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ABSTRACT. – We prove large deviation principles (LDP) form-fold products of empirical
measures and forU -empirical measures, where the underlying i.i.d. random variables take values
in a measurable (not necessarily Polish) space(S,S). The results can be formulated on suitable
subsets of all probability measures on(Sm,S⊗m). We endow the spaces with topologies, which
are stronger than the usualτ -topology and which make integration with respect to certain
unbounded, Banach-space valued functions a continuous operation. A special feature is the
non-convexity of the rate function form � 2. Improved versions of LDPs for Banach-space
valuedU - andV -statistics are obtained as a particular application. Some further applications
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1. Introduction, statement of results, and applications

Let (S,S,µ) be a probability space, let(
,A,P)≡ (SN,S⊗N,µ⊗N) be the product
space, and let{Xi}i∈N be the coordinate projections from
 to S, forming an i.i.d.
sequence withL(Xi) = µ. For everyn ∈ N the empirical measure is defined byLn =
1
n

∑n
i=1 δXi

. Them-fold productsL⊗m
n :
→ M1(S

m) of these empirical measures are
also expressible as

L⊗m
n = 1

nm

n∑
i1,...,im=1

δ(Xi1,...,Xim )
, n ∈ N. (1.1)

TheU -empirical measure of orderm is defined by

Lm
n = 1

n(m)

∑
(i1,...,im)∈I (m,n)

δ(Xi1 ,...,Xim)
(1.2)

for all integersn�m, wheren(m) ≡ ∏m−1
k=0 (n−k), the setI (m,n)⊂ {1, . . . , n}m consists

of all m-tuples with pairwise different components, andδx denotes the probability
measure concentrated atx.

In this paper we derive large deviation principles (LDP) for{Lm
n }n�m and{L⊗m

n }n∈N

in a strong topology on a restricted spaceM�
1 (S

m) of probability measures, which is
determined by a rich class of functions: Instead of bounded real-valued functions as
for the usualτ -topology, we consider more general collections� of measurable and
possibly unbounded functions taking values in a real separable Banach spaceE and
satisfying appropriate moment conditions. These extensions enable us to derive LDPs
for Banach-space valuedU - andV -statistics as a particular application, see Section 1.2.
These results improve the LDP forRd -valuedU - and V -statistics obtained in [13],
because we use weaker moment conditions and make no additional assumptions on
the state spaceS. As a further application of our extension toU -empirical measures
improvements of the Gibbs conditioning principle for interacting ensembles of particles
and an extension of the LDP forU -empirical measures to a process level LDP are
considered.

Among the techniques used, the change of measure method, the projective limit
approach and the use of the existence of almost regular partitions of complete
hypergraphs due to Baranyai [4] should be mentioned.

1.1. Large deviation principles

The large deviations of{Ln}n∈N have been studied in several papers. Sanov [23]
considered the problem whenS = R and the space of probability measuresM1(S)

is endowed with the weak topology. Donsker and Varadhan [10] and Bahadur and
Zabell [3] (see also Azencott [2]) proved – with different approaches – a LDP for
{Ln}n∈N whenS is a Polish space with Borelσ -algebraS , again in the weak topology
of M1(S). Groeneboom, Oosterhoff and Ruymgaart [18] obtained a stronger result
in which S is a Hausdorff topological space with Borelσ -algebraS and M1(S) is
endowed with theτ1(R)-topology, that is, the coarsest topology which makes the maps
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M1(S) 
 ν �→ ∫
S ϕ dν continuous for allϕ in the spaceB(S,R) of bounded, real-valued,

S-measurable functions onS. De Acosta [1] proved the LDP for{Ln}n∈N in theτ1(R)-
topology setting when(S,S) is a measurable space.

An extension in another direction was obtained by Wu [27, Sections 2.4.4 and 4.1].
He considers a Polish spaceS with Borel σ -algebraS and a collection� consisting
of all S-measurable functionsf :S → R, which are dominated in absolute value
by some multiple of a single measurable reference functionψ :S → [1,∞] with∫
S exp(αψ)dµ<∞ for all α > 0. On a suitable subset ofM1(S) he defines a topology

such thatν �→ ∫
S ϕ dν is continuous for everyϕ ∈�, and proves LDP for{Ln}n∈N with

respect to this topology.
In this paper, we obtain large deviations results which include de Acosta’s and Wu’s

results for general measurable spaces (not just Polish spaces), and extend them in several
directions; the extension toU -empirical measures being the most important one.

To formulate our results, we need some additional notations. Let(E,‖ · ‖E) be a
separable real Banach space with Borelσ -algebraE . We always exclude the case
E = {0}. Givenm ∈ N and a measurable space(S,S) as before, we consider the set
M1(S

m) of probability measures on the product spaceSm, equipped with the product
σ -algebraS⊗m. Let � be a collection ofS⊗m-E-measurable functionsϕ :Sm → E

containing the setB(Sm,E) of all bounded measurable ones. Define the�-restricted
set of probability measures onSm by

M�
1

(
Sm

) = {
ν ∈M1

(
Sm

) ∣∣∣∣
∫
Sm

‖ϕ‖E dν <∞ for everyϕ ∈�
}
.

Then the Bochner integral
∫
Sm ϕ dν is defined for everyϕ ∈ � andν ∈ M�

1 (S
m). Let

τ�1 (E) denote the coarsest topology onM�
1 (S

m) such that the mapM�
1 (S

m) 
 ν �→∫
Sm ϕ dν is continuous for everyϕ ∈ �. If � = B(Sm,E), thenM�

1 (S
m) = M1(S

m)

and we writeτ1(E) instead ofτ�1 (E). If in additionE = R, then the topologyτ�1 (E)
coincides with the usualτ1(R)-topology introduced above. Theσ -algebra onM1(S

m)

is defined to be the smallest one such thatM�
1 (S

m) and all the mapsM1(S
m) 
 ν �→∫

Sm ϕ dν with ϕ ∈ B(Sm,E) are measurable.
We consider the following three exponential moment conditions for�:

Condition 1.3 (Weak Cramér condition). – For everyϕ ∈� there exists at least one
αϕ > 0 such that

∫
Sm

exp
(
αϕ‖ϕ‖E)

dµ⊗m <∞.

Condition 1.4 (Strong Cramér condition). – For everyϕ ∈� and everyα > 0,

∫
Sm

exp
(
α‖ϕ‖E)

dµ⊗m <∞.
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Condition 1.5. – For everyϕ ∈� there exists at least oneαϕ > 0 such that

∫
Sm

exp
(
αϕ‖ϕ ◦ πτ‖E)

dµ⊗m <∞ (1.6)

for every mapτ : {1, . . . ,m} → {1, . . . ,m}, whereπτ :Sm → Sm is defined byπτ(s) =
(sτ(1), . . . , sτ(m)) for everys = (s1, . . . , sm) ∈ Sm.

Note that all three conditions are satisfied in the case�= B(Sm,E). Condition 1.4 is
used to prove the large deviation upper bound in theτ�1 (E)-topology for theU -empirical
measures defined by (1.2). Due to their immediate statistical application, see (1.12)
in Section 1.2, we named themU -empirical measures of orderm. They seem to be
the proper generalization of the usual empirical measures{Ln}n∈N, because there is no
dependence within the individual terms of (1.2). With theseU -empirical measures it is
possible to model a weak but long-range interaction between the i.i.d. random variables
{Xi}i∈N. This also means that we leave the realm of independence form� 2.

We need Condition 1.5 to transfer our LDP with respect to theτ�1 (E)-topology from
theU -empirical measures{Lm

n }n�m to them-fold products{L⊗m
n }n∈N.

Note that the setM�
1 (S

m) is convex and contains the Dirac measureδx for every
x ∈ Sm, henceL⊗m

n andLm
n take values inM�

1 (S
m) and both mappings turn out to be

measurable. Let us recall the definition of the relative entropyHm(ν|ν̃) of ν ∈M1(S
m)

with respect tõν ∈M1(S
m):

Hm(ν|ν̃)=
{∫

Sm f logf dν̃, if ν � ν̃ and f = dν
dν̃ ,

∞, otherwise.

The rate functionJm :M1(S
m)→[0,∞] is defined by

Jm(ν)=
{

1
m
Hm(ν|µ⊗m), if ν = ν⊗m1 ,

∞, otherwise,

whereν1 denotes the first marginal ofν. Note that 1
m
Hm(ν

⊗m
1 |µ⊗m) = H1(ν1|µ). For

every B ⊂ M1(S
m) define Jm(B) = infν∈B Jm(ν). Note that, if there existsA ∈ S

satisfying 0< µ(A) < 1, then the rate functionJm is non-convex for allm � 2. To
see this, define the conditional probability measuresν = µ( · |A) and ν̃ = µ( · |Ac) and
show that12(ν

⊗m + ν̃⊗m) is not a product measure. For every levell ∈ [0,∞) define the
level setK(Jm, l)= {ν ∈M1(S

m) | Jm(ν)� l}. Our main large deviation results, which
we prove in Section 2, are the following theorems.

THEOREM 1.7 (Large deviations ofU -empirical measures of orderm). –
(a) For every measurableB ⊂M1(S

m),

lim inf
n→∞

1

n
logP

(
Lm
n ∈ B)

� −Jm(
intτ�1 (E)(B)

)
, (1.8)

whereintτ�1 (E)(B) denotes the interior of the setB ∩M�
1 (S

m) with respect to the

τ�1 (E)-topology.
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(b) If Condition1.3holds, thenK(Jm, l)⊂M�
1 (S

m) for every levell ∈ [0,∞).
(c) If Condition1.4holds, thenK(Jm, l) is τ�1 (E)-compact and sequentiallyτ�1 (E)-

compact for everyl ∈ [0,∞).
(d) If Condition1.4holds, then

lim sup
n→∞

1

n
logP

(
Lm
n ∈ B)

� −Jm(
clτ�1 (E)(B)

)
(1.9)

for every measurableB ⊂M1(S
m), whereclτ�1 (E)(B) denotes the closure of the

setB ∩M�
1 (S

m) with respect to theτ�1 (E)-topology.

THEOREM 1.10 (Large deviations ofm-fold products of empirical measures). –
(a) If Condition1.5holds, then(1.8) is true withL⊗m

n in place ofLm
n .

(b) If Conditions1.4and1.5hold, then(1.9) is true withL⊗m
n in place ofLm

n .

Remark1.11. – Due to the following results of A. Schied, we think that the
exponential moment conditions of Theorem 1.7(b) and (c) are optimal: If�= B(S,R)∪
{ϕ} with a measurableϕ :S → [0,∞) and ifK(J1, l)⊂M�

1 (S) for one l > 0, then�
satisfies Condition 1.3, see [25, Proposition 1]. IfK(J1, l) is a τ�1 (R)-compact subset
of M�

1 (S) for this collection� and onel > 0, then Condition 1.4 is satisfied, see [25,
Theorem 2] or [24, Satz 2.15]. The compactness of the level sets is a crucial ingredient
for our proofs of the upper bounds of Theorems 1.7(d) and 1.10(b).

Theorem 1.7, specialized tom = 1 andE = R, already combines and extents the
aforementioned large deviation results of de Acosta and Wu for the empirical measures
{Ln}n∈N to theτ�1 (R)-topology. Note that the lower bound in Theorem 1.7(a) does not
make use of Condition 1.3. But if Condition 1.3 does not hold, then the lower bound
might loose its strength because measuresν ∈ B with Jm(ν) <∞ might not be contained
in M�

1 (S
m).

A special feature of the strong topologies used in the above two theorems is the fact
that the formation of product measures can be a discontinuous operation. An example
suggested by Y. Peres (see [8, Exercise 7.3.18]) uses the compact unit intervalS = [0,1]
equipped with the Borelσ -algebra and shows that the mapM1(S) 
 ν �→ ν⊗m ∈
M1(S

m), considered at the Lebesgue measure, is discontinuous with respect to the
τ1(R)-topologies onM1(S) andM1(S

m). Therefore, the discontinuity of the product-
measure operation is not an artifact of certain exotic measurable spaces or measures.
Example 1.16 below may serve as a further illustration that products of “empirical
measures” can exhibit a strange behaviour with respect to theτ1(R)-topology. Note that,
due to the possible discontinuity of the mapM1(S) 
 ν �→ ν⊗m, our large deviation
results do not follow easily via the contraction principle in our general setting; see
Section 1.3, however.

Theorems 1.7 and 1.10 show that the geometry of the Banach space(E,‖ · ‖) does not
influence the LDPs. This is in contrast to the moderate deviation principle in [14], which
requires an assumption on the type of(E,‖ ·‖). Without it, the moderate deviation lower
bound may fail, see [14, Example 2.26].

For the proofs of the lower bounds of the above theorems, we adopt the method
outlined in [9, Exercise 3.2.23(ii)] and combine it with the law of large numbers for
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U -statistics andV -statistics, respectively. To prove the upper bounds, we basically use
de Acosta’s projective limit approach contained in [1] combined with a Banach-space
version of Cramér’s theorem, which is due to Donsker and Varadhan. (Choosingm= 1,
S = E and� = B(S,E) ∪ {idE}, their result can be recovered from Theorem 1.7 by
using the contraction principle [8, Theorem 4.2.1] and identifying the rate function via
[10, Theorem 5.2(iv)].) Of course, we have to cope with the unbounded, Banach-space
valued functions in�, which is one reason for theτ�1 (E)-topology to be finer than the
usualτ1(R)-topology.

There are two non-trivial problems in transferring de Acosta’s approach to the
casem � 2: The dependence of the different terms in (1.2) and the non-convexity of
the rate functionJm. The first problem is treated by using the existence of almost
regular partitions of complete hypergraphs, see Baranyai [4]. This result allows us to
conveniently decompose the sum in (1.2) into ann-dependent number of partial sums,
each of which consists of independent terms. To circumvent the non-convexity ofJm, we
use the convexity of the relative entropyHm( · |µ⊗m) onM1(S

m) and the fact thatL⊗m
n

is a product measure as well as a good approximation forLm
n . Finally we have to show in

Lemma 2.9 that the infimum ofHm( · |µ⊗m) over all “η-approximate product measures”
of a τ�1 (E)-closed setC tends to the infimum over all product measures inC asη↓0.

1.2. Application to U - and V -statistics

We want to derive large deviation results for Banach-space valuedU -statistics and
V -statistics (also called von Mises statistics) from Theorems 1.7 and 1.10, respectively.
Many statistics in common use are members of these two classes and many other
statistics may be approximated by a member of one of these classes. Particularly in the
field of non-parametric statistics, the significance of the two classes is made plain, see,
for example, the monographs [5] and [20] as well as the extensive list of references given
there. For anS⊗m-E-measurable mapϕ :Sm → E theU - andV -statistics of degreem
with kernel functionϕ are defined by

Um
n (ϕ)=

∫
Sm

ϕ dLm
n and V m

n (ϕ)=
∫
Sm

ϕ dL⊗m
n (1.12)

for all n � m or all n ∈ N, respectively. Define� = B(Sm,E) ∪ {ϕ}. Then the
statistics defined in (1.12) are compositions ofLm

n and L⊗m
n , respectively, with the

τ�1 (E)-continuous functionalM�
1 (S

m) 
 ν �→ ∫
Sm ϕ dν, and the contraction principle

[8, Theorem 4.2.1] immediately leads to the following theorem which extends results
obtained in [13]. Note that the following theorem uses weaker moment conditions.

THEOREM 1.13. – Assume that the kernel functionϕ :Sm → E satisfies the strong
Cramér Condition1.4. Then the following assertions hold:

(a) The U -statistics {Um
n (ϕ)}n�m satisfy a full LDP with the good rate function

Jϕ,m :E→[0,∞] given by

Jϕ,m(x)= inf
{
Jm(ν)

∣∣∣∣ ν ∈M�
1 (S

m),

∫
Sm

ϕ dν = x

}
. (1.14)
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(b) If, in addition, ϕ satisfies Condition1.5, then theV -statistics{V m
n (ϕ)}n∈N also

satisfy a full LDP with the good rate functionJϕ,m.

If Condition 1.3 holds for�, then K(Jm,∞) ≡ ⋃
l>0K(Jm, l) is contained in

M�
1 (S

m) by Theorem 1.7(b). SinceJm(ν) = ∞ for all ν ∈ M�
1 (S

m) \ K(Jm,∞),
it follows that the rate functionJϕ,m defined by (1.14) coincides with the one
in [12, Theorem 5.1]. For special kernelsϕ ∈ B(Sm,R) for which there exists a
ϕ̃ ∈ B(S,R) such thatϕ(s) = ϕ̃(s1) · · · ϕ̃(sm) for all s = (s1, . . . , sm) ∈ Sm, additional
representations of the rate functionJϕ,m can be derived by using [7, Theorem 3.1], see
[21, Corollary 4.10], for example.

1.3. Further applications

Let us briefly show how our results can be used to improve theGibbs conditioning
principle, cf. [8, Section 7.3]. As before, let� be a set of measurable functions
ϕ :Sm → E containingB(Sm,E). Let {Aδ}δ>0 be a nested collection of measurable
subsets ofM�

1 (S
m), where nested means thatAδ ⊂ Aδ′ wheneverδ � δ′. In addition,

let {Fδ}δ>0 be nestedτ�1 (E)-closed subsets ofM�
1 (S

m), not necessarily measurable,
such thatAδ ⊂ Fδ for all δ > 0. DefineF0 = ⋂

δ>0Fδ andA0 = ⋂
δ>0Aδ .

Assume Condition 1.4 and that there exists aν̂ ∈A0 (not necessarily unique) such that
Jm(ν̂)= Jm(F0) <∞ and

lim
n→∞ ν̂⊗N

1

({Lm
n ∈Aδ}) = 1 (1.15)

for everyδ > 0, whereν̂1 denotes the first marginal ofν̂. Then, by adapting the proof
of [8, Theorem 7.3.3], the following result can be obtained.

(a) The setE ≡ {ν ∈ F0 | Jm(ν)= Jm(F0)} is nonempty,τ�1 (E)-compact and sequen-
tially τ�1 (E)-compact.

(b) If * ⊂M1(S
m) is measurable andE ⊂ intτ�1 (E)(*), then

lim sup
δ↓0

lim sup
n→∞

1

n
logP

(
Lm
n /∈ * | Lm

n ∈Aδ

)
< 0.

To apply this result, letU :Sm → R be anS⊗m-measurable function such that∫
Sm exp(α|U |)dµ⊗m < ∞ for all α > 0. Then� ≡ B(Sm,R) ∪ {U } satisfies Con-

dition 1.4. Furthermore, the map, :M�
1 (S

m) → R with ,(ν) ≡ ∫
Sm U dν − 1 is

measurable andτ�1 (R)-continuous. The setsAδ ≡ Fδ ≡ {ν ∈ M�
1 (S

m) | |,(ν)| � δ}
with δ > 0 are, therefore, nested, measurable andτ�1 (R)-closed. Obviously,A0 = F0 =
{ν ∈M�

1 (S
m) |,(ν)= 0} andA0 ⊂ intτ�1 (R)(Aδ) for everyδ > 0. If there exists aν ∈A0

with l ≡ Jm(ν) <∞, thenA0 ∩K(Jm, l) is τ�1 (R)-compact by Theorem 1.7(c). Hence,
the lowerτ�1 (R)-semicontinuous rate functionJm attains the infimumJm(A0) at aν̂ ∈A0

and (1.15) holds.
Using the Dawson–Gärtner projective limit approach, we can extend Theorem 1.7

to a LDP on process levelwith respect to a projective limitτ�1,pl(E)-topology on a
restricted setM�

1 (
) of probability measures on the countable product space(
,A)=
(SN,S⊗N). Let us introduce the necessary notation. Using (1.2), defineRn :
→M1(
)
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by Rn = Ln
n ⊗ δ(Xn+1,Xn+2,...) for every n ∈ N. For everym ∈ N let .m :
 → Sm

with .m(s) = (s1, . . . , sm) for s = (si)i∈N ∈ 
 be the canonical projection, and let
pm :M1(
)→M1(S

m) with pm(ν)= ν.−1
m be the corresponding map to the marginal

measure. Then

pm(Rn)=
{
Lm
n , if m� n,

Ln
n ⊗ δ(Xn+1,...,Xm), if m> n

for all m,n ∈ N. Let � be a set ofA-E-measurable functionsϕ :
 → E such that
every ϕ ∈ � only depends on finitely many coordinates, i.e., there existm ∈ N and
ϕ̃ :Sm → E such thatϕ = ϕ̃ ◦ .m. We assume that� contains the setBf(
,E) of all
bounded measurable functionsϕ :
→E depending only on finitely many coordinates.
We define

M�
1 (
)=

{
ν ∈M1(
)

∣∣∣∣
∫



‖ϕ‖E dν <∞ for all ϕ ∈�
}
.

The projective limitτ�1,pl(E)-topology onM�
1 (
) is defined to be the coarsest one such

thatM�
1 (
) 
 ν �→ ∫


 ϕ dν is continuous for everyϕ ∈�. Define the rate functionJ∞
onM1(
) by

J∞(ν)=
{
H1(ν1|µ), if ν = ν⊗N

1 ,
∞, otherwise.

Using [8, Theorem 4.6.1] and its proof, the analogue of Theorem 1.7 holds for{Rn}n∈N

and rate functionJ∞ with respect to theτ�1,pl(E)-topology onM�
1 (
).

If S is a Polish space with Borelσ -algebraS , then we have the weak topologies
on M1(S) andM1(S

m) available and we can use the continuity of the mapν �→ ν⊗m
with respect to the weak topologies [16, Chapter 3, Proposition 4.6]. Therefore, if the
empirical measures{Ln}n∈N satisfy a LDP in the weak topology, then the contraction
principle implies that the products{L⊗m

n }n∈N satisfy a LDP in the weak topology
on M1(S

m). If there exist constantsβ,M ∈ [1,∞) and a reference measurẽµ ∈
M1(S

m) such that the inequality

sup
n∈N

(
E

[
exp

(
n

∫
Sm

V dL⊗m
n

)])1/n

�M

∫
Sm

exp(βV )dµ̃

holds for all bounded measurable functionsV :Sm → [0,∞), then we can use [9,
Lemma 3.2.19 and Theorem 3.2.21] to infer that{L⊗m

n }n∈N actually satisfy a LDP in
the τ1(R)-topology onM1(S

m). We used this approach in [15] for random variables
{Xi}i∈N which are dependent or not identically distributed.

Finally, let us mention that the techniques of [1, Theorem 1.2] allow the extension of
LDPs like Theorems 1.7 and 1.10 to arbitrary sets of measures.

1.4. Examples

A special feature of theτ1(R)-topologies onM1(S) andM1(S
m) is the possible

discontinuity of the mapM1(S) 
 ν �→ ν⊗m ∈M1(S
m), see the example suggested by
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Y. Peres [8, Exercise 7.3.18]. The following example may serve as a further illustration
that products of “empirical measures” can exhibit a strange behaviour with respect to the
τ1(R)-topology.

Example1.16. – Let the circleS = R/Z be equipped with the Borelσ -algebraS and
let µ denote the Lebesgue–Borel measure on(S,S). For everyx ∈ R define the shift
modulo 1 (or rotation)θx onS by θx(y)= x + ymod1 for ally ∈ S. Using these, define

S 
 ω �→Ln(ω)= 1

2n

2n−1∑
i=0

δθi2−n (ω) ∈M1(S), n ∈ N0.

Note that, contrary to the i.i.d. situation in Section 1.1, there is a heavy dependence
between theθi2−n(ω) for i ∈ {0, . . . ,2n − 1}. SinceS is compact, it is easy to verify that
{Ln(ω)}n∈N0 and{Ln(ω)⊗ Ln(ω)}n∈N0 converge weakly toµ andµ⊗ µ, respectively,
for everyω ∈ S.

Next we want to show that, for everyϕ ∈L1(µ,E),

µ

(
lim
n→∞

∫
S

ϕ dLn =
∫
S

ϕ dµ
)

= 1. (1.17)

Define the sub-σ -algebraSn of S by Sn = {A ∈ S | A = θ2−n(A)} for every n ∈ N0

and note thatSn+1 ⊂ Sn and Eµ[ϕ|Sn] = ∫
S ϕ dLn. Therefore,{∫S ϕ dLn}n∈N0 is a

reversed martingale relative to{Sn}n∈N0 and it converges (strongly)µ-almost surely
and inL1(µ,E) to g ≡ Eµ[ϕ|S∞] with S∞ ≡ ⋂

n∈N0
Sn, see [6, Theorem 4]. Consider

the Fourier coefficientŝgψ,n ≡ ∫
S ψ(g(t))en(t)µ(dt) for n ∈ Z and ψ ∈ E∗, where

en(t) ≡ exp(−2π int). Given n ∈ Z \ {0}, there existk ∈ N0 and an oddl ∈ Z such
that n = 2kl. Since g ◦ θ2−(k+1) = g and e2kl ◦ θ2−(k+1) = −e2kl , all coefficientsĝψ,n
with n ∈ Z \ {0} vanish and, therefore,ψ(g)= ĝψ,0 = ψ(

∫
S ϕ dµ) µ-almost surely [11,

Chapter 1.5, Theorem 1]. Using the Hahn–Banach theorem and the separability ofE, it
follows that there exists a countable subsetC of E∗ with ‖ψ‖E∗ � 1 for everyψ ∈ C

such that‖x‖E = supψ∈C |ψ(x)| for all x ∈E. Therefore,g = ∫
S ϕ dµ µ-almost surely.

To show that the product measures{Ln ⊗Ln}n∈N0 can go astray, consider theS ⊗ S-
measurable setA ≡ {(x, y) ∈ S2 | x − y ∈ Q}. By Fubini’s theorem,(µ⊗ µ)(A) = 0.
On the other hand, the support ofLn(ω)⊗Ln(ω), which is{(θi2−n(ω), θj2−n(ω)) | i, j ∈
{0,1, . . . ,2n−1}}, is contained inA for everyn ∈ N0 andω ∈ S. Therefore, the analogue
of (1.17) for product measures does not even hold for theS ⊗ S-measurable indicator
functionϕ ≡ 1A.

Remark1.18. – There doesnot exist a scale{εn}n∈N0 with εn↓0 such that the random
measures{Ln}n∈N0 from Example 1.16 satisfy a large deviation upper bound of the form

lim sup
n→∞

εn logµ(Ln ∈C)� − inf
ν∈C I (ν)

for all τ1(R)-closed measurableC ⊂M1(S), whereI :M1(S)→[0,∞] with I (µ)= 0
and I (ν) = ∞ for ν �= µ is the rate function which governs the large deviations
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of {Ln}n∈N0 with respect to the weak topology on every scale{εn}n∈N0 with εn↓0.
To substantiate this claim, consider the setC ≡ {ν ∈ M1(S) | ν(A) � µ(A) + 1/2},
where we construct the setA ∈ S as follows: Choose a subsequence{εnk }k∈N such that∑

k∈N εnk � 1/2 and defineA= ⋃
k∈NAk , where

Ak =
2nk−1⋃
l=0

[
l2−nk , (l + εnk )2

−nk ].
Thenµ(Ak)= εnk andµ(A)� ∑

k∈N εnk � 1/2 as well asLnk(A)� Lnk (Ak)= 1 onAk

for everyk ∈ N. Hence, ask→∞,

εnk logµ
({
Lnk(A)� µ(A)+ 1/2

})
� εnk logµ(Ak)= εnk logεnk → 0.

Therefore, we are still looking for an example of a sequence of random (if possible,
empirical) measures{Ln}n∈N which satisfy a LDP in theτ1(R)-topology, but for which
the products{L⊗m

n }n∈N for somem � 2 do not satisfy the corresponding LDP in the
τ1(R)-topology onM1(S

m).

2. Proofs of the large deviation principles

For every levell ∈ [0,∞) define the level set of the relative entropy by

K(Hm, l)= {
ν ∈M1(S

m) |Hm(ν|µ⊗m)� l
}
.

Note thatK(Jm, l) = Cm ∩ K(Hm, lm), whereCm ≡ {ν ∈ M1(S
m) | ν = ν⊗m1 } is the

set of product measures. Therefore, part (b) of the following lemma implies part (b) of
Theorem 1.7.

LEMMA 2.1. – Let l ∈ [0,∞).
(a) The setK(Hm, l) is τ1(R)-compact and sequentiallyτ1(R)-compact.
(b) If Condition1.3holds, thenK(Hm, l)⊂M�

1 (S
m).

(c) If Condition1.4holds, then the identity onK(Hm, l) is τ1(R)-τ�1 (E)-continuous,
hence both topologies coincide on this set andK(Hm, l) is τ�1 (E)-compact and
also sequentiallyτ�1 (E)-compact.

Proof. –(a) See [1, Lemma 2.1] for theτ1(R)-compactness and [17, Theorem 2.6] for
the sequentialτ1(R)-compactness.

(b) By convexity,z� ez−1 for all z ∈ R. Substitutingz= x − t yieldsx � ex−t−1 + t

for all t, x ∈ R. Multiplication with y = et gives the well-known estimate

xy � ex−1 + y logy for all x ∈ R andy ∈ [0,∞). (2.2)

If ν ∈M1(S
m) satisfiesHm(ν|µ⊗m)� l, then there exists a densityf of ν with respect

toµ⊗m. Givenα > 0,A ∈ S⊗m andϕ ∈�, the estimate (2.2) leads to
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∫
A

‖ϕ‖dν = 1

α

∫
A

(
α‖ϕ‖)

f dµ⊗m

� 1

αe

∫
A

eα‖ϕ‖ dµ⊗m + 1

α

∫
A

f logf dµ⊗m. (2.3)

Sincey logy � −1/e for ally ∈ [0,∞),

∫
A

‖ϕ‖dν � 1

α

(
1

e

∫
A

eα‖ϕ‖ dµ⊗m + 1

e
+ l

)
. (2.4)

ChoosingA= Sm andα = αϕ in (2.4), part (b) follows.
(c) Givenϕ ∈� andε > 0, defineα = (3/e+ l)/ε. By Condition 1.4, the dominated

convergence theorem, and [22, Lemma V-2-4], there exists a measurable, finitely-valued
function ϕε :Sm → E such that

∫
Sm exp(α‖ϕ − ϕε‖)dµ⊗m � 2. Using (2.4), it follows

that ∥∥∥∥
∫
Sm

ϕ dν −
∫
Sm

ϕε dν
∥∥∥∥ �

∫
Sm

‖ϕ − ϕε‖dν � ε (2.5)

for all ν ∈ K(Hm, l). Hence,K(Hm, l) 
 ν �→ ∫
Sm ϕ dν is τ1(R)-continuous, because

it is the uniform limit of theτ1(R)-continuous functionsK(Hm, l) 
 ν �→ ∫
Sm ϕε dν

as ε↓0. Hence, the identity onK(Hm, l) is τ1(R)-τ�1 (E)-continuous and theτ�1 (E)-
compactness ofK(Hm, l) follows from part (a). Since the identity is bijective, it is a
τ1(R)-τ�1 (E)-homeomorphism onK(Hm, l) [19, Chapter 5, Theorem 8], hence both
topologies coincide onK(Hm, l). Therefore, the sequentialτ�1 (E)-compactness also
follows from part (a). ✷

Proof of Theorem1.7(c). – The setCm of all product measures isτ1(R)-closed because

Cm = ⋂
A1,...,Am∈S

{
ν ∈M1(S

m)

∣∣∣∣∣ ν(A1 × · · · ×Am)=
m∏
i=1

ν1(Ai)

}
. (2.6)

Hence, by Lemma 2.1(a), the setK(Jm, l) = Cm ∩ K(Hm, lm) is τ1(R)-compact
and sequentiallyτ1(R)-compact. Theτ�1 (E)-compactness and the sequentialτ�1 (E)-
compactness ofK(Jm, l) now follow from Lemma 2.1(c). ✷

LEMMA 2.7. – Let ν ∈M1(S).
(a) If ϕ ∈ L1(ν

⊗m,E), then

lim
n→∞

∫
Sm

ϕ dLm
n =

∫
Sm

ϕ dν⊗m, ν⊗N-almost surely.

(b) If ϕ ◦ πτ ∈ L1(ν
⊗m,E) for everyτ : {1, . . . ,m}→ {1, . . . ,m}, then

lim
n→∞

∫
Sm

ϕ dL⊗m
n =

∫
Sm

ϕ dν⊗m, ν⊗N-almost surely.
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Proof. –This lemma is a reformulation of the strong law of large numbers forU -
andV -statistics, see for example [5, Theorems 3.1.1 and 3.3.2]. Note that it suffices to
consider symmetricϕ for the proof. ✷

Proof of Theorem1.7(a). – Let ν be a measure in theτ�1 (E)-interior ofB ∩M�
1 (S

m)

with Jm(ν) < ∞. Then� ⊂ L1(ν,E), ν = ν⊗m1 and Jm(ν) = H1(ν1|µ). Definef =
dν1/dµ andFn(s)= ∏n

i=1f (si) for all s = (si)i∈N ∈ SN. By the definition of theτ�1 (E)-
topology, there existε > 0, k ∈ N andϕ1, . . . , ϕk ∈� such that theτ�1 (E)-open set

C ≡
{
ν̃ ∈M�

1 (S
m)

∣∣∣∣
∥∥∥∥

∫
Sm

ϕi dν̃ −
∫
Sm

ϕi dν
∥∥∥∥< ε for everyi ∈ {1, . . . , k}

}

is contained in theτ�1 (E)-interior ofB∩M�
1 (S

m). Note thatC is a measurable subset of
M1(S

m) becauseM�
1 (S

m) is measurable by definition. DefineDn = {Lm
n ∈C, Fn > 0}

and note thatan ≡ ν⊗N

1 (Dn) = ν⊗N

1 ({Lm
n ∈ C}) for every n ∈ N. It follows from

Lemma 2.7(a) that

lim
n→∞ ν⊗N

1

({Lm
n ∈C}) = 1. (2.8)

Choosen0 ∈ N such thatan > 0 for all n� n0. Then, for everyn� n0,

P
(
Lm
n ∈ B)

� P
(
Lm
n ∈C)

�
∫
Dn

1

Fn
dν⊗N

1 .

Using Jensen’s inequality, we obtain

log
∫
Dn

1

Fn
dν⊗N

1 � logan − 1

an

∫
Dn

logFn dν⊗N

1

= logan − 1

an

∫
Dn

Fn logFn dµ⊗N.

Sincex logx � −1/e for allx ∈ [0,∞), it follows that∫
Dn

Fn logFn dµ⊗N � 1

e
+

∫
SN

Fn logFn dµ⊗N

= 1

e
+ nH1(ν1|µ)= 1

e
+ nJm(ν).

The last three displays together yield

logP
(
Lm
n ∈ B)

� logan − 1

ean
− nJm(ν)

an
.

Using (2.8), Theorem 1.7(a) follows.✷
With a small modification the same proof applies for the large-deviations lower bound

for products of empirical measures.
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Proof of Theorem1.10(a). – If ν ∈ M1(S
m) with Jm(ν) < ∞, then ν = ν⊗m1 .

Using (2.3) and Condition 1.5, it follows thatϕ ◦ πτ ∈ L1(ν
⊗m
1 ,E) for all ϕ ∈ �

and τ : {1, . . . ,m} → {1, . . . ,m}. Therefore, Lemma 2.7(b) is applicable and replaces
Lemma 2.7(a) in the preceding proof.✷

Before we can prove the upper bounds, we need two additional lemmas. For every
η� 0 define the set of allη-approximate product measures by

Am,η =
⋂

A1,...,Am∈S

{
ν ∈M1(S

m)
∣∣

∣∣ν(A1 × · · · ×Am)− ν⊗m1 (A1 × · · · ×Am)
∣∣ � η

}
.

Note that everyAm,η is τ1(R)-closed inM1(S
m) andν = ν⊗m1 for everyν ∈Am,0.

LEMMA 2.9. – If Condition1.4holds, then

lim
η↓0

inf
ν∈C∩Am,η

1

m
Hm

(
ν|µ⊗m) = Jm(C) (2.10)

for everyτ�1 (E)-closed subsetC of M�
1 (S

m).

Proof. –For everyη� 0 define the greatest lower boundlη by

lη = inf
ν∈C∩Am,η

1

m
Hm

(
ν|µ⊗m)

.

If η � η′, then Am,η ⊂ Am,η′ and lη � lη′ . Therefore, the limit in (2.10) exists and
l ≡ limη↓0 lη � l0. Note thatl0 equals the right-hand side of (2.10).

To prove thatl � l0, it suffices to consider the casel <∞. Choosel′ ∈ (l,∞). By
Lemma 2.1(c) the setCη,l′ ≡ C ∩Am,η∩K(Hm,ml

′) is τ�1 (E)-compact for everyη� 0.
Furthermore, the sets{Cη,l′ }η�0 are decreasing asη↓0 andCη,l′ �= ∅ for everyη > 0
becausel′ > l. Hence, there existsν ∈ ⋂

η>0Cη,l′ . Obviously,ν ∈ Am,0 and, therefore,
ν ∈ C0,l′. This meansl′ � l0, hencel � l0. ✷

LetF denote the family of all finite, nonempty subsets of�. For everyF ∈F define

=F :M�
1

(
Sm

) →EF by=F(ν)=
(∫
Sm

ϕ dν
)
ϕ∈F

. (2.11)

ForF ′ ⊂ F with F ′ �= ∅ let=F,F ′ :EF →EF ′
denote the canonical projection. Note that

EF with ‖y‖EF ≡ ∑
ϕ∈F ‖yϕ‖E for y = (yϕ)ϕ∈F ∈EF is a Banach space. We identify its

topological dual(EF )∗ with (E∗)F . ForF ∈F andy ∈EF define

JF (y)= sup
z∈(E∗)F

( ∑
ϕ∈F

zϕ(yϕ)− log
∫
Sm

exp
( ∑
ϕ∈F

zϕ(ϕ(s))

)
µ⊗m(ds)

)
. (2.12)
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LEMMA 2.13. – If Condition1.4holds, then

JF (y)= inf
{
Hm(ν|µ⊗m) | ν ∈M�

1 (S
m), =F(ν)= y

}
(2.14)

for everyF ∈F andy ∈EF .

Proof. –Defineψ :Sm → EF by ψ(s) = (ϕ(s))ϕ∈F for all s ∈ Sm, and define the
measureµ̃ ∈ M1(E

F ) by µ̃ = µ⊗mψ−1. Condition 1.4 implies the moment condition
[10, (5.1)] forµ̃. Using [10, Theorem 5.2(iv)], it follows that

JF (y)= inf
{
HEF (ν̃|µ̃)

∣∣∣∣ ν̃ ∈M1(E
F ),∫

EF

‖x‖EF ν̃(dx) <∞,

∫
EF

xν̃(dx)= y

}
.

We now show that the right-hand side of this equality equals the one in (2.14).
If ν ∈M�

1 (S
m) satisfies=F(ν)= y, thenν̃ = νψ−1 ∈M1(E

F ) satisfies
∫
EF ‖x‖EF ×

ν̃(dx) <∞ and
∫
EF xν̃(dx) = y. Furthermore, ifHm(ν|µ⊗m) <∞, then it follows by

using Jensen’s inequality for conditional expectations, thatHEF (ν̃|µ̃)�Hm(ν|µ⊗m), see
[26, Lemma 4.2.1] for example.

On the other hand, consider ãν ∈ M1(E
F ) satisfying

∫
EF ‖x‖EF ν̃(dx) < ∞,∫

EF xν̃(dx) = y, andHEF (ν̃|µ̃) < ∞. Then ν̃ � µ̃, henceg̃ ≡ dν̃/dµ̃ exists. Define
ν ∈ M1(S

m) by dν/dµ⊗m = g̃ ◦ ψ . Then νψ−1 = ν̃ and =F(ν) = y. Furthermore,
Hm(ν|µ⊗m)=HEF (ν̃|µ̃) <∞, henceν ∈M�

1 (S
m) by Lemma 2.1(b). ✷

Proof of Theorem1.7(d). – Let C denote theτ�1 (E)-closure ofB ∩ M�
1 (S

m). It
suffices to consider only the caseJm(C) > 0. Choosel ∈ (0, Jm(C)). According to
Lemma 2.9 there existsn0 ∈ N with n0 �m such that, for alln� n0,

inf
{
Hm(ν|µ⊗m) | ν ∈C ∩Am,m2/n

}
> lm.

DefineC0 = C ∩Am,m2/n0
, which isτ�1 (E)-closed. Note that(Lm

n )1 = Ln and

∥∥Lm
n −L⊗m

n

∥∥
var � 1− n(m)

nm
� nm − (n−m)m

nm
� m2

n
, (2.15)

henceLm
n ∈Am,m2/n for all n�m. Since alsoLm

n ∈M�
1 (S

m), it follows that

{
Lm
n ∈ B} ⊂ {

Lm
n ∈ C0

}
(2.16)

for all n � n0. By Lemma 2.1(b), the setK(Hm, lm) is contained inM�
1 (S

m).
Since C0 is τ�1 (E)-closed andC0 ∩ K(Hm, lm) = ∅, there exist, for everyν ∈
K(Hm, lm), an Fν ∈ F and an open neighbourhoodUν ⊂ EFν of =Fν(ν) such that
C0 ∩=−1

Fν
(Uν)= ∅. SinceK(Hm, lm) is τ�1 (E)-compact by Lemma 2.1(c), there exists

a finite subsetN of K(Hm, lm) such that
⋃
ν∈N =

−1
Fν
(Uν) coversK(Hm, lm). Define

F = ⋃
ν∈N Fν . Note thatF ∈ F . For everyν ∈ N defineU ′

ν = =−1
F,Fν

(Uν). Note that
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U ′
ν ⊂ EF is open and=−1

F (U ′
ν) = =−1

Fν
(Uν). DefineU = ⋃

ν∈N U ′
ν . Then=−1

F (U) =⋃
ν∈N =

−1
Fν
(Uν), hence=−1

F (U) coversK(Hm, lm) and is disjoint fromC0. Define
ε = dist(=F (K(Hm, lm)),U

c). Since=F(K(Hm, lm)) is a compact subset of the open
setU , it follows thatε > 0 and that

Aε ≡ {
x ∈EF | dist

(
x,=F (K(Hm, lm))

)
< ε

}
is an open set contained inU . Therefore, for alln� n0,

{
Lm
n ∈ B} ⊂ {

Lm
n ∈C0

} ⊂ {
=F(L

m
n ) ∈EF \Aε

}
. (2.17)

Forn ∈ N letGn denote the group of all permutations of{1, . . . , n}. Considerk, n ∈ N

satisfyingkm� n. Forσ ∈Gn define


 
 ω �→ Lk,n,σ (ω)= 1

k

k−1∑
j=0

δ(Xσ(jm+1)(ω),...,Xσ(jm+m)(ω)) ∈M1
(
Sm

)
. (2.18)

This map is measurable andPL−1
k,n,σ does not depend onσ , because{Xi}i∈N are i.i.d. We

writeLk,n for Lk,n,σ , if σ is the identity on{1, . . . , n}. Note that

=F(Lk,n)= 1

k

k−1∑
j=0

(
ϕ(Xjm+1, . . . ,Xjm+m)

)
ϕ∈F

is a mean ofk independent and identically distributedEF -valued random variables.
Using the upper bound of Cramér’s theorem for Banach spaces (which is due to Donsker
and Varadhan [10, Theorem 5.3]),

lim sup
k→∞

1

k
logP

(
=F(Lk,km) ∈EF \Aε

)
� −JF (

EF \Aε

)
. (2.19)

By Lemma 2.13,

JF
(
EF \Aε

)= inf
{
Hm(ν|µ⊗m) | ν ∈M�

1 (S
m), =F(ν) ∈EF \Aε

}
� inf

{
Hm(ν|µ⊗m) | ν ∈M�

1 (S
m) \K(Hm, lm)

}
� lm. (2.20)

It remains to transfer the upper bound obtainable from (2.19) and (2.20) into a
corresponding result for theU -empirical measures{Lm

n }n�m. Considern ∈ N satisfying
n�m. There areln ≡ (n

m

)
different orderedm-tuples in the index setI (m,n) appearing

in (1.2). If m = 1, definekn = n, pn = 1 andqn = 0. If m � 2, definekn =  n/m!,
pn = ln − (kn − 1)"ln/kn# andqn = kn"ln/kn# − ln. Note that in both casesln = knpn +
(kn − 1)qn andqn ∈ {0,1, . . . , kn − 1}. If m � 2 andn � 2m, then ln � n(n− 1)/2 �
kn(kn − 1), hencepn is nonnegative because

pn � ln − (kn − 1)
(
ln

kn
+ 1

)
� ln

kn
− (kn − 1)� 0.
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Therefore, we restrict ourselves ton � 2m in the following. Let I ′(m,n) denote the
set of all orderedm-tuples in I (m,n). According to a result on complete uniform
hypergraphs due to Baranyai [4, Theorem 1], there exists a partition ofI ′(m,n) into pn
sets withkn elements andqn sets withkn − 1 elements such that each number from
{1, . . . , n} is a component of at most onem-tuple in each of thepn + qn sets. Hence,
there exist two (disjoint) subsetsG′

n and G′′
n of Gn with |G′

n| = m!pn and |G′′
n| =

m!qn such that for everym-tuple (i1, . . . , im) ∈ I (m,n) there exists exactly one pair
(σ, j) ∈ (G′

n × {0,1, . . . , kn − 1}) ∪ (G′′
n × {0,1, . . . , kn − 2}) such that(i1, . . . , im) =

(σ (jm+ 1), . . . , σ (jm+m)). Thus, we obtain the representation

Lm
n = kn

n(m)

∑
σ∈G′

n

Lkn,n,σ + kn − 1

n(m)

∑
σ∈G′′

n

Lkn−1,n,σ . (2.21)

SinceK(Hm, lm) is convex,Aε is convex, too. Hence, for everyn� 2m,{
=F(L

m
n ) ∈EF \Aε

}⊂ ⋃
σ∈G′

n

{
=F(Lkn,n,σ ) ∈EF \Aε

}

∪ ⋃
σ∈G′′

n

{
=F(Lkn−1,n,σ ) ∈EF \Aε

}
.

Since the distributions ofLkn,n,σ andLkn−1,n,σ do not depend onσ ,

P
(
=F(L

m
n ) ∈EF \Aε

)
�m!pn P

(
=F(Lkn,knm) ∈EF \Aε

)
+m!qnP(

=F(Lkn−1,(kn−1)m) ∈EF \Aε

)
.

Note thatpn � nm andqn � n. Hence, using (2.17), (2.19) and (2.20),

lim sup
n→∞

1

n
logP

(
Lm
n ∈ B)

� lim sup
n→∞

1

n
logP

(
=F(L

m
n ) ∈EF \Aε

)

� 1

m
lim sup
k→∞

1

k
logP

(
=F(Lk,km) ∈EF \Aε

)
� −l. (2.22)

Sincel ∈ (0, Jm(C)) was arbitrary, the upper bound follows.✷
The proof of the upper bound for product measures is similar to the previous one, but

we need a superexponential estimate to handle the “diagonal terms” inL⊗m
n . SinceL⊗m

n

already is a product measure, we do not need Lemma 2.9 here.

Proof of Theorem1.10(b). – Let C denote theτ�1 (E)-closure ofB ∩ M�
1 (S

m). It
suffices to consider only the caseJm(C) > 0. Choosel ∈ (0, Jm(C)). DefineC0 =
C ∩ Cm, whereCm ≡ {ν ∈ M1(S

m) | ν = ν⊗m1 }. Due to (2.6) the setC0 is τ�1 (E)-
closed. Furthermore,L⊗m

n ∈M�
1 (S

m) andL⊗m
n ∈ Cm, hence{L⊗m

n ∈ B} ⊂ {L⊗m
n ∈ C0}

for all n ∈ N. As in the preceding proof we can findF ∈ F and an open convexε-
neighbourhoodAε ⊂EF of =F(K(Hm, lm)) such that, for alln ∈ N,

{
L⊗m
n ∈ B} ⊂ {

L⊗m
n ∈C0

} ⊂ {
=F

(
L⊗m
n

) ∈EF \Aε

}
. (2.23)
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For everyn�m we want to define a collectionFn = {ϕn}ϕ∈F of measurable functions
such that

=F

(
L⊗m
n

) ==Fn

(
Lm
n

)
. (2.24)

Usingπτ from Condition 1.5, one possibility is to define, for allϕ ∈ F ,

ϕn =
m∑
j=1

n(j)

nm

∑
τ∈Tj

ϕ ◦ πτ , (2.25)

whereTj denotes the set of all surjective mapsτ : {1, . . . ,m}→ {1, . . . , j} with τ(1)= 1
andτ(k)� 1+ max{τ(1), . . . , τ (k − 1)} for all k ∈ {2, . . . ,m}. When checking (2.24),
note that, givenj ∈ {1, . . . ,m} and (i1, . . . , im) ∈ {1, . . . , n}m consisting of exactlyj
different componentsk1, . . . , kj which appear in this order, then there exist exactly
(n− j)(m−j) = n(m)/n(j) different choices for(kj+1, . . . , km) ∈ {1, . . . , n}m−j such that
all components of(k1, . . . , km) are different. On the other hand, there exists exactly one
τ ∈ Tj such that(i1, . . . , im)= (kτ(1), . . . , kτ(m)).

Fork, n ∈ N satisfyingkm� n andσ ∈Gn, defineLk,n,σ andLk,n as in the preceding
proof. Defineα = (|F |(mm−1 +m2))−1 minϕ∈F αϕ with αϕ as in Condition 1.5. By the
exponential Chebychev inequality,

P
(∥∥=F(Lk,km)−=Fn(Lk,km)

∥∥
EF � ε/2

)
� e−αεkn/2 E

[
exp

(
αkn‖=F(Lk,km)−=Fn(Lk,km)‖EF

)]
.

Using independence and Hölder’s inequality, it follows that

E
[
exp

(
αkn‖=F(Lk,km)−=Fn(Lk,km)‖EF

)]
�

(∫
Sm

∏
ϕ∈F

exp
(
αn‖ϕ − ϕn‖E)

dµ⊗m
)k

�
( ∏
ϕ∈F

∫
Sm

exp
(
α|F |n‖ϕ− ϕn‖E)

dµ⊗m
)k/|F |

. (2.26)

Note that 1− n(m)/n
m �m2/n by (2.15). Using (2.25), it follows that

n
∥∥ϕ(s)− ϕn(s)

∥∥
E

�m2∥∥ϕ(s)∥∥
E
+

m−1∑
j=1

∑
τ∈Tj

∥∥ϕ ◦ πτ (s)
∥∥
E

for all s ∈ Sm. Using this estimate,|⋃m−1
j=1 Tj | � mm−1, Hölder’s inequality and

Condition 1.5, it follows that the product of the integrals in (2.26) is bounded by a
constant which does not depend onk or n. Hence, for any sequence{nk}k∈N satisfying
km� nk for all k ∈ N,

lim sup
k→∞

1

k
logP

(∥∥=F(Lk,km)−=Fnk
(Lk,km)

∥∥
EF � ε/2

) =−∞.
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Therefore, using (2.19) withAε/2 instead ofAε,

lim sup
k→∞

1

k
logP

(
=Fnk

(Lk,km) ∈EF \Aε

)
� −JF (

EF \Aε/2
)

(2.27)

for every sequence{nk}k∈N satisfying km � nk for all k ∈ N. The remaining part of
the proof follows along the lines of the preceding proof by using (2.23), (2.24), (2.27)
andFnk instead ofF . ✷
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