Ann. I. H. Poincaré — PR8, 5 (2002) 779-797
0 2002 Editions scientifiques et médicales Elsevier SAS. Al rights reserved
S0246-0203(02)01116-0/FLA

LARGE DEVIATIONS OFU-EMPIRICAL MEASURES IN
STRONG TOPOLOGIES AND APPLICATIONS

Peter EICHEL SBACHER 2 Uwe SCHMOCK P

2Fakultat fur Mathematik, Ruhr-Universitat Bochum, Gebaude NA 3/68, 44780 Bochum, Germany
bDepartement Mathematik, ETH Zentrum, HG F 42.1, CH-8092 Zurich, Switzerland

Received 12 April 1999, revised 9 October 2001

ABSTRACT. — We prove large deviation principles (LDP) far-fold products of empirical
measures and fdr-empirical measures, where the underlying i.i.d. random variables take values
in a measurable (not necessarily Polish) space). The results can be formulated on suitable
subsets of all probability measures @', S™). We endow the spaces with topologies, which
are stronger than the usuattopology and which make integration with respect to certain
unbounded, Banach-space valued functions a continuous operation. A special feature is tr
non-convexity of the rate function for > 2. Improved versions of LDPs for Banach-space
valuedU- and V-statistics are obtained as a particular application. Some further applications
concerning the Gibbs conditioning principle and a process level LDP are mentiorizad?2
Editions scientifiques et médicales Elsevier SAS

1991 MSCPrimary 60F10, Secondary 62H10; 28A35

Keywords:Large deviations; Empirical measures; Sanov’s theorem; Strong topology;
U -statistics; Von Mises statistics; Gibbs conditioning principle

RESUME. — On démontre un principe de grandes déviations (PGD) pour les produits de
mesures empiriques et pour I&&mesures empiriques. Dans le cas ou les variables i.i.d.
sous-jacentes prennent leurs valeurs dans un espace mesurable (pas nécessairement polon
Ces espaces sont munis de topologies plus fortes quetd@ologie habituelle. Un aspect
remarguable est la non convexité de certaines fonctions de taux. On obtient comme applicatior
des versions améliorées du PGD pour leset V-statistiques a valeurs dans des espaces de
Banach et d’autres concernant le principe de conditionnement de Gibbs et le PGD au niveau d¢
processus. 2002 Editions scientifiques et médicales Elsevier SAS

I Research partially supported by the Swiss National Foundation, Contract No. 21-298333.90.
E-mail addressespeich@math.ruhr-uni-bochum.de (P. Eichelsbacher), schmock@math.ethz.ch
(U. Schmock).
URL addresshttp://www.math.ethz.ch/~schmock/.



780 P. EICHELSBACHER, U. SCHMOCK / Ann. |. H. Poincaré — PR 38 (2002) 779-797

1. Introduction, statement of results, and applications

Let (S, S, u) be a probability space, 1&82, A, P) = (SV, S®N, 1®N) be the product
space, and letX;};cy be the coordinate projections frof to S, forming an i.i.d.
sequence withC(X;) = u. For everyn € N the empirical measure is defined by =
%Z?zl 8x,. Them-fold productsL®": 2 — M1(S™) of these empirical measures are
also expressible as

1 n
L,(?m — n—m Z 8(Xi1s---»Xim)’ ne N. (11)

11505 im=1

Ly = > b

i1,.esim) €1 (m,n)

Xiy) (1.2)

i

m—1

for all integersn > m, wheren,,, = [[;_y (n — k), the setl (m,n) C {1, ..., n}" consists
of all m-tuples with pairwise different components, afid denotes the probability
measure concentrated.at

In this paper we derive large deviation principles (LDP) f&f'},>,, and{L®"},n
in a strong topology on a restricted spat¢} (S™) of probability measures, which is
determined by a rich class of functions: Instead of bounded real-valued functions a
for the usualt-topology, we consider more general collectiohsof measurable and
possibly unbounded functions taking values in a real separable Banach Bpaug
satisfying appropriate moment conditions. These extensions enable us to derive LDF
for Banach-space valudd- andV -statistics as a particular application, see Section 1.2.
These results improve the LDP f@®?-valued U- and V-statistics obtained in [13],
because we use weaker moment conditions and make no additional assumptions
the state spac§. As a further application of our extension t6-empirical measures
improvements of the Gibbs conditioning principle for interacting ensembles of particles
and an extension of the LDP fdy-empirical measures to a process level LDP are
considered.

Among the techniques used, the change of measure method, the projective limi
approach and the use of the existence of almost regular partitions of complete
hypergraphs due to Baranyai [4] should be mentioned.

1.1. Largedeviation principles

The large deviations ofL,},cny have been studied in several papers. Sanov [23]

considered the problem whe$i= R and the space of probability measuré$;(S)

is endowed with the weak topology. Donsker and Varadhan [10] and Bahadur anc
Zabell [3] (see also Azencott [2]) proved — with different approaches — a LDP for
{L.}»,en WhensS is a Polish space with Borel-algebraS, again in the weak topology

of M(S). Groeneboom, Oosterhoff and Ruymgaart [18] obtained a stronger result
in which S is a Hausdorff topological space with BorelalgebraS and M1(S) is
endowed with ther; (R)-topology, that is, the coarsest topology which makes the maps
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Ma(S) > v [;¢dv continuous for all in the spaceB (S, R) of bounded, real-valued,
S-measurable functions afi De Acosta [1] proved the LDP fdiL, },.en in the 1 (R)-
topology setting wheiisS, S) is a measurable space.

An extension in another direction was obtained by Wu [27, Sections 2.4.4 and 4.1].
He considers a Polish spadewith Borel o-algebraS and a collectiond consisting
of all S-measurable functiong:S — R, which are dominated in absolute value
by some multiple of a single measurable reference funcilors — [1, co] with
Jsexplay) du < oo for all « > 0. On a suitable subset 8#,(S) he defines a topology
such that — [ ¢ dv is continuous for every € ®, and proves LDP fofL,},cy With
respect to this topology.

In this paper, we obtain large deviations results which include de Acosta’s and Wu's
results for general measurable spaces (not just Polish spaces), and extend them in seve
directions; the extension t@-empirical measures being the most important one.

To formulate our results, we need some additional notations.(Eef - ||z) be a
separable real Banach space with Bosehlgebra&. We always exclude the case
E = {0}. Givenm € N and a measurable spacg, S) as before, we consider the set
My(S™) of probability measures on the product sp&te equipped with the product
o-algebraS®". Let ® be a collection ofS®"-£-measurable functiong:S” — E
containing the seB(S™, E) of all bounded measurable ones. Define @éwestricted
set of probability measures dff* by

MF(S™) = {v e My (S™)

loll g dv < oo for everyp e <I>}.
SUI

Then the Bochner integral, ¢ dv is defined for everyy € ® andv € M?(S™). Let
t?(E) denote the coarsest topology dr(f(S™) such that the map$(S™) > v —
[gn @ dv is continuous for every € ®. If ® = B(S™, E), then M (™) = M (5™)
and we writer;(E) instead ofr*(E). If in addition E = R, then the topologyt® (E)
coincides with the usual; (R)-topology introduced above. The-algebra onM(S™)
is defined to be the smallest one such thdf (™) and all the maps\1;(S™) > v
Jgm @ dv with ¢ € B(S™, E) are measurable.
We consider the following three exponential moment conditionsbfor

Condition 1.3 (Weak Cramér condition— For everyp € ® there exists at least one
o, > 0 such that

[ explaliole) dut” < co.
Sm

Condition 1.4 (Strong Cramér condition— For everyy € ® and everyx > 0,

[ expalivle) du® < oc.

Sm
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Condition 1.5. — For everyy € ® there exists at least ong, > 0 such that

/exp(oz(pll(p o7, ||g) du®" < o0 (1.6)
Sm

for every mapr:{1,...,m} — {1,..., m}, wherex, . 5" — S™ is defined byr,(s) =
(Sz(1)s - - -» Szmy) fOr everys = (s1, ..., s,) € S™.

Note that all three conditions are satisfied in the chse B(S™, E). Condition 1.4 is
used to prove the large deviation upper bound infhes)-topology for thel/ -empirical
measures defined by (1.2). Due to their immediate statistical application, see (1.12
in Section 1.2, we named thebi-empirical measures of ordet. They seem to be
the proper generalization of the usual empirical meas{g},n, because there is no
dependence within the individual terms of (1.2). With thésempirical measures it is
possible to model a weak but long-range interaction between the i.i.d. random variable
{X;}:en. This also means that we leave the realm of independence foP.

We need Condition 1.5 to transfer our LDP with respect torther)-topology from
the U-empirical measurefL.”},,>,, to them-fold products{ L&}, cx.

Note that the setM ¥ (S™) is convex and contains the Dirac meas8refor every
x € §™, henceL®" and L take values inM{ (S™) and both mappings turn out to be
measurable. Let us recall the definition of the relative entdpyv|v) of v € M1(S™)
with respect ta € M{(S™):

Hy iy = { Lo Flog £ a0 1 0 <07 and =,
" 0, otherwise.

The rate function/,, : M1(8™) — [0, oc] is defined by

o0 otherwise,

wherev; denotes the first marginal of. Note that%Hm(v?’"m@’”) = Hi(v1|u). For
every B C M1(S™) define J,,(B) = inf,cp J,,(v). Note that, if there exist#A € S
satisfying O< u(A) < 1, then the rate functiory,, is non-convex for alin > 2. To
see this, define the conditional probability measuresu(-|A) andd = u(-|A° and
show that%(v@" + v®™) is not a product measure. For every leiel [0, co) define the
level setK (J,,,1) = {v e M1(8™) | J,,(v) <1}. Our main large deviation results, which
we prove in Section 2, are the following theorems.

THEOREM 1.7 (Large deviations df’-empirical measures of order). —
(a) For every measurabl® c M(S™),

R & :
lim inf - logP(L} € B) > —Ju(int,o £ (B)), (1.8)

whereintffp(E)(B) denotes the interior of the s&tN M7 (S™) with respect to the
t?(E)-topology.
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(b) If Condition1.3holds, thenk (J,,, 1) C M3 (S™) for every level € [0, co).

(c) If Condition1.4holds, thenk (J,,, 1) is 7, (E)-compact and sequentially® (E)-
compact for every € [0, o).

(d) If Condition1.4holds, then

1
limsup—IlogP(L} € B) < —Ju (Clo () (B)) (1.9

n—oo N

for every measurabl® c M1(S™), whereclff(E)(B) denotes the closure of the
setB N M$(S™) with respect to the > (E)-topology.

THEOREM 1.10 (Large deviations of:-fold products of empirical measures). —
(a) If Condition1.5holds, then(1.8)is true with L™ in place of L.
(b) If Conditions1.4and 1.5hold, then(1.9)is true withL®" in place ofL"".

Remark1.11. — Due to the following results of A. Schied, we think that the
exponential moment conditions of Theorem 1.7(b) and (c) are optim&l=fB (S, R) U
{¢} with a measurable: S — [0, co) and if K (J1,1) € M (S) for onel > 0, then®
satisfies Condition 1.3, see [25, Proposition 1]KIfJ1, ) is a t;* (R)-compact subset
of MP(S) for this collection® and onel > 0, then Condition 1.4 is satisfied, see [25,
Theorem 2] or [24, Satz 2.15]. The compactness of the level sets is a crucial ingredier
for our proofs of the upper bounds of Theorems 1.7(d) and 1.10(b).

Theorem 1.7, specialized t@ =1 and E = R, already combines and extents the
aforementioned large deviation results of de Acosta and Wu for the empirical measure
{L,}nen to the? (R)-topology. Note that the lower bound in Theorem 1.7(a) does not
make use of Condition 1.3. But if Condition 1.3 does not hold, then the lower bound
might loose its strength because measuresB with J,,(v) < oo might not be contained
in M$(S™).

A special feature of the strong topologies used in the above two theorems is the fac
that the formation of product measures can be a discontinuous operation. An exampl
suggested by Y. Peres (see [8, Exercise 7.3.18]) uses the compact unit ifiter{@l 1]
equipped with the Boreb-algebra and shows that the ma;(S) > v — V®" ¢
M1(8™), considered at the Lebesgue measure, is discontinuous with respect to th
71(R)-topologies onM1(S) and M1(5™). Therefore, the discontinuity of the product-
measure operation is not an artifact of certain exotic measurable spaces or measure
Example 1.16 below may serve as a further illustration that products of “empirical
measures” can exhibit a strange behaviour with respect to {f#@-topology. Note that,
due to the possible discontinuity of the magd;(S) > v — v®", our large deviation
results do not follow easily via the contraction principle in our general setting; see
Section 1.3, however.

Theorems 1.7 and 1.10 show that the geometry of the Banach &Balte||) does not
influence the LDPs. This is in contrast to the moderate deviation principle in [14], which
requires an assumption on the typeg Bf | - ||). Without it, the moderate deviation lower
bound may fail, see [14, Example 2.26].

For the proofs of the lower bounds of the above theorems, we adopt the methoc
outlined in [9, Exercise 3.2.23(ii)] and combine it with the law of large numbers for



784 P. EICHELSBACHER, U. SCHMOCK / Ann. |. H. Poincaré — PR 38 (2002) 779-797

U -statistics andV -statistics, respectively. To prove the upper bounds, we basically use
de Acosta’s projective limit approach contained in [1] combined with a Banach-space
version of Cramér’s theorem, which is due to Donsker and Varadhan. (Choasing,
S=FE and® = B(S, E) U {idg}, their result can be recovered from Theorem 1.7 by
using the contraction principle [8, Theorem 4.2.1] and identifying the rate function via
[10, Theorem 5.2(iv)].) Of course, we have to cope with the unbounded, Banach-spac
valued functions in®, which is one reason for thel (E)-topology to be finer than the
usualt; (R)-topology.

There are two non-trivial problems in transferring de Acosta’s approach to the
casem > 2: The dependence of the different terms in (1.2) and the non-convexity of
the rate functionJ,. The first problem is treated by using the existence of almost
regular partitions of complete hypergraphs, see Baranyai [4]. This result allows us tc
conveniently decompose the sum in (1.2) intoradependent number of partial sums,
each of which consists of independent terms. To circumvent the non-convedity we
use the convexity of the relative entropg, (- [1®™) on M1(S™) and the fact thaL. ™
is a product measure as well as a good approximationfoiFinally we have to show in
Lemma 2.9 that the infimum af,, (- |u®™) over all “n-approximate product measures”
of at?(E)-closed seC tends to the infimum over all product measure€iasn /0.

1.2. Application to U- and V-dtatistics

We want to derive large deviation results for Banach-space vdlustatistics and

V -statistics (also called von Mises statistics) from Theorems 1.7 and 1.10, respectively
Many statistics in common use are members of these two classes and many otht
statistics may be approximated by a member of one of these classes. Particularly in tf
field of non-parametric statistics, the significance of the two classes is made plain, se
for example, the monographs [5] and [20] as well as the extensive list of references give
there. For arS®"-£-measurable map : S — E the U- and V -statistics of degree:

with kernel functiong are defined by

Ur@ = [pdLy and V@)= [gdig” (1.12)
sm sm

for all » > m or all n € N, respectively. Definedb = B(S™, E) U {¢}. Then the
statistics defined in (1.12) are compositionsIdf and L®™, respectively, with the

¥ (E)-continuous functionalM$ (S™) > v > [, ¢ dv, and the contraction principle

[8, Theorem 4.2.1] immediately leads to the following theorem which extends results
obtained in [13]. Note that the following theorem uses weaker moment conditions.

THEOREM 1.13. — Assume that the kernel functigit S — FE satisfies the strong
Cramér Conditionl.4. Then the following assertions hold
(a) The U-statistics {U" (¢)},>n satisfy a full LDP with the good rate function
Jom E — [0, 00] given by

Ty (x) = inf{]m(v)

veMP(S™), /(pdv =x}. (1.14)

Sm
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(b) If, in addition, ¢ satisfies Conditiorl.5, then theV -statistics{V" (¢)},en also
satisfy a full LDP with the good rate functiafy ,,.

If Condition 1.3 holds for®, then K(J,,,00) = ;.o K(Jn,[) is contained in
M (S™) by Theorem 1.7(b). Sincd,,(v) = oo for all v € MP(S™) \ K(J,, 00),
it follows that the rate function/,, defined by (1.14) coincides with the one
in [12, Theorem 5.1]. For special kernejse B(S™,R) for which there exists a
¢ € B(S,R) such thatp(s) = ¢(s1) -+ - @(s,,) for all s = (sq,...,s,) € §™, additional
representations of the rate functidp,, can be derived by using [7, Theorem 3.1], see
[21, Corollary 4.10], for example.

1.3. Further applications

Let us briefly show how our results can be used to improveGhds conditioning
principle, cf. [8, Section 7.3]. As before, le® be a set of measurable functions
¢.S™ — E containing B(S™, E). Let {As}5-0 be a nested collection of measurable
subsets of/\/l‘f(S”’), where nested means thaf ¢ Ay whenevers < §’. In addition,
let {Fs}5-0 be nestedr;”(E)-closed subsets ol (S™), not necessarily measurable,
such thatA; C F;s for all § > 0. DefineFy = (s-q Fs and Ag = ;-0 As-

Assume Condition 1.4 and that there exisfs@Aq (not necessarily unique) such that
Jn(®) = J,,(Fy) < oo and

lim PEN(ILm e As)) =1 (1.15)
for every$ > 0, whered; denotes the first marginal éf Then, by adapting the proof
of [8, Theorem 7.3.3], the following result can be obtained.

(@) Theset ={ve Fy| J.(v) = J,,(Fp)} is nonemptyz.® (E)-compact and sequen-
tially =,* (E)-compact.
(b) If T € M1(S™) is measurable anfl C intrf(E)(F), then

. . 1
limsuplimsup=IlogP(L" ¢ T' | L € A;) <O.
8§10 n—oo N

To apply this result, letU:S" — R be anS®”"-measurable function such that
Jon €XP|U ) du®" < oo for all @ > 0. Then® = B(S™,R) U {U} satisfies Con-
dition 1.4. Furthermore, the mag : M$(S") — R with ¥(v) = [ Udv — 1 is
measurable and(R)-continuous. The setd; = Fs = {v € MF(S™) | [¥(v)| < 8}
with § > 0 are, therefore, nested, measurable gh@R)-closed. Obviouslydg = Fy =
{ve MP(S™) | ¥(v) =0} andAg C intT?(R)(A,g) for everys$ > 0. If there exists & € Ag
with [ = J,,(v) < oo, thenAo N K (J,,, 1) is 7;f (R)-compact by Theorem 1.7(c). Hence,
the lowerz;® (R)-semicontinuous rate functiof, attains the infimuny,,(Ao) atab € Ag
and (1.15) holds.

Using the Dawson—Gartner projective limit approach, we can extend Theorem 1.7
to a LDP on process levelvith respect to a projective Iimitfpl(E)—topoIogy on a
restricted setM? (2) of probability measures on the countable product spgced) =
(SN, SNy, Let us introduce the necessary notation. Using (1.2), d&fin€ — M(Q)
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by R, = L ® 8x,,1,X,.0.) fOr everyn € N. For everym € N let g,,: Q — §™
with 0,,(s) = (s1,...,5,) for s = (s;);en € 2 be the canonical projection, and let
P i M1(R) — My (S™) with p,,(v) = v, ! be the corresponding map to the marginal
measure. Then

m

LY,

LZ ® S(XnJrls---»Xm)v If m>n

if m<n,

for all m,n € N. Let ® be a set ofA-£-measurable functiong: 2 — E such that
every ¢ € ® only depends on finitely many coordinates, i.e., there exist N and
¢:S8™ — E such thaty = ¢ o ¢,,. We assume thab contains the seB:(2, E) of all
bounded measurable functions2 — E depending only on finitely many coordinates.
We define

/\/lclp(Q) = {v e M1(Q2) ‘ / lelle dv < oo forall ¢ € CIJ}.
Q

The projective Iimitrfpl(E)-topoIogy onM$ () is defined to be the coarsest one such
that M () 5 v > [, ¢ dv is continuous for every € ®. Define the rate functiod,
on M1(2) by

_ [ Hi(w), if v=0vN,
J — 1\ .1
(V) { 00, otherwise.

Using [8, Theorem 4.6.1] and its proof, the analogue of Theorem 1.7 hold® f¢f.n
and rate functior/,, with respect to theffm(E)-topoIogy onMP(Q).

If S is a Polish space with Boret-algebraS, then we have the weak topologies
on M1(S) and M1(5™) available and we can use the continuity of the map v®"
with respect to the weak topologies [16, Chapter 3, Proposition 4.6]. Therefore, if the
empirical measure$L, },n Satisfy a LDP in the weak topology, then the contraction
principle implies that the productsL®"},.y satisfy a LDP in the weak topology
on My(S8™). If there exist constant®, M € [1, o0) and a reference measufe €
M1(S™) such that the inequality

1/n
sup(E {exp(;a/VdL,?’")D gM/exp(,BV)d;l
neN
SI)I SI)I

holds for all bounded measurable functiolis ™ — [0, o0), then we can use [9,
Lemma 3.2.19 and Theorem 3.2.21] to infer thaf™"},n actually satisfy a LDP in
the 71 (R)-topology onM1(S™). We used this approach in [15] for random variables
{X;}ieny Which are dependent or not identically distributed.

Finally, let us mention that the techniques of [1, Theorem 1.2] allow the extension of
LDPs like Theorems 1.7 and 1.10 to arbitrary sets of measures.

1.4. Examples

A special feature of the;(R)-topologies onM(S) and M.(S™) is the possible
discontinuity of the map\1(S) > v > v®" € M;(S™), see the example suggested by
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Y. Peres [8, Exercise 7.3.18]. The following example may serve as a further illustration
that products of “empirical measures” can exhibit a strange behaviour with respect to th
71(R)-topology.

Example1.16. — Let the circled = R/Z be equipped with the Borel-algebraS and
let .« denote the Lebesgue—Borel measure(8nS). For everyx € R define the shift
modulo 1 (or rotationy, on S by 6, (y) = x + ymod 1 for ally € S. Using these, define

2'—1
§2 0 Ly(@) =2 > 89, @ €Ma(S), neNo.
i=0

Note that, contrary to the i.i.d. situation in Section 1.1, there is a heavy dependenct
between th®;,- (w) fori € {0, ..., 2" — 1}. SincesS is compact, it is easy to verify that
{L,(0)}nen, and{L,(w) ® L,(w)},en, CONverge weakly tqu andu ® u, respectively,
for everyw € S.

Next we want to show that, for evegye Li(u, E),

u(nleoo/den _ /(pdﬂ) —1 (1.17)
S N

Define the subr-algebras, of Sby S, ={A eS| A =6,-+(A)} for everyn € Ny
and note thaiS, ;1 C S, and E,[¢|S,] = [s¢dL,. Therefore,{[,¢dL,},en, iS a
reversed martingale relative {&,},cn, and it converges (stronglyj-almost surely
and inLi(u, E) 10 g = E,[¢]Se] With Soo =),cn, Sn» S€€ [6, Theorem 4]. Consider
the Fourier coefficientg,, , = [, ¥ (g(t))e, (1) u(dr) for n € Z and ¢ € E*, where
e, (t) = exp(—2rint). Givenn € Z \ {0}, there existt € Ny and an odd € Z such
that n = 2%, Since g o 6y-a+1 = g and ey, o Oo-wrny = —ey, all coefficientsg, ,
with n € Z \ {0} vanish and, therefore) (¢) = gy.0 = ¥ ([, ¢ du) n-almost surely [11,
Chapter 1.5, Theorem 1]. Using the Hahn—Banach theorem and the separaldlitit of
follows that there exists a countable subSebf E* with ||y ||z« < 1 for everyy € C
such that| x|z = sup,.c [ (x)| for all x € E. Therefore,g = Js ¢ du pu-almost surely.

To show that the product measutds, ® L,},en, Can go astray, consider tie® S-
measurable sed = {(x, y) € S? | x — y € Q}. By Fubini's theorem(u ® u)(A) = 0.
On the other hand, the supportbf(w) ® L, (), which is{(8;2-» (w), 0j2-(w)) | i, j €
{0,1,...,2"—1}}, is contained im for everyn € Ng andw € S. Therefore, the analogue
of (1.17) for product measures does not even hold forSt® S-measurable indicator
functiong = 1,.

Remark1.18. — There doesot exist a scalde, },cn, With ¢, ] 0 such that the random
measure$L, },cn, from Example 1.16 satisfy a large deviation upper bound of the form

limsupe, logu(L, € C) < — ingl(v)
ve

n—00

for all 71 (R)-closed measurablé c M4(S), wherel : M1(S) — [0, ool with I (u) =0
and I (v) = oo for v # u is the rate function which governs the large deviations
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of {L,},en, With respect to the weak topology on every sc@dg},cn, With ¢,]0.

To substantiate this claim, consider the et {v € M1(S) | v(A) > u(A) + 1/2},

where we construct the sdte S as follows: Choose a subsequereg }icn such that
Y oken Ene < 1/2 and defined = U,y Ak, Where

2"k —1
Av= | 127, U +eq)27].
=0

Thenu(Ay) =¢,, andu(A) <> renén <1/2 aswellasL,, (A) > L, (Ay) =1 0onA;
for everyk € N. Hence, ag — oo,

en 0gu({Ly, (A) = n(A) +1/2}) > ¢, logu(Ay) = ¢, loge,, — 0.

Therefore, we are still looking for an example of a sequence of random (if possible,
empirical) measureflL, },cn Which satisfy a LDP in the; (R)-topology, but for which

the products{L®"},cn for somem > 2 do not satisfy the corresponding LDP in the
71(R)-topology onM(S™).

2. Proofs of the large deviation principles
For every level € [0, co) define the level set of the relative entropy by
K(Hy, 1) ={veMy(S")| Hy(v|u®") <1}.

Note thatK (J,,,1) = C,, N K(H,,,lm), whereC,, = {v € M1(S™) | v =v¥"} is the
set of product measures. Therefore, part (b) of the following lemma implies part (b) of
Theorem 1.7.

LEMMA 2.1. - Let] € [0, 00).

() The setk (H,,, 1) is t1(R)-compact and sequentiallyf (R)-compact.

(b) If Condition1.3holds, thenk (H,,,1) Cc M (S™).

(c) If Condition1.4holds, then the identity ok (H,,, ) is t1(R)-t;* (E)-continuous,
hence both topologies coincide on this set dadH,,, 1) is t;* (E)-compact and
also sequentiallyt® (E)-compact.

Proof. —(a) See [1, Lemma 2.1] for thg (R)-compactness and [17, Theorem 2.6] for
the sequentiat; (R)-compactness.

(b) By convexity,z < &1 for all z € R. Substituting; = x — ¢ yieldsx < e "1 +¢
for all r, x € R. Multiplication with y = € gives the well-known estimate

xy<e l4+ylogy forallxeRandye][0,oc0). (2.2)

If v e M1(S™) satisfiesH,, (v|u®™) <1, then there exists a densifyof v with respect
to u®". Givena > 0, A € S®" andg € ®, the estimate (2.2) leads to
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1 om
lell dv:; (allell) fdu
A A

1 1
<= / e loll gy em 4 = / Flog f du®". 2.3)
OleA o 4

Sinceylogy > —1/e forall y € [0, 00),
1/1 1
/II(pII d <~ <g/e"”*"” du®" + =+ l). (2.4)
A A

ChoosingA = §™ anda = «,, in (2.4), part (b) follows.

(c) Giveng € ® ande > 0, definex = (3/e+1)/e. By Condition 1.4, the dominated
convergence theorem, and [22, Lemma V-2-4], there exists a measurable, finitely-value
function ¢, : " — E such thatf, explall¢ — @) du®" < 2. Using (2.4), it follows

that
H/(pdl)—/(pgdv
SUI SUI

for all v e K(H,,1). Hence,K (H,,,1) > v — [, ¢ dv is ry(R)-continuous, because
it is the uniform limit of the r;(R)-continuous functionsk (H,,,1) > v = [om @, dv
as¢|0. Hence, the identity oK (H,,,!) is 71 (R)-7; (E)-continuous and the.?(E)-
compactness oK (H,,, ) follows from part (a). Since the identity is bijective, it is a
11(R)-7* (E)-homeomorphism ork (H,,,1) [19, Chapter 5, Theorem 8], hence both
topologies coincide orK (H,,,[). Therefore, the sequential’ (E)-compactness also
follows from part (a). O

</||<p—<pg|| d<e (2.5)
Sm

Proof of Theorenl.7(c) — The setC,, of all product measures t5(R)-closed because

Cu= [) {veMl(S’")

V(Ap X - x Ap) = ﬁvl(A,-)}. (2.6)
i=1

Hence, by Lemma 2.1(a), the s&t(J,,l) = C,, N K(H,,,Im) is t1(R)-compact
and sequentiallyr; (R)-compact. Ther” (E)-compactness and the sequentidl(E)-
compactness ok (J,;, 1) now follow from Lemma 2.1(c). O

LEMMA 2.7.—Letv e M1(S).
(@) If ¢ € Li(v®", E), then

lim godLZ‘:/godv@”, v®N-almost surely

n—oo
gm sm

() If pom, € Li(v®", E) foreveryr:{1,...,m}— {1,...,m}, then

lim (def?m=/(pdv®m, v®N_almost surely
Sm

n—>oQ
Sm
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Proof. —This lemma is a reformulation of the strong law of large numberstfer
and V -statistics, see for example [5, Theorems 3.1.1 and 3.3.2]. Note that it suffices tc
consider symmetrig for the proof. O

Proof of Theoreni.7(a) —Let v be a measure in the® (E)-interior of BN M (5™)
with J,,(v) < co. Then® C L1(v, E), v =v{" and J,,(v) = Hy(v1|w). Define f =
dvi/du andF,(s) =[[/_, f(s;) forall s = (s;)ien € SN, By the definition of ther,? (E)-
topology, there exist > 0, k € N andg;, .. ., ¢, € ® such that the;® (E)-open set

H/‘/’idf)—/@idv
SW Sm

is contained in the;? (E)-interior of BN M (S™). Note thatC is a measurable subset of
My (S™) becauseM$ (S™) is measurable by definition. Defil®, = {L™ € C, F, > 0}
and note thata, = v$(D,) = v¥N({L" € C}) for every n € N. It follows from
Lemma 2.7(a) that

C= {a e MP(S™)

< ¢ for everyi {1,...,k}}

lim v ({L7 e C}) = 1. (2.8)

n—oo

Chooseng € N such thaw, > 0 for all n > ng. Then, for everyr > no,

P(L"eB)>P(L"eC) > / Fi dvP.
b, "

Using Jensen’s inequality, we obtain

1 1
Iog/ o ¥ >loga, — — / log F, dv$™
n an

Dy Dy

1
=loga, — —/Fn log F, du®".
an
D,

Sincex logx > —1/e for allx € [0, 00), it follows that

1
/F,1 log F,, du®" < ot / F,log F, du®"
SN

D,
1 1
=3 +nHy(vilp) = o +nJ,(v).
The last three displays together yield

1 nJ, (v)
logP(L™ € B) > loga, — — .
gP(Ly € B) Zlogay — - — — -

Using (2.8), Theorem 1.7(a) follows.O

With a small modification the same proof applies for the large-deviations lower bound
for products of empirical measures.
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Proof of Theorem1.10(a)—If v € My(S™) with J,(v) < oo, then v = v{".
Using (2.3) and Condition 1.5, it follows that o 7, € L1(vY™, E) for all ¢ € ®
andt:{1,...,m} — {1,...,m}. Therefore, Lemma 2.7(b) is applicable and replaces
Lemma 2.7(a) in the preceding proofc

Before we can prove the upper bounds, we need two additional lemmas. For ever
n > 0 define the set of alj-approximate product measures by

Awn= [ {veMsm|

A1,...,ApeS
[V(A1 X - X Apy) — VP (AL X - X Ay)| <}

Note that everyA,, , is 71 (R)-closed inM1(S™) andv = V™ for everyv € A, o.

LEMMA 2.9.—If Condition1.4holds, then

1
li inf  —H, o =7, 2.1
r;?(]) veCIfQAm,n m (UW ) In(€) (2.10)

for everyr,? (E)-closed subsef of M$(S™).

Proof. —For everyn > 0 define the greatest lower bouhdby

1
— i - ®m
l" o veclmtm.n m H (vl,u )

If n<n, thenA4,, , C A,, andl, > I,. Therefore, the limit in (2.10) exists and
I =lim,,ol, <lo. Note thatly equals the right-hand side of (2.10).

To prove thatl > Iy, it suffices to consider the cage< co. Choosel’ € (I, 00). By
Lemma 2.1(c) the se&f, , = CN A, ,N K (H,, ml')is t* (E)-compact for every) > 0.
Furthermore, the set’, 1},>0 are decreasing ag/0 andC, ; # ¢ for everyn > 0
becausd’ > [. Hence, there exists ﬂn>0 C,.r. Obviously,v € A,, o and, therefore,
v € Coy. Thismeansg’ > Iy, hence > lp. O

Let F denote the family of all finite, nonempty subsetsiofFor everyF € F define

Mp:MP(S") — EF byTp(v) = (/(pd])) . (2.11)

SUI (pEF
For F' C F with F' # @ letT1 . : EF — EF" denote the canonical projection. Note that
EF with ||y| gr = >per 1Vplle for y = (¥p)ger € E' is a Banach space. We identify its
topological duak EX)* with (E*)F. For F € F andy € EF define

Jr(y) = sup (Zz¢<y¢>—log / exp<2z¢(<p(s))>u®’"(ds)>. (2.12)

(BN N per §m geF
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LEMMA 2.13. —If Condition1.4holds, then
Jr(y) =inf{H,w[u®") |ve M7 (™), Ip(v) =y} (2.14)

for everyF ¢ Fandy € EF.

Proof. —Define y : ™ — E* by y/(s) = (¢(s))4cr for all s € $”, and define the
measurgi € M1(EF) by i = u®"y~1. Condition 1.4 implies the moment condition
[10, (5.1)] for ix. Using [10, Theorem 5.2(iv)], it follows that

b e My(E"),

/||x||EFﬁ(dx> <00, /xf)(dx)=y}.
EF EF

We now show that the right-hand side of this equality equals the one in (2.14).

If ve M$(S™) satisfied1r(v) =y, thend = vy~ € My(EF) satisfies/,r [|x| gr x
U(dx) < oo and [r x¥(dx) = y. Furthermore, ifH,,(v|u®") < oo, then it follows by
using Jensen’s inequality for conditional expectations, Ehat(v|x) < H,, (v|u®™), see
[26, Lemma 4.2.1] for example.

On the other hand, consider @e Mi(E") satisfying [ [|x|lgrD(dx) < oo,
JgrxV(dx) =y, and Hgr (D|1) < oo. Thend « i, henceg = dv/dju exists. Define
v e M1(S™) by dv/du®" = g o . Thenvy = =9 and I1z(v) = y. Furthermore,
H,, (v|u®™") = Hgr(D|2) < 0o, hencev € M$(S™) by Lemma 2.1(b). O

Proof of Theoreml.7(d) —Let C denote ther”(E)-closure of B N MF(S™). It
suffices to consider only the cagg (C) > 0. Choosel € (0, J,,(C)). According to
Lemma 2.9 there exisigy € N with ng > m such that, for alh > ng,

Je(y) = inf{HEFovm)

inf{H,,(v[u®") |ve CNA, 2/} >Im.
DefineCo=C N A, 2/n,» Which ist" (E)-closed. Note tha¢L)"); = L, and

2
® () n" —m—-—m)" m
Ly — LE m||var< 1- P < o < - (2.15)

henceL;' € A,, 2/, foralln > m. Since alsd_;’ € M (s™), it follows that
{L"e B} C{Ll € Co} (2.16)

for all n > ng. By Lemma 2.1(b), the seK (H,,,Im) is contained inMF(S™).
Since Co is 7 (E)-closed andCo N K(H,,,Im) = ¥, there exist, for every €
K (H,,Im), an F, € F and an open neighbourhodd, c E* of I, (v) such that
CoN H;}(UV) = (. SinceK (H,,, Im) is 7 (E)-compact by Lemma 2.1(c), there exists
a finite subsetV of K(H,,,/m) such that{J,.y H;}(UU) coversK (H,,, Im). Define
F = U,en Fv. Note thatF € F. For everyv € N defineU; = H;,lFU(UU). Note that
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U, c ET is open andll;'(U)) = ;' (U,). DefineU = J,cy U,. ThenTI;*(U) =
Uvey TZHUL), henceIl;*(U) covers K (H,,,Im) and is disjoint fromCo. Define

g = dist(I (K (H,,, Im)), U®). Sincell (K (H,,,Im)) is a compact subset of the open
setU, it follows thate > 0 and that

A, ={x € E" | dist(x, 1z (K (H,,,Im))) <&}
is an open set contained th. Therefore, for alk > no,
{L"eB} C{L"eCo} C{TIp(L™") € EF\ A} (2.17)

Forn e N let G,, denote the group of all permutations{df . .., n}. Considelk, n e N
satisfyingkm < n. Foro € G, define

1 k—1
Q30> Line (@) = ¢ > X sty @) X im0 € M (S™). (2.18)
=0

This map is measurable aﬁ’d,k‘j,g does not depend an, becausgX;};cy are i.i.d. We
write L, , for Ly ,.», if o is the identity on(1, ..., n}. Note that

k-1

1
Tr(Lign) = 2 2 (0 Kjmsts s Xjmm)) ger
j=0

is a mean ofk independent and identically distributel” -valued random variables.
Using the upper bound of Cramér’s theorem for Banach spaces (which is due to Donske
and Varadhan [10, Theorem 5.3]),

lim sup% logP(TT ¢ (Lism) € EF\ A:) < —Jr(EF\ A). (2.19)

k—o00
By Lemma 2.13,
Je(EF\ A.) =inf{H, (w|u®") |ve MT(S™), TIr(v) € EF \ A, }
> inf{ H, w|u®") | ve MT(S™\ K (Hy,Im)} >1m. (2.20)

It remains to transfer the upper bound obtainable from (2.19) and (2.20) into a
corresponding result for th€-empirical measurefL!'},>,,. Considem e N satisfying
n>m. There ard, = () different orderedn-tuples in the index sett(m, n) appearing
in (1.2). If m =1, definek, =n, p, =1 andg, = 0. If m > 2, definek, = [n/m],
pn =1, — (k, — D[l,/k,] andg, =k, [l,/k,] — I,. Note that in both casds =k, p, +
(k, —1g, andg, €{0,1,...,k, —1}. If m > 2 andn > 2m, thenl, > n(n — 1)/2 >
k.(k, — 1), hencep, is nonnegative because

I I
pn>zn—(kn—1>(k—+1)>k——<kn—1>>o.
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Therefore, we restrict ourselves 0> 2m in the following. LetI’(m, n) denote the
set of all orderedn-tuples inI(m,n). According to a result on complete uniform
hypergraphs due to Baranyai [4, Theorem 1], there exists a partitidftofn) into p,
sets withk, elements and;,, sets withk, — 1 elements such that each number from
{1,...,n} is a component of at most one-tuple in each of the, + ¢, sets. Hence,
there exist two (disjoint) subsets; and G, of G, with |G| = m!p, and |G| =
m!gq, such that for everyn-tuple (i, ...,i,) € I(m,n) there exists exactly one pair
(0,j)e (G, x{0,1,...,k, —1}) U (G, x{0,1,...,k, — 2}) such that(iy, ...,i,) =
(oc(jm+1),...,0(jm+ m)). Thus, we obtain the representation

(2.21)

n
(m) oeG), oeGl

SinceK (H,,, Im) is convex,A, is convex, too. Hence, for every> 2m,

(e e EFNAY C | {Tp(Liyno) € EF\ AL}

o€,
U U A{F(Li-100) € EM\ A}
oeGl
Since the distributions aty, , , andLy, 1, ., do not depend on,
P(TIF(L") € EF \ Ae) <m! p, P(Tp(Ly, 4,m) € EF \ Ay)
+m! guP(TTF(Li,—1,06,-1m) € ET \ A).
Note thatp, < n™ andqn < n. Hence, using (2.17), (2.19) and (2.20),

lim sup— Iog}P’(Lm € B)

n—oo

Ilmsup IogIP’(l‘IF(L’”)eEF\As)

n—oo

1
< —lim supz logP(TT ¢ (Lism) € EF \ A;) < 1. (2.22)

m  k—soo
Sincel € (0, J,,(C)) was arbitrary, the upper bound follows

The proof of the upper bound for product measures is similar to the previous one, bu
we need a superexponential estimate to handle the “diagonal ter§”inSinceL®™
already is a product measure, we do not need Lemma 2.9 here.

Proof of Theoreml.10(b) —Let C denote ther”(E)-closure of B N M$(S™). It
suffices to consider only the cask (C) > 0. Choosel € (0, J,,(C)). Define Co
C N C,, whereC,, = {v e My(5™) | v =v{"}. Due to (2.6) the seCy is 7*(E)-
closed. Furthermord,®" € M$(S™) andL®™" € C,,, hence{L®" € B} C {L®" € Co}
for all n € N. As in the preceding proof we can finll € 7 and an open convex-
neighbourhood4, c EF of M1 (K (H,,,Im)) such that, for alh € N,

{L®" e B} C {L®" € Co} C {15 (L2") € ET \ A.}. (2.23)
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For everyn > m we want to define a collectioRi, = {¢,},cr Of measurable functions
such that

Mp(Ly") =Tk, (Ly). (2.24)
Using, from Condition 1.5, one possibility is to define, for alk F,

0= LY gon, (2.25)

m
j=1 n €7,

where7; denotes the set of all surjective mapg1,...,m} — {1,..., jjwitht(1) =1
andt (k) <1+ maxr(d),...,t(k— D} forallk € {2,..., m}. When checking (2.24),
note that, givenj € {1,...,m} and (i1, ..., i,) € {1,...,n}™ consisting of exactlyj
different componentsy, ..., k; which appear in this order, then there exist exactly
(n = J)m—j) = nwm/n( different choices fork; 1, ..., k,) € {1,..., n}"~/ such that
all components ofky, ..., k,,) are different. On the other hand, there exists exactly one
T E 7; such thaf(iq, . .., in) = (kf(l), ceey kf(m)).

Fork,n € N satisfyingkm < n ando € G,, defineL, , , andL,, as in the preceding
proof. Definea = (|F|(m™~* + m?)~* min,cr «, with «,, as in Condition 1.5. By the
exponential Chebychev inequality,

P(||TTp(Ligm) — g (Lickm) || gr = €/2)
< e 2 exp(akn | T r(Li gm) — (L gm) |l 27)].

Using independence and Hélder’s inequality, it follows that

E[exp(ekn || T ¢ (L gm) — T g (L gn) | £7) ]

k
< (/ H eXp(Ol”H(O - (/)n”E) dl’L@m)

Sm (ﬂGF

k/IF|
<(TI [exptalFinlio =il du™) . (2.26)

(peFSm
Note that 1— n,,/n™ < m?/n by (2.15). Using (2.25), it follows that

m—1

nllo®) — o)z <m?le®)] + DD leom (9],

j=lt€e7;

for all s € ™. Using this estimate) U’}’:‘117}| < m™ %, Holder's inequality and
Condition 1.5, it follows that the product of the integrals in (2.26) is bounded by a
constant which does not depend oor n. Hence, for any sequende, }.n Satisfying

km <n;forallk eN,

i 1
||21 sup, logP (|| T (Li.km) = g, (Liim) || gr = £/2) = —00.
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Therefore, using (2.19) with, , instead ofA,,

_ 1
lim sup-- logP (M, (Liim) € EF\ A) < —Jp(ET\ Agp2) (2.27)

k— 00

for every sequencén, };cy satisfyingim < ny for all k € N. The remaining part of
the proof follows along the lines of the preceding proof by using (2.23), (2.24), (2.27)
andF,, instead ofF. O
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