like to have the identity

EFi (Gi(Z)) = Fi(Z),

whereGi is “as small as possible”. This identity does not hold in the general case with
the definition we had forGi , so we will have to change it.

To generalise the second part of the proof, we need to consider a new definition of the
sigma algebraGj for which

EGj
(
Fj (W)

)= 0,

andZ − EGj (Z) is as small as possible.
We propose a solution here where the two objectsGi andGj are built with the help

of coupled processes. This use of coupling was inspired by the works of Katalin Marton
[11–13].

Let us remind first some general facts about maximal coupling: given some probability
space(),S), and two probability measuresµ andν on (),S), a maximal coupling
betweenµ andν is a probability measureρ on () × ),S ⊗ S) such thatρ(dω1) =
µ(dω1), ρ(dω2) = ν(dω2) andρ(ω1 = ω2) is maximal (whereω1 andω2 are the first
and second coordinates on) × )). In words, a maximal coupling is a joint distribution
with prescribed marginals and a maximal weight given to the diagonal. The maximal
weight of the diagonal is obviously(µ ∧ ν)()), whereµ ∧ ν is defined asd(µ ∧ ν) =
min{ dµ

d(µ+ν)
, dν
d(µ+ν)

}d(µ + ν) and is necessarily the trace of any maximal coupling

distribution on the diagonal; it is also related to the variation distance‖µ − ν‖var
def=

1
2|µ− ν|()) betweenµ andν by the formula(µ∧ ν)()) = 1− ‖µ− ν‖var. A maximal
coupling betweenµ andν is not unique (its off diagonal behaviour being arbitrary, as
long as the marginal constraints are satisfied), however one possible explicit construction
is the following: consider on the product space()×)× [0,1],S⊗2 ⊗ B), whereB is
the Borel sigma algebra, the product probability measureµ⊗ ‖µ− ν‖−1

var(ν −µ)+ ⊗U ,
where(ν − µ)+ = ν − (ν ∧ µ) is the positive part of the signed measureν − µ and
whereU is the Lebesgue measure on[0,1]. Let (ω1,ω2, r) be the three coordinates of



14 O. CATONI / Ann. I. H. Poincaré – PR 39 (2003) 1–26

()×)× [0,1]) and define the random variablesW def= ω1, T = F(W, (ω2, r)), where

F(ω1, (ω2, r)) =
{
ω1 if r < d(µ∧ν)

dµ
(ω1),

ω2 otherwise.
(ω1,ω2) ∈ )2, r ∈ [0,1], (3)

Then it is elementary to check that the distribution of(W,T ) is a maximal coupling
betweenµ andν, equal indeed to

(µ∧ ν)(dW)δW (dT ) + ‖µ − ν‖−1
var(µ− ν)+(dW) ⊗ (ν −µ)+(dT ). (4)

We will define auxiliary random variables that will be coupled with the process
(X1, . . . ,XN) in a suitable way. For this, we will enlarge the probability space: instead
of working on the canonical space(

∏N
i=1 Xi

⊗N
i=1 Bi ), we will work on some enlarged

probability space(),B), where we will jointly define the process(X1, . . . ,XN), and

N other processes{ i

Y
N
j=1; i = 1, . . . ,N} that will be useful for the construction of

the operators{Gi; i = 1, . . . ,N}. In the following the symbolE will stand for the
expectation on).

The basic construction of coupled processes we will need is the following: we
consider, on some augmented probability space), N + 1 stochastic processes

(X1, . . . ,XN) and{( i

Y 1, . . . ,
i

YN); i = 1, . . . ,N} satisfying the following properties:

• The distribution of each
i

Y is equal to the distribution ofX.

• Almost surely
i

Y
i−1
1 = Xi−1

1 .

• GivenX, theN processes{ i

Y ; i = 1, . . . ,N} are independent.

• GivenXi−1
1 ,

i

Y
N
i is independent ofXi (but not ofXN

i+1, the interesting thing will be

on the contrary to have a maximal coupling between
i

Y
N
i+1 andXN

i+1).
The general method to build such processes is the following:

• Choice of ): Take for ) the canonical space of(XN
1 , (

i

Y
N
j=1)

N
i=1), that is

(
⊗N

i=1(Xi ,Bi ))
⊗ (N+1). For any random variableW defined on), we will use the

notationP(dW) to denote the distribution ofW . We will assume without further
notice that all the conditional distributions we need exist and have regular versions.
This will always be the case when we deal with Polish spaces(Xi ,Bi) (see [17,
p. 146]).

• Construction of the distribution of the pair(X,
i

Y ): We are going to construct the

joint distributionP(dX,d
i

Y ) of X and
i

Y by defining each term of the decomposition
into conditional probabilities

P
(
dX,d

i

Y
)= P

(
dXi−1

1

)
P
(
d

i

Y
i−1
1 | Xi−1

1

) N∏
j=i

P
(
dXj , d

i

Y j | Xj−1
1 ,

i

Y
j−1
1

)
.

(All the conditional distributions present in this definition are assumed to exist and
have regular versions, which is always the case when the base spaces(Xi ,Bi ) are
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Polish).

The distributionP(dXi−1
1 ) is given. We defineP(d

i

Y
i−1
j=1 | Xi−1

1 ) by letting
i

Y
i−1
1 =

Xi−1
1 , a.s.

For j = i we build the conditional distribution

P
(
dXj , d

i

Y j | Xj−1
1 ,

i

Y
j−1
1

)
by putting

P
(
dXi, d

i

Y i | Xi−1
1 ,

i

Y
i−1
1

)= P
(
dXi | Xi−1

1

)⊗ P
(
d

i

Y i | i

Y
i−1
1

)
,

whereP(d
i

Y i | i

Y
i−1
1 ) is defined by the requirement that the marginalP(d

i

Y ) be the
same asP(dX). For eachj > i, we choose for

P
(
dXj , d

i

Y j | Xj−1
1 ,

i

Y
j−1
1

)
some maximally coupled distribution with marginalsP

(
dXj | Xj−1

1 ,
i

Y
j−1
1

)= P
(
dXj | Xj−1

1

)
,

P
(
d

i

Y j | Xj−1
1 ,

i

Y
j−1
1

)= P
(
d

i

Y j | i

Y
j−1
1

)
,

where the second marginal is defined by the requirement thatP(d
i

Y ) be the same
asP(dX). (An explicit construction of a maximal coupling distribution is given by
Eq. (4)).

• Last step of the construction: Once we have built the distribution of each couple
of processesP(dX,dY ), separately for eachi, we build the joint distribution of

(X,
i

Y , i = 1, . . . ,N) on its canonical space. For the time being, we will not really
use this joint distribution, but it is simpler to deal with one probability space)

than withN probability spaces)i , so let us say that,P(dX) andP(d
i

Y | X) being
defined as previously explained (on separate probability spaces), we let

P
(
dX,d

1
Y , . . . , d

N

Y
)= P(dX)

N⊗
i=1

P
(
d

i

Y | X),
on the joint probability space(

⊗N
i=1(X,Bi ))

⊗ (N+1).
It is immediate to see from this construction that

P
(
dXi, d

i

Y
N
i | Xi−1

1

)= P
(
dXi | Xi−1

1

)
P
(
d

i

Y i | Xi−1
1

)
P
(
d

i

Y
N
i+1 | Xi

1,
i

Y i

)
= P
(
dXi | Xi−1

1

)
P
(
d

i

Y i | Xi−1
1

)
P
(
d

i

Y
N
i+1 | i

Y
i
1

)
= P
(
dXi | Xi−1

1

)⊗ P
(
d

i

Y
N
i | i

Y
i−1
1

)
. (5)
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This proves that conditionally on(X1, . . . ,Xi−1), the random variableXi is independent

of the sigma algebra generated by(
i

Y i, . . . ,
i

YN).

Remark3.1. – We have also exactly in the same way

P
(
dXN

i , d
i

Y i | Xi−1
1

)= P
(
dXN

i | Xi−1
1

)⊗ P
(
d

i

Y i | i

Y
i−1
1

)
. (6)

Remark3.2. – Instead of building distributions on the canonical space of(X,
i

Y ), we

could also have built
i

Y as a function ofX and auxiliary random variables, in the spirit of

formula (3). We could thus have realized
i

Y i+1, . . . ,
i

YN as
i

Y k = Fk(Xk,ωk), where each

random variableωk is independent ofXk , conditionally on(Xk−1
1 ,

i

Y
k−1
1 ). However, this

construction would not help much in proving the conditional independence statements
of Eqs. (5) and (6).

As in the previous sections,Fi will be the sigma algebra generated by(X1, . . . ,Xi),
and we will put

Z(X) = f (X)− E
(
f (X)

)
.

For any bounded measurable functionh(X) we will define

Gi

(
h(X)

)= h(X)− EFN
(
h(

i

Y )
)
,

Fi

(
h(X)

)= EFi
(
h(X)

)− EFi−1
(
h(X)

)= EFi
(
Gi

(
h(X)

))
.

The last line holds because

EFiEFN
(
h(

i

Y )
)= E

(
h(

i

Y ) | X1, . . . ,Xi

)
= E

(
h(

i

Y ) | X1, . . . ,Xi−1
)

= EFi−1
(
h(X)

)
.

Remark3.3. – In the case when the random variablesX1, . . . ,XN are independent,

we can take for
i

Y i an independent copy ofXi and we can put
i

Y
N
i+1 = XN

i+1 a.s. With this
choice, the definition ofGi given here coincides with that given in the first section.

We have

∣∣Gi(Z)
∣∣= ∣∣EFN

(
f (X)− f (

i

Y )
)∣∣� EFN

(
N∑

j=1

1
(
Xj = i

Y j

) Bj√
N

)
.

Consequently

∣∣Fi(Z)
∣∣� ess supEFi

(
N∑

j=1

1
(
Xj = i

Y j

) Bj√
N

)
.



O. CATONI / Ann. I. H. Poincaré – PR 39 (2003) 1–26 17

Let us introduce the notation

B̃i = ess supE

(
N∑

j=1

1
(
Xj = i

Y j

)
Bj | Fi ,

i

Y i

)
. (7)

We have established that ∣∣Fi(Z)
∣∣� B̃i√

N
.

We can now proceed exactly in the same way as in the independent case to prove that

LEMMA 3.1. –∣∣∣∣∣logE exp(λZ)− λ2

2

N∑
i=1

EλE
Fi−1(Z)

(
Fi(Z)2)∣∣∣∣∣�

N∑
i=1

λ3B̃3
i

3N3/2
.

To go further, we would like to bound

EλE
Fi−1(Z)

(
Fi(Z)2)− E

(
Fi(Z)2),

which we will decompose as in the independent case into

i−1∑
j=1

EλZi−1

[
Fj

(
Fi(Z)2)].

Among other things, we will have to bound ess supFj (Fi(Z)2). Let us start with this.
For any bounded measurable functionh(X), we have∣∣Fj

(
h(X)2)∣∣= ∣∣EFj

(
h(X)2 − h(

j

Y )2)∣∣
= ∣∣EFj

(
(h(X)+ h(

j

Y ))(h(X)− h(
j

Y ))
)∣∣

� 2ess sup
∣∣h(X)

∣∣EFj
∣∣h(X)− h(

j

Y )
∣∣.

We will apply this to h(X) = Fi(Z), and in this case, we will try to express

h(X) − h(
j

Y ) as a difference “of order two” of four coupled processes. Let us build
these processes right now, since we cannot proceed without them. We will call them

(X,
j

Y ,
i

Y ,
i

Y ). The distribution of(X,
j

Y ) and(X,
i

Y ) on their canonical spaces will be as
previously defined. Let us repeat this construction here, to make precise the fact that we
can build them in such a way that they satisfy the Markov property, whenX does:

• We buildP(dXi−1
1 , d

i

Y
i−1
1 ) asP(dXi−1

1 )δXi−1
1

(d
i

Y
i−1
1 ), whereδXi−1

1
is the Dirac mass

at pointXi−1
1 in

∏i−1
k=1 Xk .

• We then put

P
(
dXi, d

i

Y i | Xi−1
1 ,

i

Y
i−1
1

)= P(dXi | Xi−1)⊗ P
(
d

i

Y i | i

Y i−1
)
,
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and fork > i we buildP(dXk, d
i

Y k | (X,
i

Y )k−1
1 ) as some maximal coupling between

P(dXk | Xk−1) andP(d
i

Y k | i

Y k−1), which we choose in a fixed way, independent of

(X,
i

Y )k−2
1 . Thus built,(X,

i

Y ) is a Markov chain.

• We build (X,
j

Y ) in the same way, with the indexi replaced byj . Then we define

the distribution of(
j

Y ,
i

Y ) on its canonical space to be the same as the distribution

of (X,
i

Y ).

These preliminaries being set, we are ready to define the distribution of(X,
j

Y ,
i

Y ,
i

Y )

on its canonical space. Let us put for convenienceTk = (Xk,
j

Y k,
i

Y k,
i

Y k). We set

P
(
dXk, d

j

Y k | T k−1
1

)= P
(
dXk, d

j

Y k | Xk−1,
j

Y k−1
)
,

which we have already defined, and we take for

P
(
d

i

Y k, d
i

Uk | T k−1
1 ,Xk,

j

Y k

)
some maximally coupled distribution depending only on(Tk−1,Xk,

j

Y k) with marginals

P
(
d

i

Y k | Xk−1,
i

Y k−1,Xk

)
and

P
(
d

i

Uk | j

Y k−1,
i

Uk−1,
j

Y k

)
which we have already defined.

Remark3.4. – The processes
i

Y and
j

Y are independent knowingX, therefore this
construction is compatible with the previous one. Indeed

P
(
dX,d

j

Y , d
i

Y
)= N∏

k=1

P
(
dXk, d

j

Y k, d
i

Y k | (X,
j

Y ,
i

Y )k−1
1

)
=

N∏
k=1

P(dXk | Xk−1)P
(
d

j

Y k | Xk,Xk−1,
j

Y k−1
)
P
(
d

i

Y k | Xk,Xk−1,
i

Y k−1
)
,

thus

P
(
d

j

Y , d
i

Y | X)= N∏
k=1

P
(
d

j

Y k | Xk,Xk−1,
j

Y k−1
) N∏
k=1

P
(
d

i

Y k | Xk,Xk−1,
i

Y k−1
)

= P
(
d

j

Y | X)⊗ P
(
d

i

Y | X).
The following lemma will be important to carry the computations (let us recall that in

this discussionh(X)
def= Fi(Z) and thatj < i):
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LEMMA 3.2. –

h(X) = E
(
f (X)− f (

i

Y ) | Xi
1

)= E
(
f (X) − f (

i

Y ) | Xi
1,

j

Y
i
1

)
and in the same way

h(
j

Y ) = E
(
f (

j

Y )− f (
i

Y ) | j

Y
i
1

)= E
(
f (

j

Y ) − f (
i

Y ) | Xi
1,

j

Y
i
1

)
.

Proof. –Let us remark first that

E
(
f (X) | Xi

1

)= E
(
f (X) | Xi

1,
j

Y
i
1

)
,

because(XN
i+1 ⊥⊥ j

Y
i
1 | Xi

1), (we use this short notation here and below to mean that “XN
i+1

is independent of
j

Y
i
1 conditionally onXi

1”).
Moreover, from the construction of the coupled processT , we see that

P
(
d

i

Y
N
1 , dXi

1, d
j

Y
i
1

)= i∏
k=1

P(dXk | Xk−1)P
(
d

j

Y k | Xk,Xk−1,
j

Y k−1
)

× P
(
d

i

Y k | Xk,Xk−1,
i

Y k−1
) N∏
k=i+1

P
(
d

i

Y k | i

Y k−1
)
,

and therefore that

P
(
d

i

Y
N
1 | Xi

1,
j

Y
i
1

)= i∏
k=1

P
(
d

i

Y k | Xk,Xk−1,
i

Y k−1
) N∏
k=i+1

P
(
d

i

Y k | i

Y k−1
)

= P
(
d

i

Y
N
1 | Xi

1

)
.

As the couples of random variables(X,
i

Y ) and (
j

Y ,
i

Y ) play symmetric roles (they
can be chosen to be exchangeable by a proper construction ofT , but even without this

refinement, the proof applies mutatis mutandis when the roles of(X,
i

Y ) and(
j

Y ,
i

Y ) are
exchanged), we have in the same way

E
(
f (

j

Y ) | Xi
1

)= E
(
f (

j

Y ) | Xi
1,

j

Y
i
1

)
,

E
(
f (

i

U) | Xi
1

)= E
(
f (

i

U) | Xi
1,

j

Y
i
1

)
. ✷

We deduce from the previous lemma that

EFj
∣∣h(X)− h(

j

Y )
∣∣= EFj

∣∣E(f (X) − f (
i

Y )− f (
j

Y ) + f (
i

U) | (X,
j

Y )i1
)∣∣

� EFj
(∣∣f (X)− f (

i

Y ) − f (
j

Y )+ f (
i

U)
∣∣).
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To write the right-hand side of this last inequality as far as possible as a function of the
second differences�9�kf , we need one more lemma: let us introduce the two stopping
times

τi = inf
{
k � i | i

Y k = Xk

}
,

τj = inf
{
k � j | j

Y k = Xk

}
.

LEMMA 3.3. –With the previous construction, we have

P
( i

U
N
i = i

Y
N
i | τj < i

)= 1.

In other words, on the event(τj < i) it is almost surely true that
i

UN
i = i

Y
N
i .

Proof. –We have obviously
j

Y
N
τj

= XN
τj

almost surely. Now whenτj < i, then a.s.
j

Y i−1 = Xi−1 = i

Y i−1 = i

U i−1, and so
i

U i and
i

Y i knowing the past are maximally coupled
and have the same marginals, therefore they are almost surely equal. Then we can carry
on the same reasoning fork = i + 1, . . . ,N and thus prove by induction that for all these

values ofk,
i

Y k = i

Y k a.s. ✷
Resuming the previous chain of inequalities, we can write, as a consequence of this

lemma, that

EFj
∣∣h(X)− h(

j

Y)
∣∣

� PFj (τj � i)
2B̃i√
N

+ EFj
(
1(τj < i)

∣∣f (X)− f
(
Xi−1

1 ,
i

Y
N
i

)
− f

(
X

j−1
1 ,

j

Y
τj−1
j ,XN

τj

)+ f
(
X

j−1
1 ,

j

Y
τj−1
j ,Xi−1

τj
,

i

Y
N
i

)∣∣)
� PFj (τj � i)

2B̃i√
N

+ EFj

(
1(τj < i)

∣∣∣∣∣
τi−1∑
k=i

�kf
((
Xk

1,
i

Y
N
k+1

)
,

i

Y k

)
−�kf

((
X

j−1
1 ,

j

Y
τj−1
j ,Xk

τj
,

i

Y
N
k+1

)
,

i

Y k

)∣∣∣∣∣
)

� PFj (τj � i)
2B̃i√
N

+ EFj

(
1(τj < i)

∣∣∣∣∣
τi−1∑
k=i

τj−1∑
9=j

�9�kf
((
X9

1,
j

Y
τj−1
9+1 ,Xk

τj
,

i

Y
N
k+1

)
,

i

Y k,
j

Y 9

)∣∣∣∣∣
)

� PFj (τj � i)
2B̃i√
N

+ EFj

(
τi−1∑
k=i

τj−1∑
9=j

C9,k

N3/2−ζ

)
.
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Let us put

C̃i,j = ess supEFj

(
τi−1∑
k=i

τj−1∑
9=j

Ck,9

)
. (8)

We get

∣∣Fj

(
Fi(Z)2)∣∣� 2B̃iC̃i,j

N2−ζ
+ PFj (τj � i)

4B̃2
i

N
.

Let us now defineGj to beS(
j

Y ), the sigma algebra generated by(
j

Y 1, . . . ,
j

YN). We
have

EGj
[
Fj

(
Fi(Z)2)]= 0,

becauseXj and
j

Y
N
j are conditionally independent knowingXj−1

1 . Let moreover

G̃j =Zi−1(X)− Zi−1(
j

Y )

= E
(
f (X) | Xi−1

1

)− E
(
f (

j

Y ) | ( j

Y )i−1
1

)
= E

(
f (X) − f (

j

Y ) | Xi−1
1 ,

j

Y
i−1
1

)
.

We have

EλZi−1

[
Fj

(
Fi(Z)2)]= EλZi−1

{
E

Gj

λZi−1

[
Fj

(
Fi(Z)2)]}

= EλZi−1

{
E

Gj

λG̃j

[
Fj

(
Fi(Z)2)]}

= EλZi−1

λ∫
0

E
Gj

αG̃j

{
Fj

(
Fi(Z)2)[G̃j − E

Gj

αG̃j
(G̃j )

]}
dα.

Therefore∣∣EλZi−1

[
Fj

(
Fi(Z)2)]∣∣

� ess sup
∣∣Fj

(
Fi(Z)2)∣∣EλZi−1

λ∫
0

E
Gj

αG̃j

∣∣G̃j − E
Gj

αG̃j
(G̃j )

∣∣dα
� 2ess sup

∣∣Fj

(
Fi(Z)2)∣∣EλZi−1

λ∫
0

E
Gj

αG̃j

∣∣G̃j

∣∣dα
� 2ess sup

∣∣Fj

(
Fi(Z)2)∣∣ess supEGj

( λ∫
0

exp(αG̃j )|G̃j |dα
)(

EGj
(
exp(λ|G̃j |)))−1

� 2ess sup
∣∣Fj

(
Fi(Z)2)∣∣ess supEGj

(
exp(λ|G̃j |)− 1

)
EGj

[
exp(λ|G̃j |)].

Moreover
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EGj
[
exp(λ|G̃j |)]= E

{
exp
(
λ
∣∣E(f (X)− f (

j

Y ) | Xi−1
1 ,

j

Y
i−1
1

)∣∣) ∣∣ j

Y
}

� E
{
E
{
exp
[
λ
∣∣f (X)− f (

j

Y )
∣∣] ∣∣Xi−1

1 ,
j

Y
i−1
1

} ∣∣ j

Y
}

= E
{
exp
[
λ
∣∣f (X)− f (

j

Y )
∣∣] ∣∣ j

Y
i−1
1

}
because(Xi−1

1 ⊥⊥ j

Y
N
i | j

Y
i−1
1 )

� ess supEGj

[
exp

(
λ

τj−1∑
k=j

Bk√
N

)]
.

Let us put

˜̃
Bj (λ) = ess sup

√
N

λ
EGj

[
exp

(
λ

τj−1∑
k=j

Bk√
N

)
− 1

]
EGj

[
exp

(
λ

τj−1∑
k=j

Bk√
N

)]
. (9)

We have

EλZi−1

(
Fj

(
Fi(Z)2))� 2λ√

N

˜̃
Bj(λ)

2B̃iC̃i,j

N2−ζ
+ ess supPFj (τj � i)

4B̃2
i

N
.

Thus

N∑
i=1

i−1∑
j=1

λ2

2
EλZi−1

[
Fj

(
Fi(Z)2)]� λ3

N1/2−ζ

∑
1�j<i�N

2B̃i C̃i,j
˜̃
Bj (λ)

N2

+ λ3

√
N

N∑
j=1

N∑
i=j+1

ess supPFj (τj � i)
4B̃2

i

˜̃
Bj(λ)

N
.

Therefore if we put

B̌j =
√√√√ N∑

i=j+1

B̃2
i ess supPFj (τj � i), (10)

we obtain the following theorem:

THEOREM 3.1. –When(X1, . . . ,XN) satisfies the Markov property and the function
f satisfies

sup
x,yi

�if (x, yi) � Bi√
N

,

sup
x,yi,yj

�j�if (x, yi , yj ) � Ci,j

N3/2−ζ
,

then
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∣∣∣∣logE
(
exp(λZ)

)− λ2

2
E
(
Z2)∣∣∣∣� λ3

N1/2−ζ

∑
1�j<i�N

2B̃i C̃i,j
˜̃
Bj (λ)

N2

+ λ3

√
N

N∑
i=1

(
B̃3

i

3N
+ 4B̌2

i

˜̃
Bi(λ)

N

)
,

where the constants̃Bi are defined by(7), the constants̃Ci,j are defined by(8), the

constants̃B̃i(λ) are defined by(9) and the constantšBi are defined by(10).

COROLLARY 3.1. –Let us assume that(X1, . . . ,XN) is a Markov chain such that for
some positive constantsA andρ < 1

P(τi > i + k | Gi ,Xi) � Aρk, a.s., (11)

P(τi > i + k | FN,
i

Y i) � Aρk, a.s., (12)

and let us putB = maxi Bi andC = maxi,j Ci,j . Then∣∣∣∣logE
(
exp(λZ)

)− λ2

2
E
(
Z2)∣∣∣∣

� λ3

N1/2−ζ

BCA3

(1− ρ)3

(
ρ log(ρ−1)

2AB
− λ√

N

)−1

+

+ λ3

√
N

(
B3A3

3(1− ρ)3
+ 4B2A3

(1− ρ)3

(
ρ log(ρ−1)

2AB
− λ√

N

)−1

+

)
.

Consequently

P
(
f (X) � E

(
f (X)

)+ ε
)
� exp

(
− ε2

2(V(f (X))+ 2ηε
V(f (X))

)

)
,

P
(
f (X) � E

(
f (X)

)− ε
)
� exp

(
− ε2

2(V(f (X))+ 2ηε
V(f (X))

)

)
,

where

η = 1

N1/2−ζ

BCA3

(1− ρ)3

(
ρ log(ρ−1)

2AB
− ε

V(f (X))
√
N

)−1

+

+ 1√
N

(
B3A3

3(1− ρ)3
+ 4B2A3

(1− ρ)3

(
ρ log(ρ−1)

2AB
− ε

V(f (X))
√
N

)−1

+

)
.

Remark3.5. – If we choose the distribution of the pair(X,
i

Y ) to be exchangeable,
and this can always be done, then the two conditions (11) and (12) are equivalent and
one is of course superfluous.

Remark3.6. – The hypotheses are for example fulfilled by any irreducible aperiodic
homogeneous Markov chain on a finite state space.

Proof of the corollary. –We have
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B̃i � B ess supEFN (τj − j) = B

+∞∑
k=0

ess supPFN (τj > j + k) � AB

+∞∑
k=0

ρk = BA

1− ρ
.

In the same way

C̃i,j �C ess supEFN
(
(τi − i)(τj − j)

)
=C ess supEFN (τi − i)EFN (τj − j) � CA3

(1− ρ)2
,

where we have used the fact that(
i

Y ⊥⊥ j

Y | X). We also have

EGj

(
exp

(
λ

τj−1∑
k=j

Bk√
N

)
− 1

)
=

+∞∫
0

PGj

(
exp

(
λ

τj−1∑
k=j

Bk√
N

)
− 1 � ξ

)
dξ

�
+∞∫
0

PGj

(
(τj − j) �

√
N

λB
log(1+ ξ)

)
dξ

�
+∞∫
0

A

ρ
exp
(√

N

λB
log(ρ) log(1+ ξ)

)
dξ

� A

ρ

(√
N log(ρ−1)

λB
− 1
)−1

+
.

Thus

λ√
N

˜̃
Bj(λ)� A

ρ

(√
N log(ρ−1)

λB
− 1
)−1

+

(
1+ A

ρ

(√
N log(ρ−1)

λB
− 1
)−1

+

)

� 2A

ρ

(√
N log(ρ−1)

λB
− 2A

ρ

)−1

+
=
(√

Nρ log(ρ−1)

2λAB
− 1
)−1

+
,

and

˜̃
Bj(λ) �

(
ρ log(ρ−1)

2AB
− λ√

N

)−1

+
.

On the other hand

B̌j � BA

1− ρ

√√√√ N∑
i=j+1

Aρi−j−1 � BA3/2

(1− ρ)3/2
.

Substituting all these upper bounds in the theorem proves its corollary.✷
Conclusion

We have shown that under quite natural boundedness or exponential moment
assumptions, it is possible to get non-asymptotic bounds for the distance between the
log-Laplace transform of a function ofN random variables and the transform of the
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corresponding Gaussian random variable. In particular, no convexity assumption is
required and we can deal not only with independent random variables, but also with
a large class of Markov chains. We hope to present some applications of these bounds in
forthcoming studies.
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