@article{AIHPB_2002__38_6_879_0, author = {Doukhan, Paul and Lang, Gabriel and Surgailis, Donatas}, title = {Asymptotics of weighted empirical processes of linear fields with long-range dependence}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {879--896}, publisher = {Elsevier}, volume = {38}, number = {6}, year = {2002}, mrnumber = {1955342}, zbl = {1016.60059}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2002__38_6_879_0/} }
TY - JOUR AU - Doukhan, Paul AU - Lang, Gabriel AU - Surgailis, Donatas TI - Asymptotics of weighted empirical processes of linear fields with long-range dependence JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 879 EP - 896 VL - 38 IS - 6 PB - Elsevier UR - http://www.numdam.org/item/AIHPB_2002__38_6_879_0/ LA - en ID - AIHPB_2002__38_6_879_0 ER -
%0 Journal Article %A Doukhan, Paul %A Lang, Gabriel %A Surgailis, Donatas %T Asymptotics of weighted empirical processes of linear fields with long-range dependence %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 879-896 %V 38 %N 6 %I Elsevier %U http://www.numdam.org/item/AIHPB_2002__38_6_879_0/ %G en %F AIHPB_2002__38_6_879_0
Doukhan, Paul; Lang, Gabriel; Surgailis, Donatas. Asymptotics of weighted empirical processes of linear fields with long-range dependence. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 6, pp. 879-896. http://www.numdam.org/item/AIHPB_2002__38_6_879_0/
[1] Stratified structure of the Universe and Burgers' equation - a probabilistic approach, Probab. Theory Related Fields 100 (1994) 457-484. | Zbl
, , ,[2] Possible long-range dependence in fractional random fields, J. Statist. Plan. Inf. 80 (1999) 95-110. | MR | Zbl
, , ,[3] The empirical process of some long-range dependent sequences with an application to U-statistics, Ann. Statist. 17 (1989) 1767-1783. | MR | Zbl
, ,[4] Weak convergence in nonparametric statistics, in: , (Eds.), Asymptotic Statistics, Birkhäuser, 1990.
,[5] Non-central limit theorems for non-linear functions of Gaussian fields, Z. Wahrsch. Verw. Geb. 50 (1979) 27-52. | MR | Zbl
, ,[6] Functional central limit theorem for the empirical process of short memory linear processes, C. R. Acad. Sci. Paris Serie 1 326 (1998) 87-92. | MR | Zbl
, ,[7] Asymptotic normality of regression estimators with long memory errors, Statist. Probab. Lett. 29 (1996) 317-335. | MR | Zbl
, , ,[8] Central limit theorem for the empirical process of a linear sequence with long memory, J. Stat. Plan. Inf. 80 (1999) 81-93. | MR | Zbl
, ,[9] On the asymptotic expansion of the empirical process of long memory moving averages, Ann. Statist. 24 (1996) 992-1024. | MR | Zbl
, ,[10] Limit theorems for functionals of moving averages, Ann. Probab. 25 (1997) 1636-1669. | MR | Zbl
, ,[11] Statistical Analysis of Random Fields, Kluwer, Dordrecht, 1989. | MR | Zbl
, ,[12] Weighted Empiricals and Linear Models, IMS Lecture Notes-Monograph Series, 21, Hayward, CA, 1992. | MR | Zbl
,[13] Asymptotics of R-, MD- and LAD-estimators in linear regression models with long range dependent errors, Probab. Theory Related Fields 95 (1993) 535-553. | MR | Zbl
, ,[14] Asymptotic expansion of M-estimators with long memory errors, Ann. Statist. 25 (1997) 818-850. | MR | Zbl
, ,[15] Asymptotics of empirical processes of long memory moving averages with infinite variance, Stoch. Proc. Appl. 91 (2001) 309-336. | MR | Zbl
, ,[16] Random Fields with Singular Spectrum, Kluwer, Dordrecht, 1999.
,[17] Parameter identification for singular random fields arising in Burgers' turbulence, J. Statist. Plan. Inf. 80 (1999) 1-14. | MR | Zbl
, ,[18] D. Marinucci, Gaussian semiparametric estimation for random fields with singular spectrum, Preprint, 2001. | MR
[19] Scaling limits of solutions of Burgers' equation with singular Gaussian initial data, in: , (Eds.), Chaos Expansions, Multiple Wiener-Itô Integrals and Their Applications, CRC Press, Boca Raton, 1994, pp. 145-162. | Zbl
, ,[20] Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Geb. 50 (1979) 53-83. | MR | Zbl
,