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1. Introduction

In recent years some progress has been made in the investigation of convergence
equilibrium of reversible conservative interacting particle systems [1,2,9,8,11,4,5].

In finite volume the techniques used to obtain the rate of convergence to equilibrium
rely mostly on the estimation of the spectral gap of the generator. In general, one show
that the generator of the particle system restricted to a cube of Idhgds a gap of order
N~2in any dimension. This estimate together with standard spectral arguments permit
to prove that the particle system restricted to a cube of Bizkecays to equilibrium in
the variance sense at the exponential ratg-exp/ N2}: for any functionf in L2,

1P f = Ex[f1l5 < expl—ct/ N} f — Ex[f1II3,

where{P;, t > 0} stands for the semi-group of the procesdpr the invariant measure,
E.[ f]for the expectation of with respect tor and|| - ||» for the L? norm with respect
tor.

In infinite volume, since the spectrum of the generator of a conservative system ha
no gap at the origin, instead of exponential convergence to equilibrium, one expect:
a polynomial convergence. In this context, the main difficulty is to use the local
information on the gap of the spectrum of the generator restricted to a finite cube tc
deduce the global behavior of the system in infinite volume.

On the other hand, the relation between the logarithmic Sobolev inequality and the
hypercontractivity has long been established. The hypercontractivity in turn permits to
prove upper and lower Gaussian estimates of the transition probability of a reversible
Markov process (cf. [6,11]).

In this article we present a sharp estimate of the spectral gap and of the logarithmi
Sobolev constant for the Ginzburg—Landau process whose potential is a bounde
perturbation of the Gaussian potential. The precise assumptions are given in Section .
We follow here the martingale approach introduced in [14]. The main ideas are
essentially the same but there are several technical difficulties coming from the
unboundedness of the spins. The main ingredients are a local central limit theoren
uniform over the parameter and from which follows the equivalence of ensembles, anc
some sharp large deviations estimates.

The article is divided as follows. In Section 2 we state the main results and introduce
the notation. In Section 3 we prove the spectral gap and in Section 4 the logarithmic
Sobolev inequality. In Section 5 we prove a uniform local central limit theorem and
deduce some results regarding the equivalence of ensembles. In Section 6 we obta
some large deviations estimates which play a central role in the proof of the logarithmic
Sobolev inequality.

2. Notation and results

For L > 1, denote byA; the cube{l,..., L}. Configurations of the state space
RAL are denoted by the Greek letteys&, so thatn, indicates the value of the spin
atx € A for the configuration;. The configuration; undergoes a diffusion oR*:
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whose infinitesimal generatdl,, is given by

1 1
£AL = é Z (anx - a’l,v)z N é Z (V/(ny) - V/(nX))(a’h' B a”x)'

X, yEAL X, yEAL
[x—yl=1 [x—yl=1

V:R — R represents the potentidd (a) = (1/2)a® + F(a), where F:R — R is a
smooth bounded function such that’ ||, < oo,

[eou=1

We assumed the convex part of the potential to be Gaussian for simplicity. All proofs
of the results presented in Section 5 on the uniform local central limit theorems rely
strongly on this hypothesis. We believe, however, that the approach presented hel
extend to the case where we have a bounded perturbation of a convex potential. |
this respect, it was recently observed by Caputo [3] that when the potential is a purely
convex function, thé.? behavior of the inverse of the spectral gap and of the logarithmic
Sobolev constant can be easily obtained by techniques introduced for models witl
convex interactions (see [13] and references therein).

Denote byZ : R — R the partition function

Z(\) = / V@ qq, (2.1)

by R:R — R the density functiord, log Z (1), which is smooth and strictly increasing,
and by® the inverse ofR so that

e<I>(a)a—V(a) da

1 o0
“:Z(T(a»_lo“

for eacha in R.
For in R, denote byb** the product measure d&": defined by

_ 1
vitm =[] osen " dn,

xXeNL

and letv 't = ﬁfgfa). Notice thatE,, [n,] =« for all« in R, x in A,. Most of the times

omit the superscripty .. For eachM in R, denote by,, » the canonical measure on
A with total spin equal ta/:

A
VAL,M(')=VQL<'

Z nx=M>.

xXeNL

Expectation with respect ta,, » is denoted byE 4, .
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An elementary computation shows that the product meas{gsi € R} are
reversible for the Markov process with generatdf,. The Dirichlet form D,,
associated t& », is given by

1
Da(u, =5 > (TP,

X, yEAL
[x—yl=1

In this formula and below, for a probability measuyre(-),, stands for expectation with
respect tqu. Furthermore, fok, y in Z4, T*¥ represents the operator that acts on smooth
functions f as

of af
on, 3 Ny

andyu stands for the invariant measunes vy, .
For a positive integef. and M in R, denote byW (L, M) the inverse of the spectral
gap of the generatof 4, with respect to the measurg, u:

(5 Fhon,
W(L, M) = A AL
( )= SlprDAL(VAL M f)

T f =

In this formula the supremum is carried over all smooth functigria L?(v,, ) and
(f; f), stands for the variance gf with respect tqu. We also denote this variance by
the symboNar (i, f). Let

W(L)=supW(L,M).
MeR

THEOREM 2.1. — There exists a finite consta@y depending only oF such that
W(L) < CoL?

forall L > 2.

A lower bound of the same order is easy to derive. Fix a smooth function
H:[0,1]Y — R such that [ H(u)du = 0 and let f;(n) = Y. cx, H(x/L)nc. An
elementary computation shows that

2
it Fitdon, o = (mem) l2ex: o),

+ Y HO/LY{(Mey: Nervn, ar — (M2eqs Neyhon, i b

Da, Wapm f)=(1/2) Y [H(y/L)— Hx/L)]%

lx—y|=1

In this formulaf{e;, 1 < j < d} stands for the canonical basis Bf. By Corol-
lary 5.3, asL 1 oo, M/L* — o, (fu; fu)ua, u/L?Da,(va,.m: fu) CONVErges to



C. LANDIM ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 739-777 743
(ex: Mew)v, | H@)?du/ [ (Y H)(w)|? du. This proves that

|i£n inf L7°W(L) > 0.

For L > 2, a probability measure on R** and a functionf such that(f?), =1,
denote byS,, (v, f) the entropy off?dv with respect ta:

Sa, (v, f):/leogfzdv

and by6 (L, M) the inverse of the logarithmic Sobolev constant of the Ginzburg—Landau
process on the cub&; with respect to the measurg, y:

Sa, Wa, M, )
O(L, M) =sup———————.
( . prAL(UAL,va)

In this formula, the supremum is carried over all smooth functifrms Lz(vAL,M) such
that(f?),,, , = 1. Let
O(L) = supb(L, M).
MeR

THEOREM 2.2. — Assume that||F"|. < oco. There exists a finite constan®
depending only o such that(L) < CL?for all L > 2.

We follow here the martingale method developed by Lu and Yau [14] to prove
the spectral gap and a bound on the logarithmic Sobolev constant for a conservativ
interacting particle system. This approach relies on two a-priori estimates. First, a loca
central limit theorem for i.i.d. random variables with marginals equal to the marginals of
the product measurg, , uniform over the parameter in R. Second, a spectral gap or a
logarithmic Sobolev inequalityniformover the density, for a Glauber dynamics on one
site which is reversible with respect to the one-site marginal of the canonical invariant
measure.

3. Spectral gap

To fix ideas, we prove Theorem 2.1 in dimension 1. The reader can find in
Section A.3.3 of [10] the arguments needed to extend the proof to higher dimensions. T
detach the main ideas, we divide the proof in four steps. The proof goes by induction or
L. We start withL = 2.

In this section all constants are allowed to depend Bil, || F'|loo- In the case they
depend on some other parameter, the dependence is stated explicitly.

Step 1. One-site spectral gap. Consider a smooth functiofi: R*2 — R. We want
to estimate( f; f>vA2_M in terms of the Dirichlet form off. Since for the measune,, »
the total spin is fixed to be equal 8, letg(a) = f(M —a, a) and notice that f; f).,,
is equal to(g; g)us, i -
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The following result will be of much help. Fik > 2 andM in R. Denote by ,, the
marginal distribution of,, with respect tas,, ». The Glauber dynamics has a positive
spectral gap which is uniform with respecti:

LEMMA 3.1.— There is a finite constan@y depending only off F ||, such that

Var (v, y. f) < CoE,

ol G

for everyL > 2, everyM in R and every smooth functiofi: R — R in L2(v}, ,,).

Remark3.2. — In the case of grand canonical measures, this result is true undel
the more general hypothesis of strict convexity at infinity of the potential (cf. [13]
and references therein). In case of canonical measures the main problem is to obta
a good approximation of the one-site marginal in terms of the one-site marginal of granc
canonical measures.

Before proving this result, we conclude the first step. Applying this result to the func-
tion g defined above, we obtain that its variance is bounde«fwvi M[(ag/ang)z].
2,

Sincedg/dn, = (3f/dn, — df/dn1), we have that

(3 Fhoapu = (85 &vapu = (85 8)y

1
Ay M

g 2 og 2
AaM |\ 912 27\ an2

=CoEy,, Kaa—,fz B 88—51)2]

This shows thatV (2) < Co, proving Theorem 2.1 in the cade= 2. We conclude this
step with the

Proof of Lemma 3.1. We first prove the lemma for the grand canonical measure. Fix
1 in R and denote by! the one-site marginal of the product measizﬁé. Fix x; in R,
that will be specified later, and in L?(v}). The variance off is bounded above by

[ - fe)e W,

R

whereV, (x) = —Ax +log Z(1) + V (x). By Schwarz inequality, the previous expression
is less than or equal to

/dx [f/(x)]ze—Vx(x){er(X) /dy (y _ xk)e—VA()’)}
X3 X

X N
+ /dx[f/(x)]ze—VA(X){eVA(X)/dy (x)h_y)e—V)L(y)}.
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It remains to show that the expressions inside braces are uniformly boundeahah
for an appropriate choice of,. Both expressions are handled in the same way and we
consider, to fix ideas, the first one where we need to estimate

XZ2X),

o0
2 2
Sup{e@/z)(x—x) +F(x) / dy (y — x,)e V201 —F(y)}.
X

Choosex; = A and change variables to reduce the previous expression to

o0
2 2 )
sup! e /2)+FA(X)/dy ye 022k |
x>0 ’

whereF; (a) = F(a + 1). In the case wher& = 0, this expression is bounded above by

some universal constafiy. SinceF is bounded, this expression is less than or equal to
Coexp{2|| F ||} uniformly overa. This concludes the proof of the lemma in the case of
grand canonical measures.

We turn now to the case of canonical measures. We need to introduce some notatio!
For A in R, let {Xj., j > 1} be a sequence of i.i.d. random variables with density
Z(M)texp{Aix — V(x)}. For a positive integer, denote by f, ; the density of
(0 (W2L) Y23 1< < (X} — y1(M)}, wherey, (1) is thekth truncated moment of} and
o (A)?is its variancey; (A) = E[ X411, yi(A) = E[(X} — y1(1))*]. We prove in Section 5
an Edgeworth expansion fgf_, uniform over the parameter.

We may write the measure%,M(dx) in terms of the densityf; ;. Choosei so
that yy(A) = M/L: A = ®(M/L). Then, v,%,M(dx) =L/(L—-—Dg &) fir-1(ya —
x1/o/L —1) f...(0)~1dx, whereg, stands for the densitg (1)~*exp{ix — V(x)}.
Hereafter, we will omit the dependencejgfando on .

Denote the Radon—Nikodym derivative of ,,(dx) with respect to the Lebesgue
measure byR (x) = R, y(x). Fix a functionf in L2(v} ,,) andx; in R to be specified
later. Following the proof for the grand canonical measure, we bound the variarfce of
by

[ = re)*Redx,
R

We now repeat the arguments presented in the case of the grand canonical measur
After few steps, we reduce the proof of the lemma to the proof that

sup{mx)—l / dy(y —mR(y)}

XZ2X)
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is bounded, uniformly inM. Choosex; = A, change variables and recall the notation
introduced above to rewrite the previous expression as

Sup{/oodyy e (y+A) fiir-1lya—y—Al/o/L —=1) }
x>0 (J G x4+ fira(yi—x—AlJo /L =1) |’

By the explicit formula for the density, and sinceF is bounded, this expression is less
than or equal to

2 Flloo Sup{e"z/z/dy yer2 fir-1lrn—y—2Al/o/L =1 }
x>0 J fro-1lyr —x —A)/o/L = 1)

We need now to estimate the ratio of the densities inside the integral. For a positive
integer L, denote byg; ,(x) the density of3 <, X;\.. An elementary induction
argument shows thag, ;(x) = Z(A) " exp{ix}go.(x) SO that g, 1 (x)/g...(x) =
(Z(w)/Z(A)E exp{(r — n)x} for any parameter. Chooseu so thaty; (1) — y1(u) =
x/(L — 1) and notice thajx < A becausexr > 0 andy;, is an increasing function. The
previous identity gives that

fror-1lrn () —y —Al/o (W)L —1)
for-1yi(R) —x —Al/o (W)L — 1)
_ fu,L—l([Vl()\) —A+x—yl/o(WVL— 1 (A=) (x—)
= € .
Jur-1ya(d) = Al/o (WL — 1)
The exponential is bounded by 1 becaus€ A andx < y. To conclude the proof of the
lemma it is therefore enough to show that the previous ration is bounded.

In the proof of Lemma 5.1 we show thigt (1) — A| is bounded, uniformly irk, by a
constaniC; which depends only ofiF ||, and thatr () is bounded above and below by
a finite positive constant for all in R andx in R_.. In particular, by Theorem 5.2, there
existsLq such that forL > Lo, the ratio on the right hand side of the previous formula is
bounded by a constant that depends onlyj &t .. On the other hand, for L < Lo,
by Lemma 5.6 and explicit computations to expre¢ss, in terms offM,L, this ratio is
bounded by exf” L} for some constant’ depending only offf F||«. This concludes the
proof of the lemma. O

Step 2. Decomposition of the variance. We will obtain now a recursive equation
for W(L). Assume that we already estimat8t{ K) for 2 < K < L — 1. Let us write the
identity

f—=Ea, mlf1={F = Ea,mlf I nl} +{Exn, mlf I 01— En, mlf1}.
Through this decomposition we may express the variange as

En, m[(f — EAL,M[f])Z]
=En, m|[(f = Eap L IneD?] + Eny m[(Eny mlf | 0] — Ea, mlfD?]. (3.2)
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The first term on the right-hand side is easily analyzed through the induction assumptiol
and a simple computation on the Dirichlet form. We write
En, m[(f = Expmlf 11D?] = Enym [Enpm[(f = Enpmlf 102D)? [02]]

=En, M [EAL—lsM—ﬂL [(fnL - EAL—l,M—nL[fnL])ZH-

Here we used the fact thadt,, u[- | n.] = Ea, ; m—y,[-]. In this formula and below
fa, stands for the real function defined @ttt whose value ai&,...,&.-1) is
given by f,, (¢, ...,&1-1) = f(&1, ..., .1, nz). By the induction assumption this last
expectation is bounded above by

W(L - 1)EAL,M [DAL_]_(VAL_]_,M—HL7 fﬂL)] < W(L - 1)DAL(VAL,M7 f)
In conclusion, we proved that
Ex, m[(f = Eapmlf IniD?] S W(L = DDy, (0, . 1) 3.2)

The second term in (3.1) is nothing more than the varianc& of /[ f | n.], a
function of one variable. Lemma 3.1 provides an estimate for this expression:

9 2
Enp o [(Enpmlf 1nL) = EapmlfD?] < CoEn,m {(WEAL,M[][ | nL]) ] (3-3)
L

for some constant depending only o F|| -

Step 3. Bounds on Glauber dynamics, small values of L. We now estimate the
right hand side of (3.3), which is the Glauber Dirichlet formi{, »[f | n.], in terms
of the Kawasaki Dirichlet form off. A straightforward computation gives that

3 1 L=t af  of
—E - E = _
oL AL,M[f|7]L] L_l); AL,MLML I, TIL]
1 L-t
+Er M| ﬁZV’(nx) 77L]~ (3.4)
x=1

In this formulaE[g; 4 | F] stands for the conditional covariance gandh: E[g; h |
Fl=E[gh|F]— Elg| FIE[h | F]. We examine these two terms separately.

The first expression on the right hand side of (3.4) is easily estimated. Recall
the definition of the operatof*” f. SinceT™*f =3 <, 1 T"™ f, by Schwarz
inequality, we have that

1 L-1
(feresla])

L-1 L-1

1
<o L= Y Eay (T )2
x=1 y=x

2

Ex,m

L-1
SLY En, ul(T )2 1= LDx, (vapm, 1) (3.5)
x=1
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The second term in (3.4) is also easy to handle for small valués 8inceV (¢) =
(1/2)¢? + F(¢) and since - <. <17 IS fixed for the measuré&,, yl[- | n.], the
square of the second term on the right hand side of (3.4) is equal to

.

L-1

1 /
fnL§ m;F (Mx)

2

En,m

. F/ N
A x§:1 (1)

= EAL—LM—TIL

( = 2
25 )]
L-17

In this formula, F stands forF’ — (F')on, ,m_y, - The second term is bounded by

4| F’||2,. On the other hand, by the induction assumption, the first term is bounded by
W(L —1)Dy, ,(va, 1,m—y.. fn,). HENCE, taking expectation with respeciitq ,, we

obtain that
(EAL,M 77L‘|>

for some constan€y depending onF only. Without much effort and using the local
central limit theorem, one can obtain an estimate of ¥p& (L — 1)L‘1DAL a, .M, f)
for the left hand side of the last expression. However, for small values this
improvement is irrelevant.

From this estimate and (3.5) we get that the left hand side of (3.3), which is the secon
term of (3.1), is bounded above by

< EAL—LM—TIL [fﬂL; fnL] EAL—LM—TIL

-1 2

1 /
fig= 2. V')

x=1

En,m < CoW(L — 1Dy, (o, m» f)

CofL + W(L —D}Dp, (va, .M, ])-
Putting together this estimate with (3.2), we obtain that
(fs Fhoa,m S {1+ ColW(L = 1) + CoL } Dp, (va, M5 f)
or, taking a supremum over smooth functiohsthat
W(L) < CiW(L — 1) + CoL. (3.6)

This inequality permits to iterate the estimdig2) < C obtained in Step 1 to derive
estimates oW (L) for small values of.. We now consider large values bf

Step 4. Bounds on Glauber dynamics, large values of L. Here again we want to
estimate the second term of (3.1). Applying Lemma 3.1, we bound this expression by
the right hand side of (3.3). The first term of (3.4) is handled as before, giving (3.5). The
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second one requires a deeper analysis. Its square is equal to

2
(3.7)

= EAL—LM—TIL

E s ——= > F'(n« s ——= ) _ F'(n:
s | f L—1§ () | 72 f L_l; (1)

Here and below we omit the subscript of . Fix 1 < K < +/L and divide the interval
{1,...,L—1}into¢ = | (L —1)/K ] adjacent intervals of lengtk or K + 1, where|a|
represents the integer part @f Denote by/; the jth interval, byM; the total spin on

Ij: M; =5y, nc and byE;, y, the expectation with respect to the canonical measure
vy, m;- The right hand side of the previous formula is bounded above by

2

ZZwm%mM o)

j lxel;

ZEAL 1.M—nL

+2Ex, s M | f §:|1|EQA4[F] (3.8)

L l

Taking conditional expectation with respect®, we rewrite the first term as

2

<L11§j&nleP%M{f§:FmoH>

xel

20
< (L 1)2ZEAL 1,M—np [Var(vl/ M;> f)VaI’ (U[j M;> Z F (T]x)>:|

xel;

By the induction assumptioNar (v;; x,, f) is bounded above bW (|1;|) Dy, (vi; m;» f)-

On the other hand, by Corollary 5.4, the variancqalgarl Y oe I F’(n,) with respect to
v, m, is bounded above byo|I;| 7| F’||3, uniformly over M;, whereCy is a finite
constant depending only diF ||... The previous expression is thus less than or equal to

Cl
12WmmumuMﬂmwM@m
j=1

Co &
< f Z W(|Ij|)EAL,]_,M—1’]L[D1_/‘ (U[j,M_/'v f)]
=1

Since W(K + 1) < CW(K), which follows from (3.6) and from the bound
W(K) > CK?, and since the previous sum is bounded by the global Dirichlet form
Dy, (A, . m—y.» f), we proved that the first term of (3.8) is bounded above by

CsW(K)

I DAL—l(VAL—l,M—nu f) (3'9)
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We turn now to the second term of (3.8). It is equal to

2

Zu \(Ep, ., [F'] —a—b[mj—mDD ,

2<EAL—1,M—TIL L — 1

wherem; = M;/|I;|, m = (M —n.)/(L —1) anda, b are constants to be chosen
later. We were allowed to add the termsb[m; — m] in the covariance becausg
b> .y |Ijllm; — m] are constants. LeG(m;) = E;, y,[F'] — a — b[m; — m]. By
Schwarz inequality, the previous expression is bounded above by

2

1 l
(i)
j:

2

2EAL—1,M—77L [f’ f] EAL—l,M—nL

We claim that

Co

<=7 (3.10)

1
(L 1Zu |G(m,>>

for some finite constanty. Indeed, developing the square, we write this expectation as

En, 1 m—n,

1
WZ“ |2 En, =y [G(m; )?]

Z|1j||1i|EAL,1,M—nL[G(mi)G(mj)]- (3.11)

_.l_ e —
_ 2
(L -D%iZ

Recall that
m=M-—n)/(L-1), m;=M;/|I;l.
By Corollary 5.3,E4, , -y, [G(m})?] is bounded above by

Coll;l

E,, [G(m)’]1+ —— 7

Ev,”[G(mj)“]. (3.12)
Let A(x) = E, ,[F'(ny)] and seta = A(m), b = A’(m). With this choice,G(m;) =
E,j [F )] — A(m;) + A(m;) — A(m) — A’(m)[mj — m]. By Corollary 5.3,
|E7;, _[F (n:)] — A(m;)| is less than or equal tG€'||F’'||/|Z;|. On the other hand,
A(mj)—A(m)— A’ (m)[m; —m]is bounded in absolute value bY/2) | A" [m —m]?.
In particular,

1 Cot | [A"]2
L= 1)22” ?E,,[G(m))*] < 02 41 2L”2 ZII 2E,,[(m; —m)*]  (3.13)

for some constantC, depending only onF. By Lemma 5.1, since,, is a product
measure, the expectation on the right hand side of the previous inequality is bounde
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above byC|Ij|‘2. In Lemma 3.3 below we prove thfd” || ., is bounded by a constant.
The last expression is thus less than or equéldty L?> < C/K L.
The same arguments give that

ng:”ﬁ 'E [G(m-)4]<ﬁ
(L-13z " A e

Therefore, the first line of (3.11) is bounded above(hy K L.
We proceed in the same way to bound the second term of (3.11) ¥i¥. By
Corollary 5.3,E,, , m—y, [G(m;)G(m;)] is bounded above by

CoK
E,, [Gm)Gm ]+ ——\[E,, 1Gm?G(m,)?).

Notice that the first term vanishes becaugés a product measure and

Z ny = M]:|:| = Evm [F/(nx)] = A(m),

yel;

Ev, [Efym,[F )] = Ey,, {E [F’(m)

E,, [m;]=m.Onthe other hand, sinag, is a product measuré,, [G(m;)*G (m;)*] =
E,,[G(m;)?]E,,[G(m;)?]. Hence,

1
(L-1

D GIEIEA, y pp, [Gm)G(m )] <

‘. CoK )
> il =By, [G(m)’]
i#j i=1

(L —1)?

because)_; |I;| = L — 1. The right hand side of the previous formula is exactly the
first term in (3.13) that we showed to be boundeddy K L. This estimate together
with the bounds obtained in (3.13) and in the paragraph that follows (3.13) prove (3.10)
Therefore, the second term of (3.8) is bounded abovédU(L)‘lEAL_l,M_nL Lf: f1.

This bound together with (3.9) gives that (3.8), and therefore (3.7), is less than or eque
to

C3W(K) C
TDAL—l(VAL—l,M_WL’ f) + HEAL_l,M—nL[f; f]

Since (3.7) is just the square of the second term of (3.4), taking expectation with respec
to vy, .m In (3.7) and recalling (3.5), we have that (3.3) is bounded above by

W(K) C
C<L + T)DAL(VAL,Mv )+ HEAL,M[ﬁ f1
Choosek large enough for = C/K to be strictly smaller than 2. Adding this term to
(3.2), in view of the decomposition (3.1), we deduce that

En,[(f = En, wlfD?] < (1 - %) (W(L _ )+ CaL+ f) Da, Wayrs ).
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Taking supremum over smooth functiofisR: — R in L?(v,, ), we obtain that

& -1 C3
W(L) < (l— Z) (W(L -1+ C3L+ f)

It is not difficult to deduce from this recursive relation the existence of a conétant
such thatW (L) < C4L? for all L > 2. This concludes the proof of Theorem 2.1

We conclude this section proving a result needed earlier in the proof.

LEMMmA 3.3. — There exists a constaudly, depending only ofi F| «, such that

sup|A” ()| < Co.
aeR

Proof. —We claim thatA (o) = ®(«) — «. Indeed, sincel (@) = E, [ F'(n1)], we have
that

Al@) = @) —a + ﬁ /{—cb(a) +a+ F(a)e”@ V@ qq.

An integration by parts shows that the integral vanishes provingdhat = @ (@) — «.
It follows from this identity thatA” («) = ®” (). On the other hand, sinck = R1,

R"(®

d" (o) = _La))y
[R'(D(a))]

Recall that{y,, k > 2} stands for the truncated moments of the varialXI%sWe obtain
from the definition ofR that R'(®(a)) = y2(®(«)), R"(P(«)) = y3(P(«)). Therefore,
A"(@) = —y3(P(@))/y2(P(«))® and the statement follows from Lemma 5.1

4. Logarithmic Sobolev inequality

We prove in this section Theorem 2.2. The approach is similar to the one presented i
last section for the spectral gap. We will derive a recursive formula oy in terms of
(L — 1) and L in four steps. As before, all constants are allowed to dependFan,,
1F oo @nd | F" [loo-

Step 1. One-site logarithmic Sobolev inequality. We start our proof with the case
L =2. Let f:R* — R be a smooth function such thafz)UAzyM =1. Letg(n) =
£ (M —n3, n2). Since the total spin is fixed to i&, we have thatgz)qu,M = (fz)qu,M =
1 and thatSa,(va,m, &) = Sa,(Va,m. f). The next lemma permits to estimate the
entropy ofSx,(va, m, g) in terms of the Glauber Dirichlet form qf. This result is in
fact a logarithmic Sobolev inequality for the Glauber dynamics obtained when restricting
the Kawasaki exchange dynamics to one site. Recallithaj, represents the one-site
marginal ofvy, .
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LEMMA 4.1. — There exists a finite consta@y depending only ofj F' ||, such that

2 2 51 0H \*
/H(TIL) log H (17..) dUAL,M(nL)gcoEU}\L,M[<E> ] (4.1)

for everyL > 2, everyM in R and every smooth functiol : R — R in L?(vy ) such
that (H?),. =1
Ap.M
Same comments presented in Remark 3.2 apply here.
We conclude the first step before proving the lemma. From the previous statemen
applied toL = 2 andH = g we have that

g 2
SAz(UAZ’M’ f) = SAz(UAZ’M’ g) < COEU}\z-M |:<a—772) :|
2

=CoE,,, K;%) } = CoFuym Kaa_’{z - 5—’;1)2}

becauség/dn, = df/dn, — af/dn1. This proves that (2) < Cy.

Proof of Lemma 4.1. We first prove the lemma in the case of grand canonical
measures. Recall that we denote ifythe one-site marginal of the measurg’ . We
want to show that there exists a const@pf independent of., such that

/ H(a)?log H(a)?v(da) < Co / [H' (a)]* v} (da) (4.2)

for all smooth functionsH : R — R such that(HZ),-Jkl = 1. Since the potentiaV is a
bounded perturbation of the Gaussian potential, by Corollary 6.2.45 in [7], the previous
inequality holds with a constarfy that might depend on. All the matter here is to
show that we may find a finite constant independerit. of

Recall the definition of the potentidl; introduced in the proof of Lemma 3.1. A
change of variable permits to rewrite the left hand side of (4.2) as

I 1
/Hk(a)2 log Hx(a)2 e—Fx(a)_Zﬂe—(az/@ da,

where H; (a) = H(a + 1), Fi(a) = F(a + ) +l0ogZ(») and Z() is a normalizing
constant. It is easy to check thegXp{£ F; }| o < €Xp 2 F |- In particular, by Corollary
6.2.45 in [7], the previous expression is bounded above by

2e4”F”°° /[H)/L((l)]z e—ﬂ(a)\/%e—(aZ/Z) da = 2e4||F||oo /[H/(a)]Zl—))%(da)
T

This proves the lemma in the case of grand canonical measure€ywtt? exgd 4| F |} -

For canonical measures, we just need to use the local central limit theorem for largs
values ofL and explicit computations for small values bf We start with the case of
large values of. Fix a smooth functior : R — R with (H?) 1 =1 and recall the

v
Ap+1M
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notation introduced in the proof of Lemma 3.1. The left hand side of (4.1) can be written
as

VL +1 2 2 fr(lyr —al/o/L)
H(a)%log H ’
L | H@?log @ g @ frin© @

whereg, stands for the densitg (1)t exp{ix — V(x)} andi = ®(M/[L + 1]).

We base our proof on two facts. First, that if a functiBnis strictly convex then
the measurquy (dx) = Z texp{—W(x)}dx associated to the potentidV satisfies
a logarithmic Sobolev inequality. Secondly, /if(dx) satisfies a logarithmic Sobolev
inequality, andf is a density with respect ta, which is bounded below and above
(0< C; < f <Y, then f du satisfies a logarithmic Sobolev inequality. The proof of
these two well known sentences can be found, for instance, in [13].

In view of these statements, we just need to show that the above density is equivaler
to the density of a measure associated to a convex potential. Here and below tw
functionsg, f are said to be equivalent if there exists a finite, strictly positive constant
Co depending only oV (and not onM, A or L) such thatCog < f < Cglg. We shall
rely on the local central limit theorem to show the equivalence of the above density with
some density associated to a convex potential.

By Theorem 5.2, forL large enoughf; ;+1(0) is bounded above and below by a
constant. We may therefore ignore the denominator in the previous integral. Recal
from the previous section that we denote gy, the density of the random variable
>o1<<L Xj.. An elementary computation, already mentioned in the proof of Lemma
3.1, gives that

Z\*
Z0 gu.r(a)

for all A, « in R. In particular, writingf;. , in terms ofg, ., we get that

gnr(a) = g (

A) — 2\ Z L
fA,L(”( ) x) _ )< “”) exp{ (A — ) (11(h) — x) + LO — wy (W)}

cMVL /) oW \ZK)
() — x ) — n(u))
-~ L — - - " .
X St ( o(w)L * o ()

We will now chooseu for the variable on the right hand side to vanish. In this case,
we will be able to apply the local central limit theorem to claim tliat. (0) is bounded
above and below by positive finite constants. Set

1
M(X)Zq’<{1+ Z}Vl(k)— %) 4.3)

With this choice,y1(u) = (L + L™1)y1(1) — (x/L) so that the right hand side of the
previous formula becomes

o) (Z(w - —)y1(0)
o(u)(Z(m) I fu (O
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By Lemma 5.1 (-) is a function bounded below and above by strictly positive finite
constants. By Theorem 5.2, ;. (0) is bounded below and above by strictly positive finite
constants. It follows from this observation and from the previous estimayg pp; (0)

that the density of the measuv%ul’ » With respect to the Lebesgue measure, denoted
by R, .11 (x), is equivalent in the sense defined above to the function

exp—{(1/2)(x —M)*+ L[log Z(x) — log Z (1) — (A — wy1 ()] }

because, by (5.4}, (x) is equivalent to exjp-(1/2)(x — A)?}. In this formulap = u(x)
is defined by (4.3).

It remains to show that the function inside braces, denote®by) = ®, (x), is
convex. Straightforward computations show that

(9:0)(x) = x + y1(1(x)) (1 - —2) — ),
o (100
1 2 )y
920)(x) =1 —{—1 }
@O =1+ T =+ ot T e

It follows from Lemma 5.1 tha® is strictly convex for forL large enough. This proves
the lemma in the canonical case for large values .of

We now turn to the case of small values bf Recall the notation introduced just
before Lemma 5.6. The densiR; .1y (x) can be written as

VIFT o fr L2 —x])
VL fr1+1(0)

Herel = M/(L + 1). By Lemma 5.6 this expression is bounded above (and below by
an expression witlc} replaced byCy ")

cs exp—%{(l+ L™H(x — 02},

whereCy depends orl F ||~ only. SinceL < Ly, this proves that the densit; 1 y IS
equivalent to a Gaussian density, which proves the lemma in the canonical case for sme
values ofL. O

We now obtain a recursive formula fé(L) in terms of§(L — 1), L. Assume that
0(K)<oofor2< K<L -1.

Step 2. Decomposition of the entropy. Use an elementary property of the
conditional expectation to decompose the entropy as

f2
EAL,M[f2 | 77L]
2 2 1
+ / En, wl 2100100 Eny wlf2 1 nilvh, (). (4.4)

The first term on the right hand side of (4.4) is estimated through the induction
assumption. Indeed, taking conditional expectation with respegt tave may rewrite

dVAL,M

Sa, Wa,ms f) =/f2 log
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this integral as

f2 i
E ~ lo
/ Ap—1,M TIL|:EAL’M[f2| nel gEAL,M[f2| nel

En, mlf% 1 nelvy, y(dne).

Since the integral off2/Ea, m[f? | n.] with respect tovs, , »—,, iS equal to 1, the
previous expression is bounded above by

O(L — 1) / Da, s (vaysm—ns S1Eaimlf2 I )Y?) Exp £ 2 1 neddvy, 4 (ne)

<OL =1 Dy, (vap M, ). (4.5)

The last inequality follows from a direct computation.

The second term in (4.4) is estimated through Lemma 4.1. He&p,) =
Ex, m[f? | n.1%2. By Lemma 4.1, the second term on the right hand side of (4.4) is
bounded above by

OF 2 1/2\ 2
CoEn K anmlfeInel ) ]
ALM ane

A computation, similar to the one performed in (3.4), shows th&t/97,)? is equal to

1 1 {af2 af?
Ex, | 7— — n }
4EAL,M[f2|nL]{L—1Z Mo, ane |
2

x=1

Following the computation presented just after (3.4), we obtain by Schwarz inequality,
that
2
1 1 k=t {aﬂ af?
e[ L2
4EAL,M[f2|nL]{L—1;1 MM on,  an, |
L-1

S CoL Y En, (T )2 1] (4.7)
x=1
for some finite universal constaay. We have thus a bound on the first term in (4.6).
The analysis of the second term on the right hand side of (4.6) is more demanding an
is the main goal of Steps 3 and 4.

—En,m

S v
ST A Nx
L—lle

Step 3. Bounds on the Glauber dynamics, small values of L. We first replace
V'(ny) by F'(n,) becaused.,<, <, 17, is fixed for the measuré&,, (- |n.]. The
following lemma will be particularly useful.

LEMMA 4.2. — There exists a finite consta@t depending only off F”|| o, such that

Cof(L) =2

<= D En (T gy (4.8)
x=1

Er, M

1& ?
g% ZZF/(nx)
x=1
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for all L > 2, all M in R and all smooth functiong in L2(v,, ») Such that
<g2>uAL,M =1

Proof. —Denote bny,M(nx) the functionF'(n,) — Ex, m[F'(n,)]. With this nota-
tion,

Ex,m

1 L
g% ZZF/(nx)
x=1

1
=Ex.m [gzz ZFL,M(HX)] .
x=1

By the entropy inequality, this expression is bounded above by

i|o/ex Lﬁ () vd +i5( )
BL g p ,BZ Lm(Mx) ¢ dVA, M BLoM VAL M 8

x=1

for every$ > 0. By Lemma 6.1, the first term is bounded abovelay for some finite
constaniCy that depends only o\F”| «. Minimizing over g > 0 we obtain that the left
hand side of (4.8) is bounded above®yL 1Sy, (va,. . g)- By definition ofd (L), this
expression is less than or equal to the right hand side of (4.8).

It follows from Lemma 4.2 applied to the measurg_1 »—,, and to the function
g2= f?/Ea, m[f?|n.] that the second term of (4.6) is bounded above by

CoH(L —1) 2 o
S Y En (T ).
x=1

Taking expectation with respect tq, , in this formula and in (4.7), we obtain that the
expectation of (4.6) is less than or equal to

ColL + L™Y9(L — 1)}Dx, va, .m» f)

The second term of (4.4), which is bounded by the expectation with respect i of
(4.6), is less than or equal to the same expression. Therefore, in view of (4.5),

Sa, Wagms £) S{CoL + (14 CoL™HO(L = 1)}Da, a, m f)-
In particular, by definition 06 (L),
(L) < CoL + (1+ CoL™HO(L — 1).
This relation together with the fact that2) < Co, which was proved in the first step,
gives thatd (L) < C¥, (L) < C10(L — 1) for some finite constant; depending only

on || Fllco, 1F lloos 1F" lloc-

Step 4. Bounds on the Glauber dynamics, large values of L. We now give an
alternative estimate of the second term of (4.6) that we shall use for large valiles of
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PrRoOPOSITION 4.3. — Fix § > 0. There existLy > 2 and a finite constanCy =
Co(3, | Flloos | F'lleo) Such that

(EAL,M

forall L > Lo, M in R and functionsg in L?(v,, ) such that(gZ)UAL,M =1

2
80 (L
> < {COL + #}DAL(VAL,Mv g) (4.9

1 L
g% =Y F'(n)
L x=1

We first assume this result to conclude the proof of Theorem 2.2. Recall the
decomposition (4.4) of the entropy and the estimate (4.5). The second term on the rigt
hand side of (4.4) was estimated by Lemma 4.1, giving (4.6). The first term of (4.6)
was bounded by (4.7). Fix< 2. It follows from Proposition 4.3 applied to the measure
vi_1.m—y, and the functiorg® = f2/Ex, m—,, [f? | n.] that the second term in (4.6) is
bounded above by

80(L —1)

CoL
{o-i— 71

}DAL—l (VAL—LM—TIL7 f/EAL,M—nL [fz | 77L]l/2)

provided thatZ is large enough. Taking expectations with respeat;tg, in (4.6), we
obtain that the second term in (4.4) is less than or equal to

86(L —1)

C.L
{1+ I —1

}DAL (VAL,Ma f)-

In particular, by (4.5) and (4.4),

)
Sa, a, M. ) < {C2L—|— (l—{— m)Q(L — 1)}DAL(UAL,M, id)

or, by definition ofo (L),

)
(L) < {CzL + <1+ m)Q(L — 1)}.

It is easy to derive form this inequality the existence of a finite consfastich that
6(L) < CL?for all L > 2. This concludes the proof of Theorem 2.21

We now turn to the proof of Proposition 4.3. For clarity reasons, we divide it in several
lemmas. We first repeat the procedure presented in Step 4 of the previous section. F
K > 1 and divide the interva]l, ..., L} into £ = | L/K | adjacent intervals of lengtk
or K + 1. Denote by/; the jth interval, byM; the total spin on;: M; = er,j n, and
by E;, m; the expectation with respect to the canonical measyrg,. The left hand
side of (4.9) is bounded above by
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)

) . (4.10)

2

2<EAL,M[ ZZ{F (ﬂx EIj,Mj[F/]}

] lxel;

+ 2<EAL,M

1 14
g% 7 D MIE s, [F]
j=1

LEMMA 4.4.— Fix 2< K < L and M in R. There exists a finite constarti
depending only oK such that

2
Co
< TDAL (UAL,Mv g)

(EAL,M [g ; ZZ{F () — Ep, 0, [F'1)

] =lxel;

for all smooth functiong in L2(v,, ) such that(g?) =1

VAL .M

Proof. —Taking conditional expectation with respectd);, we rewrite the left hand
side of the statement of the lemma as

1.t
(z > En,m [Elj,Mj [$°1E1,m, [gjz; > F/(Ux)] ])

j=1 xel;j

2

¢ Ja ) 2
L_ Z Erpm [Elj,Mj [¢°] (Elj,Mj [gjz; M F (Ux)]) } , (4.11)
j=1 xel;j
whereg? = ¢%/E;; u;[¢%] has mean one with respectitg y; . In the last step we used
Schwarz inequality and the faéty, v [E;; u; [g%]] = 1. Fix 1< j < £. By the entropy
inequality, £/, ;g5 >/, F'(1:)] is bounded above by

1 B CFj(1) 1
Elog/e Z"CE[J s dv[jij +E

foreveryg > 0. Here,F;(n,) = F'(n.) — E;; u,[F']. By definition ofo (|1;), the second
term is bounded above W|Ij|)ﬁ‘1D1j (vi;.m;, 8;)- On the other hand, by Lemma 6.1,
the first one is bounded above ByB K for some finite constar@,. Minimizing over j
and summing ovey, sinced (K + 1) < CH(K), we get that (4.11) is less than or equal
to

S1;(vijm;5 85)

Cob(K) Cof (K)

ZEAL m[Erm (851D, (v ;0 8))] <
j=1

DAL(UAL,Mv g) (412)

This concludes the proof of the lemmamn

We turn now to the second term of (4.10). Recall thatm; stand for M/L,
M;/|1;|, respectively. LetG(m;) = E;, m;[F'] — A(m) — A'(m)[m; — m], where
A(m) = E, [F']. Since we may add constants in a covariance, the expectation in the
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second term of (4.10) is equal to

1L
Ex,m [gZQ ZZ'Ile(mJ)]' (4.13)

j=1

To estimate this covariance we need to consider two casegolé the constant given
by Lemma 6.5 and fix & § < 2. By Lemma 6.5, there exisf§, for which the left hand
side of (6.10) is bounded b3g for all 8 < Sg and allL > 2K > 2K,.

LEMMA 4.5.—Fix L > 2K > 2Ky, M in R and a smooth functiog in Lz(vAL,M)
such that(g?) = 1. Assume tha(L)L™1Dy, (va, .m, &) < 8B2. Then,

VAL M

(EAL,M

Proof. —Fix a densityg? satisfying the assumptions. By the entropy inequality, the
expectation in the statement of the lemma is bounded by

< —DAL (UAL,Ma g)

2
30(L)
) <

1.0
g% ZZ“le(mj)
=1

1 - 1
5L log Ep, M [GXP{,B Jz_:l |1j|G(mj)H + ﬁ_LSAL a,.m58) (4.14)

for every g > 0. By Lemma 6.5 and our choice &, L, the first term is bounded
above bysg for all B < Bo. The second one, by definition 6f is bounded above by
(O(L)/BL)Dn, (va, .M, 8)- Therefore, (4.13) is less than or equal to

6(L
5B + %DAL(VAL,Mag)'

The value ofg that minimizes this expression is

, (L)

B = TDAL(VAL,Mug)-

By hypothesis,S; < Bo and we may therefore minimize i < By to obtain that the
square of (4.13) is bounded above by

86(L)

TDAL(VAL,M,g),

which concludes the proof of the lemmar

LEMMA 4.6.— Fix L > 2K > 2Ky, M in R and a smooth functiog in LZ(UAL,M)
such that(g?),, ,, = 1. Assume thaf(L)L™*D,, (va, . g) > 86§. Then, there exists
a finite constant such that

2
1 86(L
(EAL,M [g% ZZ [1;|G(m;) > < {CL + #}DAL(VAL,M7 g)- (4.15)
=1
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Proof. —The covarlanceEAL wlg?; EKK[ |1;|G(m ;)] is equal to the covariance of
g° and} <<l |HK(m ), whereHK(m]) _EA, [LF'] Sinceg? is a density with
respect tova, u, by Schwarz inequality, the left hand side of (4.15) is bounded above
by
1¢ ’

2(2 Y IEn, v [g*(Hg (m)) — FIK(m»])
j=1
2

1 L
( > oI |EALM[HK(m,)—HK(m)J> (4.16)

j=1

By Lemma 6.6,Hy is uniformly Lipschitz. In particular, sincg? is a density, by
Schwarz inequality the first term is bounded above by

C
ZZ“ |EA,, M[g [mj_m] Z En,. M[g '_mi]2]

j=1 l<1;éj<l
for some finite constar@ becausen is just the average of the densities. By Lemma
4.7 below, each expectation is bounded by

9 dg )2
C1(K) + Cz(K){Dl,- (Va2 &)+ Di, (01,00, 8) + Enyn Hﬁ - ang } } }
Vi Xj

where C5(K) is a finite constant and’1(K) is a constant that can be made as small
as one wishes by letting 1 co. Here we are assuming that the culiesre ordered,
thati < j and thaty; is the rightmost site in/; andx; is the leftmost site in/;. An
elementary computation shows that the expectation in the previous formula is bounde
above byL Dy, (va, .m, g). Therefore, the first term in (4.16) is less than or equal to

C1(K) + Co(K)LDp, (Va,,m, &)-

The second term in (4.16) is easy to estimate. Siigeis uniformly Lipschitz, by
Schwarz inequality, this term is bounded by

CK
—ZEALM (m]—m) ]

j=1

for some finite constant. By Corollary 5.5, this term is bounded above G 1. In
conclusion, we proved that (4.16) is bounded above by

Cu(K)+ Co(K)LDp, (WA, M5 &),

whereC1(K) is a constant that can be made as small as one wishes by I&ttingo.
In particular, choosing large enough forC;(K) < 823, by assumption, the previous
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term is less than or equal to

80(L)
{T + CL}DAL(VAL,M7 g)

for some finite constan® depending omi. This concludes the proof of the lemmar

Proposition 4.3 follows from the decomposition (4.10) and Lemmas 4.4-4.6.
We conclude this section with a technical result needed above. Consider the cub
Aok. Denote bym;, i =1, 2, the average spin over the first and second half:=

-1 _ -1
K Zl<x<K Ny, M2 = K ZK<X<2K M-

LEMMA 4.7.— There exist finite constant$; (K), Co(K) such that
Epge . [82(m1 — m2)?] < C1(K) + Ca(K) Dy (Vage.ur- 8) (4.17)

for all densitiesg? with respect ta,,, .. Moreoverlimg_, ., C1(K) = 0.

Proof. —By the entropy inequality and by definition 6f the left hand side of (4.17)
is bounded above by

1 2, 0(2K)
E Iog EAZK,M [exp{IB(ml - mZ) }] + TDAZK (VA2K,M5 g)

We now recall that'e< 1+ x + x2e* for x > 0 and that logl + x) < x to estimate the
first term by

1
E{%EAZK,M [((m1 — m)?] + 1662 E e i [(m1 — m)* exp{4B(m1 — m)?}] }

becausen, — m, = 2(m; — m). By Corollary 5.5, we may replace the expectation with
respect to canonical measures by expectation with respect to grand canonical measur
paying the price of a finite constant. Since the grand canonical measures are produ
measures, by Schwarz inequality, the previous expression is bounded above by

C
=+ CBE,, [(m—m)°] Y2E,, [exp(8B(my —m)?)] Y2

Since expax?} is a convex function for > 0 and sincey,, is a product measure, this
sum is less than or equal to

c CB 2,11/2

< T 2B [exp(8B (1 —m)7}] ™"
For 8 small enough, the previous expectation is bounded, uniformby.ifthis proves
the lemma. O
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5. Local central limit theorem

We prove in this section some estimates that follow from the local central limit
theorem and play a central role in the proof of the spectral gap and the logarithmic
Sobolev inequality.

For A in R, denote byP, the probability measure on the product sp&é that
makes the coordinatdX;, k > 1} independent random variables with marginal density
Z(A)texp(rix — V(x)}. Denote byE; expectation with respect t8,. Recall that; (1),
o(M)?, {y(h), k > 3} stand for the expectation, the variance and &t truncated
moment of the coordinate variables under the distribuftpn

N =E[X1, o@)’=E[X1—-n0)%. 7l =E[X1— ).
ForN > 1, denote byf; y the density of the random variable (1)*N) /23", i v (X

—y1(d).

LEMMA 5.1. — Assume thall F |l < oc. Then, there exist finite constar{is;, j >
1}, depending only oni and || F ||, such that

0<Cl_l<o(k)2<C1, 0<C]71<y2j(k)<Cj

forall A in R.

Proof. —We first claim thatZ (1) exp{—A2/2} is bounded above an below by finite
positive constants. Indeed, by definition,

Z0) =2 / da e WD@—12~F@) _ g%/ / da e Y/2aF@

where F; (a) = F(a + A). Since F is absolutely bounded, this expression is bounded
below and above by/2r exp{A?/2} exp{£|| F ||}, proving the claim.

We now claim that|y;(A) — A| is bounded by| F|. eXp{2||Fll«}. Indeed, by
definition, the difference, (1) — A is equal to

i /(x _ )\)eRLX—(xz/Z)—F(x) dx.
Z(A) J

Changing variables, we may rewrite this integral as

/xe—(x2/2>—FA(x) dx//e—<x2/2)—mx> dx.
R R

Since [ dx x exp{—(1/2)x?} vanishes, by Schwarz inequality, the absolute value of this
expression is bounded above by
1

IFlloo ’/ ~(1/22% (o Fax) _ q
e X€ € dx
o ( )

< F oo €,
2 s

which proves the claim.
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We now prove a lower bound far(1)2. The same ideas permit to derive an upper
bound foro (1) or upper and lower bounds for the truncated momeépts(r), j > 2}.
A change of variables and the estimateZ.) exp{—12/2} gives that

1
o ()2 > e—annm_ /da [a+ A — y1(1)]2e /2

B 1BISIA=y1(W) o
whereC; depends only offj F || .. This concludes the proof of the lemmax

It follows from this lemma that
(A
SU#M <
rer| 0 (L)Y

for all j > 3, which is the estimate needed in order to prove the uniform local central
limit theorem.

Se ke inf _/da la+BIPe2>C1 >0,

C, (5.1)

THEOREM 5.2. — Assume thal F' ||, < co. There existeVy > 1 and a finite constant
C depending only offf F || such that

C

v3(A)x } c
=N

= axR)q VI
frv) = e 1 e
forall N > No, x in RandA in R.

For afixed parametérthis is just the usual statement of the local central limit theorem
for i.i.d. random variables with finite fourth moments. The important point here is the
uniformity over the parameter. This uniformity can be obtained in virtue of (5.1) and
the estimates presented in the Lemma 5.1.

The local central limit theorem gives asymptotic expansions of the expectation of a
function with respect to a canonical measure. This is the content of the next result.

COROLLARY 5.3. — Fix £ > 1 and fix a functionG : Rt — R. There existVy > 1 and
a finite constantC depending only offj F' ||, such that for allN > Ny and all M in R

Ct e
|[Ery.mIG]—E,, [G]] < mllGllOO if G is bounded and
N

Ct
|Eay.mlG] = E,, [G]] < A |\/Ev,,,[G; Gl.
N

In these formulaspy = M /| A y]|.

The proof is elementary (cf. Corollary A2.1.4 in [10]). Of course, by changing the
value of the constant, the first inequality remains valid for all values §f> ¢.

COROLLARY 5.4, - LetG:R — R be a smooth bounded function and &t , =
G-E,,, ,IGl]. There exists a finite consta@t, depending only ofi F||», such that

G 2

( ZGL m (1) ) ” I

Ex,m 7

\

forall L >1andM in R.
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Proof. —The variance is equal to

1 1
ZEAL,M [(GL,M(m))Z] + (1— Z)EAL,M[GL,M(nl)GL,M(UZ)]-

The first expression is bounded byf@||2, L~ for all L > 1 andM < R. The second
one, by definition ofG,  is equal to

1
(1_ Z) {EAL,M[G(nl)G(ﬂz)] — EAL,M[G(UL)]Z}-

By Corollary 5.3, since, is a product measure, the first term of the previous expression
is equal toE,[G (.)12 £ CL7Y|G|l«, WhereC is a finite constant depending only on

| Fll~- By the same result, the second term is equal tiiG (. )12+ CL~1||G||2,, which
concludes the proof. O

For 1< K < L, denote byvf ,, the marginal onR** of the canonical measure

va,.k- An elementary computation shows thaf, ,, is absolutely continuous with
respect to the Lebesgue measure and that its Radon Nikodym deriRative, (Xx)
is given by

LY2(L — K) V26K (x¢) - K<(0¢L )Y -l )fu(m Lxg.

1<i<K

wherexg = (x1,...,xx), g& stands for the densitif (1) ~* exp{>_;;<x Ax; — V(x)}
andi = ®(M/L). The next result shows that the raiRf ,, (xx)/g/ (xx) is bounded
above, uniformly oven, providedK /L is bounded away from 1. [4] has obtained the
same result in the case of lattice gases under strong mixing assumptions.

COROLLARY 5.5. — There exists a finite constaat depending only offj || »,, such
that
Ry 1.m(Xg)
gr (Xg)

for all L/2> K > 1 andxg in R2%, In this formula,A = ®(M/L). In particular, if
K < L/2, for any local functionH : R« — R,

EAL,M[H(nla---anK)] gCOEUM/‘AL‘[|H|]' (52)

0

Proof. —In view of the explicit formula for the densitRx ; » and sincek < L/2,
we only have to show that

fr-k({o VL =K} 1Y cicxlya — xi])
S1..(0)
We prove separately that the numerator is bounded and that the denominator is bound

below by a strictly positive constant. Consider, for instance the denominatorL For
large enough, the lower bound follows from Theorem 5.2. E@mall, it follows by

< Co. (5.3)
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inspection. The same argument applies to the numeratoriwithk in place ofL. This
proves the corollary since (5.2) follows at once form (5.3

Theorem 5.2 and its corollaries permit to estimate expectation with respect to &
canonical measurg, i, providedL is large. The next result provides an estimate for
small values of_.. The important point in this result is once again the uniformity over the
parametei.. Denote byf; v the density of the random variakie—/2 Yicien{X;i— 1)
under the measur®,. Note that we are not renormalizing layA) and that we are
subtractingh instead ofy;(A).

LEMMA 5.6. — There exists a positive and finite constaiit, depending only on
I F|ls, SUch that

1
CiV——e 2 < fiyx) <C¥ R

N Vr

for everya in R.

Proof. —The proof is elementary. We present the upper boundNFprl, letg; y be
the density with respect to the Lebesgue measure of the random véyigble , X
under P,. By the estimate orz (1) exp{A?/2} obtained in the proof of Lemma 5.1 and
by the explicit formula forg; », we have thag; y(x) is bounded by

2

Civéx_(kzN/z)W / d)Cl...d.XN_l eXp{——Zx __<x_le> }
RN-1

for some constant’; depending only offf F||».. Since the integral with the renormaliza-
tion factor in front is equal t@27)~2exp{—x?/2N}, the previous expression is equal
to C (27)~Y2exp{—(x — AN)?/2N}. To conclude the proof of the lemma, it remains
to expressfk,N interms ofg; x(x). O

The same argument shows that(x) = Z(1)"texp{ix — V(x)} is bounded above
and below by a Gaussian density. More precisely, there exists a finite, strictly positive
constantCy depending only off F| «, such that

1 ) 1 2
C g =4 /2 < x) < C—l _a (=) /2 54
O«/Z 8. (x) 0 N (5-4)

for everyx in R.

LEMMA 5.7. — There existg, > 0 and a finite constanfy such that
E,, [explBol ALlima, —a}?}] < Co

for everya in R and L > 1. In this formulam, = |A |t Y oveny M

Proof. —For small values of. this statement is a straightforward consequence of the
previous lemma, the fact that (1) — A is absolutely bounded, proved in Lemma 5.2,
and the fact that the statement holds for Gaussian distributions.
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For large values of., with the notation introduced in the beginning of this section,
the expectation can be written as

/e‘gog(k)zxsz,L(X) dx

R

for some appropriate choice af Notice that the local central limit theorem, stated in
Theorem 5.1, gives a good bound only for small values.ofhe idea is therefore to
replace in the previous formula by a variablenw which makesx a typical value. By
(4.3) or a direct computation,

fo=2 (ﬁ)Leu—w[mmLmn s (@ L VI - n(u)))

0, \Z; o O

Chooseu for the expression insidg, , to be small (in order to be able to use the local
central limit estimate):
x03V/L = Lin(w) — y2(M)].

With this choice, since by Theorem 5(211‘1 < fu(0) < C; for some universal constant
C,, and since by Lemma 52, is bounded,

Frn(x) ~exp{L109(Z,,/Z;} + (r — WIxouv/L + Lyi(W)1},

where~ means that the left hand side is bounded above and below by the right hand sid
multiplied by finite positive constants. The expression inside the exponential vanishes &
x = 0. Itis also not difficult to show that it is strictly concaveair(cf. computation right

after (4.3)). In particular,

2
S (x) ~ g 2"

for some finite constar@, and we are back to the Gaussian case.

6. Large deviations estimates

Fix a differentiable functionk :R — R with bounded derivativel|R'|| < oco. Let
R8(a) = R(a) — (R),, In the case of grand canonical measures andRigla) =
R(a) = (R)vs, in the case of canonical measures. Notice tRatn,) — RS(n,) =
E,,[R(ny)] — Ea, m[R(ny)]. It follows from Corollary 5.3 that

ClR llo

|Ev [R(1:)] — Ea, m[R(0)]| <
[ALl

6.1)

for some finite constard@ depending only ot || becauseE,,[R; R] < E,, [{R(n1) —
R(@)?] < IR'5,0 (®(@))>.
We claim that there exists a finite consté@hitdepending only o F ||, for which

|RS (@) < Coll R lloo(1+la — al), |R(a)| < ColR'loc(1+la—al)  (6.2)
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for all ¢, « in R (in the canonical case for all > 1, M in R). Consider first the grand
canonical case. Notice that

|RS(a)| < Ey [|R(@) — RO < IR oo Ev, [la — m1]
<R oofla — a| + E,, [(m — )12},

By Lemma 5.1 the second term inside braces in the last expression is bounded above |
some finite constant’; that depends ofiF ||« only. This proves the claim in the grand
canonical case. The same arguments apply to the canonical case provide we show tt
Ex, m[(n1 — a)?] is uniformly bounded. But this is part of the content of Corollary 5.5.

LEMMA 6.1. — Fix a differentiable functior® : R — R with bounded derivative and
L > 2. There exists a constandt, depending only ofi ' || .., such that

1 2
Bins] Iog/exp{ﬂng Ra(nx)}dVAL,M <CIR'N5B (6.3)

forall 8 >0andallM in R. HereR, = R — (R)

VAp.M®

Proof. —We first prove this result for the grand canonical measure in place of the
canonical measure. In this case we repl&geéoy RS and we only need to show that

1
Zgoq/exmﬂRgmﬁ}dws:caniﬂ (6.4)

for all 8 > 0 because, is a product measure.
We consider first the case gf small. By the spectral gap for the Glauber dynamics
(Lemma 3.1), there exists a universal const@gnsuch that

(F2e = ()5 < Col(@, )P,

for all smooth functionsf in L2(v}). Let C; = Co[|R'||%, and assume that < C; /2.

Applying this inequality to the functiorf = exp{(8/2) R$}, we obtain that

,3 2
B[] < (B [75)7 4 Co 5 ) IRIZE, []

so that

: 1
E,, [e"%] < E,
o[ 1—Co||R/||§o(ﬁ/2)2{ ’

< eMRCIRIER (|, [eb/DRI]Y?

[e#/2R] )2

becausegl — x)~! < & for 0 < x < 1/2. lterating this estimate — 1 times we obtain
that

B[] < exp{ 1?3 2" } (E,, [0}
j=1
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The exponential is obviously bounded by ¢&pg?2}. On the other hand, we claim that

lim nlogE,, [¢/"%] =0, (6.5)

n—00

showing that the left hand side of (6.4) is bounded above€ /= CoB| R'||2, provided
B <M

To prove (6.5), just notice that eid/n)RS} is bounded above by ¥ (1/n)RS +
(1/n?)(R$)?exp{(1/n)|RE|}. Since logl + x) < x and sinceR$ has mean zero with

respect to),, we obtain that
nlogE,, [e/"F] < %E [(R$)?exp{(1/n)|RE|}].
By (6.2), the right hand side is bounded above by
=, ({14 (n @)% exp(Clms — al /)]

for some finite constar@ depending only offj F||«, || R'|ls. The expectation is bounded
for all n > 1 because, has Gaussian tails. This proves (6.4) fox C; /2.
—1/2

We now turn to the case of large, which is simpler. Assume that > C;
follows from (6.2) that the left hand side of (6.4) is bounded above by

Lt

CollR'lloo + B I0G E,, [/1F IxClm=el], (6.6)

Since &' < €' + e, we need only to estimatg, [exp{B|| R’ |- C2(n1 — «)}] for g and
—pB. Recall the definition of the partition functios given in Eq. (2.1). The logarithm
of the previous expectation is equal to BGP («) + B||R ||ccC2) — 109 Z(®(x)) —
BIR ||loC2c.. An elementary computation gives thdbg Z)'(®(«)) = o so that the
previous difference can be written as

l0g Z (@ () + BlIR [l C2) — 109 Z(® () — (109 Z)' (P () BIIR [l C-

By Taylor’s expansion, this difference is bounded(ty2) (8| R’ || C2)?(log Z)" (1) for
somex betweend («) and® (a) + B|| R’ || C2. Since(log Z)" (1) = o2()) and since, by
Lemma 5.1¢2(1) is bounded uniformly irk, we have that

log E,,, [eXp(BII R [l C2(m — @)}] < CIIR'IIZ,B°

for some constant depending only §# ||.. Since loda + b} < log2+ maxloga,
logb}, (6.6) is bounded above by

, log2 02
C2||R o + v + C3|| RIS 8,

which is obviously bounded above 6 R'||%, 8 becauses > Cl_l/z. This concludes

the proof of the lemma in the case of the grand canonical measure.
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We now turn to the canonical measure. We need to consider two cases. Assume fir
that B||R'|| < |Az|™L. By Schwarz inequality, the left hand side of (6.3) is bounded
above by

1
m|og/exp{2,6 > Ra(nx)}duAL,M.

1<x<L)2

The difference is that we are now summing only over one half of the cube and that we ha
to pay a factor 2 in the exponential to do it. Sinéeel+x +x2e*!, since logl+x) < x
and sinceR, has mean zero, the previous expression is bounded above by

48 2
AL { > Ra(nx>} eXp{Zﬂ > Re(n)

1<x<L/2 1<x<L/2

}dvAL,M. (6.7)

Since &' < e + e, we may remove the absolute value in the exponential, provide
we estimate the expression 8y, as well as fo—R,. Moreover, by Corollary 5.5, we
may replace the canonical measure by the grand canonical one paying the price of a fini
constant and turning,, into anorrmean-zero function. At this point, we need to estimate

Cop 2
{ > Ra(ﬂx)} eXP{Zﬁ > Ra(nx)}dvou
ALl 1<x<L)2

1<x<L)2

with o = M/|A|. Sincev, is a product measure, expanding the square, we get that the
previous integral is less than or equal to

Cop s, [Ry (%0510, [0 0] 12

+ CoBIAL|(Ey, [Ro () €52, [@XBRer]H/D72 (6.8)

There are three different types of terms in the previous formula and we estimate then
separately. We first examine the exponentials. By (6.1),

E,, [PRm] 2 < CPIR I g [e2BRE] /2
On the range considerefl| R'|, < 1, so that the exponential term is less than some
finite constantC. On the other hand, sincR: has mean zero with respect tg,

since & < 1+ x + x2€*!, since by (6.2)Ré(a)| < Co||R'||oo[1+ |a — «|] and since
B2IRNIZ, <1,

E,, [e#R«] <14 Cop?|R|2..

Here we took advantage of the fact that there exists some finite cotStalgpending
only on || F|l« such that

E,, [{14 I — «)?)&m™] < C,

for all « in R because, has uniform Gaussian tails. SincerIr < €¥,
L
(Ey, [€°%«])" < exp{Cop?[IR'I3, L} < Ca

becauses?||R'||2, < L71.
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We now turn to the remaining expectations in (6.8). By (6.1),
Eva [Ra(nl)2e2ﬂRa(771)] < CEUD, [Ra(ﬂl)zezﬂRg(nl)]

becauses||R'||.. < 1. The same estimate (6.1) gives that the previous expression is less
than or equal to

CIIR"IZ,

A |2 Eva [eZﬂRi(m)] + CEVO, [Rg(nl)zezﬂRg(m)]‘
L

By (6.2),|RS(n1)| < CollR'[loo(1+ |71 — @|). The previous sum is thus bounded by

CIRZ + CIR N5 Ey, [{1+ 1 — af)2e#Colnel],

This expression is less th&h| R'||2, because, has uniform exponential tails.
It remains to estimate

|ALI(Ey, [Ro ()€ Rem])2,

As before, we may replack, by RS in the exponential. After this replacement, applying
(6.1), we bound the previous expression by

CIALI(Ey, [REGEPRm])? 4 2212 (E, [PRimT])2,

The second term is seen to be less than or equal|®'||2,/| A, |, while the first, since
a€’ < a + |ab|e’! and sinceR$ has mean zero, is bounded by

CIAL|B2(E,, [RE (ny)%€?IRatml])?
< CIALIBIR I (0, [(14 I — a?je@om=])?.

This expression is bounded lyj| R'||2, becauses, has uniform exponential tails and
becauses?||R'||2, < |A.|~L. This proves the lemma in the case of snfall

We now turn to the case of largi Assume thap?||R’||2, > |A.|~L. We first replace
R, by R$. By (6.1), the left hand side of (6.3) is bounded above by

Coll R'll

BIA, |Iog/exp{,B Z RE(ny) }d oMt ——— ™

xXeNL

Since|AL| 2 <AL < B2IR1%, |IALI7 < BIIR |- In particular, the second term
is less than or equal 16,8 R'|12,.

It remains to estimate the first term. By Schwarz inequality, this expression is boundec
above by

1
BIAL Iog/exp{Zﬁ Z Rﬁ(nx)}dvAL,M-

1<x<L)/2
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By Corollary 5.5, this expression is less than or equal to

logC 1 p{ }
I 2 Rg N d s
ﬁ|AL|+ﬂ|AL| og/eX 'B Z a(”l ) v

1<x<L)/2

where « = M/|A.|. Since B2 > C1||R'||Z2|A.|72, the first term is bounded by
CB||R'||,. It remains to consider the second one which is equal to

1
2500 [ expi2s R} v, (6.9)

because, is a product measure. This expression is just (6.4) and we proved in the first
part of the lemma that it is bounded I8} R’||%, . This concludes the proof.0

The same proof gives the following estimate that we state for further use.

LEMMA 6.2. — Fix a differentiable functionk:R — R with bounded derivative
IR|loc <00 and L > 2. There exists a constar, depending only on F|, such
that

1 2
Elog/exp{ﬁRa(m)}dVAL,M S CIRLB

forall 8 >0andall M in R.

Lemma 6.1 provides an estimate, uniform over the chd#geon the expectation of
ALt > ren, Ra(ny) with respect to some measufé vy, in terms of the entropy of
this measure.

COROLLARY 6.3.— Fix L > 2, M in R, a differentiable function® :R — R with
bounded derivative and a densifywith respect tov,, ». There exists a constail,
depending only ofj F ||, Such that

> Ru(ny) ¢ fdva, m ZSCOHR/”OOSAL(VAL ms VT )-
U= Jaons )

ALl & ALl

Proof. —By the entropy inequality, the integral on the left hand side of the statement
of the lemma is bounded above by

|Og/exp{lg Z Ro (1) }dVALM-l- Sar(ap.ms /)

BIALI = BIAL]

for all B8 > 0. By Lemma 6.1, the first term is bounded abovedy R'||2, 8 for some
finite constant depending only ¢iF || ... Minimizing in 8 we conclude the proof of the
lemma. O

Lemma 6.2 provides a similar estimate in the case of a one-site function:

COROLLARY 6.4.— Fix L > 2, M in R, a differentiable functionk:R — R with
bounded derivative and a densifywith respect tov; . There exists a constaxi,
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depending only ot F ||, Such that

2
( [ Rt f<n1>dviL,M) < CollR'IZ, S0y (2, s /).

The proof is the same as the one of Corollary 6.3.

Fix K > 1, L > K? and divide the intervall,..., L} into ¢ = |[L/K | adjacent
intervals of lengthK or K + 1, where|a]| represents the integer part of Denote
by I; the jth interval, by M; the total spin on/;: M; = er,j n. and by Ey; y, the
expectation with respect to the canonical measyrg,,. Let m, m; stand forM/L,
M;/|1;|, respectively and 166 (m ;) = Ej, m,;[F']— En, m[F']—A'(m)[m; —m], where
A(m)=E, [F'].

LEMMA 6.5. — There exisjBy > 0 and a finite constanfy depending only off F || .,
IF"|ls such that

Cop

1 J4
IB_LIOgEAL’M [eXp{ﬂZ|I]|G(m])}

j=1

forall B < B, all L > K?andallM in R.

Proof. —We first prove the lemma in the grand canonical case @itieplaced by the
mean-zero functioi; given by:

6(’”]) = EIj,Mj [F/] - Evm [F/] - A/(m)[mj — m]

Fix a densitym. To keep notation simple, assume that all cubelsave the same length
K. Sincev,, is a product measure, the left hand side of (6.10) is equal to

1 _
5K log E,,, [eXp(BK G (m1)}].

Since & < 1+ x + x2€"!, since lodl + x) < x and sinceE, [G] = 0, the previous
expression is less than or equal to

B B, [(KGm P explBKIG o).

We claim that there exist8; and a finite constan@ such that
E,, [{KG(my)}*exp(BK|G(my)|}] < Co (6.11)
forall m in R, all K > 1 and allg < ;. Indeed, letA(a) = E, [F']. Sinceé(ml) =

{E m[F'] — Evml[F’]} + A(my) — A(m) — A’(m)[my — m], by Lemma 3.3 and

Corollary 5.3,G is bounded in absolute value 6yK ~* + C(my — m)? for some finite
constantC. In particular, the left hand side of (6.11) is bounded above by

CePE, [{1+ K2(my —m)*} exp{CBK (m1 —m)?}]
< CE,, [exp{C'BK (m1 — m)?}].
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By Lemma 5.7, there existg; > 0 such that forg < B, the expectation is bounded
uniformly in K andm. This proves claim (6.11) and that the left hand side of (6.10) is
bounded byCg/K for 8 < 81, which concludes the proof of the lemma in the grand
canonical case.

We now turn to the canonical measure. Notice first that

~ CllF" |l
Gm — Gl < V1 (6.12)

for some finite constar® = C (|| F || »0)-

We now turn to the proof of (6.10). By Schwarz inequality, the left hand side of (6.10)
is bounded by

¢/2
L log Ea, m [exp{ZﬂZ |1j|G(mj)H.
BL =
The difference is that we are now summing only over the fiy& cubes of lengthk
so that we can use Corollary 5.5 to estimate the expectation with respect to canonice
measure by the expectation with respect to grand canonical measure. Assume th
K/L < B2 < B2 = p2/4. By (6.12), the previous expression is bounded by

1 t/2 _
L l0gEA, m [exp{Z,BZ IIjIG(mj)H +

j=1

for some finite constar@ = C (|| F ||, | F”|lo0)- In the range consideredl, ! < 82/K <
CB/K becauses < fp. The remainder term is thus bounded @g/K for some finite
constantC = C(|| Flleos I F”lloo)- On the other hand, by Corollary 5.5, the previous
expression is bounded above by

C 1 /2
L ﬂL —logE,, exp{Z,B ]Zl |1 |G(mj)H

Sincep? > K /L, the first term is bounded b§y8/K. On the other hand, by the first
part of the proof, the second term is boundeddy/K because 2 < ;. This proves
(6.10) providedk /L < 8% < f3.

Assume now thatg? < min{K /L, B3}. In this case, since exp} < 1+ x +
x%exp{|x]}, since log1l + x) < x and since the sum that appears in the exponential of
(6.10) has mean zero with respect to the canonical measure, the left hand side in (6.1

2

is bounded above by
4 ¢/2
T'BEAL,M l(z |1j|G(mj)> exp{Zﬂ H
j=1

Since &' < e* + e™*, we may remove the absolute value in the exponential provide we
estimate the previous expression witl in place ofg in the exponential. Consider the

02

> 111G (my)
j=1




C. LANDIM ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 739-777 775

case withg. By Corollary 5.5, the previous expression without the absolute value in the
exponential is less than or equal to

2

CB ¢/2 ¢/2
— Eu, (Z |1j|G(mj)> exp{Zﬁ > |1,|G(mj)H .
j=1 j=1

Sincev,, is a product measure, expanding the square we obtain that this term is equal t

C _
?'BEV,,, [{KG(ml)}ZeZﬂKG(ml)]Evm [ezﬂKG(ml)](ﬁ/Z) 1

CBL _
+ %Em [K G (my) @K g, [g28KGm) /272 (6.13)
We estimate separately each of the expectations appearing in this formula.

We start examining the exponential terms. By (6.12), we have that

E,, [€/KGm] /2  Ch E, [eZﬂKE(ml)] (t/2)

for some finite constan€ = C (|| F ||, [ F"[lo). Sincep < Bo, exp{CB} < C. Since
G(m1) has mean zero with respect itg, expanding the exponential up to the second
order, we get thak,, [exp(28K G (m1)}] is bounded above by

1+ 4B2E,, [{K G (my))?ePK 1G]

Since 8 < o, by (6.11) the previous expression is less than or equal +oCB? <
exp{CB?}. Therefore,

E, [eZﬁKE(ml)]ﬁ < eCBe <Cy
becauses® < K/L =¢71.
We now. estimateE,, [{K G(m1)}?exp{28K G(m1)}]. Here again we first replace
G (m1) by G(my). By (6.12), this expression is bounded above by

CE,, [{KG(my)}?exp28K G (m1)}] + CE,, [expi28K G (m1)}]

for some finite constarnt = C (|| F||oo, | F" lso) because8 < Bo. We have already seen
that the exponential term is bounded. On the other hand, by (6.11) the first expectatio
is bounded by a constant becayse 8y < 81/2.

It remains to estimate

L
< Es, [K G (my)e?PKGm)?,
Here again we start replacing by the mean-zero functioG. By (6.12) the previous
expression is less than or equal to

CL ~ = CK =

—ZE, [KG(my)ePKom 2 L Z2 g [PKG]?

K m L m
for some finite constant = C (|| Fllo, | F” |loo) becauses < Bo. We have seen that the
expectation of the exponential term is bounded. On the other hand, s&qga} <
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a + a®exp{|a|} and sinceG (m1) has mean zero with respectig,
E,, [KG(m)ePKCm] < 28E, [(KG(my)y?PKICmI],

Since B < Bo, by (6.11) the previous expression is bounded@g. In view of the
previous estimates, (6.13) is bounded above by

cB CBL _CB

- - < -

K K? K
because8? < K/L. This proves (6.10) in the case whefé < min{K /L, g3} and
concludes the proof of the lemman

LEMMA 6.6. — Fix a bounded functioll :R — RandL > 2. The functiorﬁL ‘R—
R defined byH; (m) = EA, m»[H(n1)] is Lipschitz continuous ol and the Lipschitz
constant does not depend &n

Proof. —An elementary computation shows that
ImEN, M[HMD]=—En, mlnz; Hm)l = —En, u[HM){n2 — m}].

By Corollary 5.3, the absolute value of the previous expression is bounded above b
CoL Yo (P (m)) for some finite constar, depending o H ||, because,, is a product
measure. Sincél; = Ly Ea, m[H (n1)], it remains to recall the statement of Lemma
5.1 to conclude the proof of the lemman

Acknowledgements

C.L. was partially supported by CNPq grant 300358/93-8, FAPERJ and PRONEX
41.96.0923.00. H.T. Yau is partially supported by US National Science Foundation gran
9703752.

REFERENCES

[1] L. Bertini, B. Zegarlinski, Coercive inequalities for Kawasaki dynamics: The product case,
Markov Proc. Related Fields 5 (1999) 125-162.

[2] L. Bertini, B. Zegarlinski, Coercive inequalities for Gibbs measures, J. Funct. Anal. 162
(1999) 257-289.

[3] P. Caputo, A remark on spectral gap and logarithmic Sobolev inequalities for conservative
spin systems, Preprint, 2001.

[4] N. Cancrini, F. Martinelli, Comparison of finite volume canonical and grand canonical
Gibbs measures under a mixing condition, Markov Proc. Related Fields 6 (2000) 23—72.

[5] N. Cancrini, F. Martinelli, On the spectral gap of Kawasaki dynamics under a mixing
condition revisited, J. Math. Phys. 41 (2000) 1391-1423.

[6] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge University Press, 1989.

[7] J.D. Deuschel, D.W. Stroock, Large Deviations, Academic Press, Boston, 1989.

[8] P.A. Ferrari, A. Galves, C. Landim, Rate of convergence to equilibrium of symmetric simple
exclusion processes, Markov Proc. Related Fields 6 (2000) 73—88.



C. LANDIM ET AL./ Ann. I. H. Poincaré — PR 38 (2002) 739-777 777

[9] E. Janvresse, C. Landim, J. Quastel, H.T. Yau, Relaxation to equilibrium of conservative

dynamics I: zero range processes, Ann. Probab. 27 (1999) 325-360.

[10] C. Kipnis, C. Landim, Scaling Limit of Interacting Particle Systems, Grundlehren der
mathematischen Wissenschaften, Vol. 320, Springer-Verlag, Berlin, 1999.

[11] C. Landim, Decay to equilibrium i.®° of finite interacting particle systems in infinite
volume, Markov Proc. Related Fields 4 (1998) 517-534.

[12] C. Landim, S. Sethuraman, S.R.S. Varadhan, Spectral gap for zero-range dynamics, Ani
Probab. 24 (1996) 1871-1902.

[13] M. Ledoux, Logarithmic Sobolev inequalities for unbounded spin systems revisited,
Preprint, 2000.

[14] S.L. Lu, H.T. Yau, Spectral gap and logarithmic Sobolev inequality for Kawasaki and
Glauber dynamics, Comm. Math. Phys. 156 (1993) 433—499.

[15] H.T. Yau, Logarithmic Sobolev inequality for generalized exclusion processes, Probab.
Theory Related Fields (1997).

[16] H.T. Yau, Logarithmic Sobolev inequality for lattice gases with mixing conditions, Comm.
Math. Phys. 181 (1996) 367—-408.



