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ABSTRACT. — We consider a multidimensional elliptic diffusiait-#, whose drifth(«, x) and
diffusion coefficientsS (8, x) depend on multidimensional parametesndg. We assume some
various hypotheses dnand.S, which ensure thax®# is ergodic, and we address the problem
of the validity of the Local Asymptotic Normality (LAN in short) property for the likelihoods,
when the sample i$Xia,)ogk<n, Under the conditiong&, — 0 andnA, — 400. We prove
that the LAN property is satisfied, at raty1A,, for o and./n for 8: our approach is based on a
Malliavin calculus transformation of the likelihoods.2002 Editions scientifiques et médicales
Elsevier SAS

Keywords:Ergodic diffusion process; LAN property; Log-likelihood ratio; Malliavin
calculus; Parametric estimation

RESUME — Nous considérons un processus de diffusion multidimensionnel ellipk¢juie
dont les coefficients de dérive(a, x) et de diffusion S(B8, x) dépendent de paramétres
multidimensionnels: et 8. Nous formulons plusieurs jeux d’hypothéses suamnd S, assurant
I'ergodicité dex®#, et nous nous intéressons a la validité de la propriété LAN (Local Asymptotic
Normality) pour les vraisemblances, quand I'échantillon observé&Xst, )ock<,, Sous les
conditionsA, — 0 etnA, — +o00. Nous démontrons que la propriété LAN est vérifiée, avec
les vitesses/nA, poura et./n pour B8 : notre approche repose sur une réécriture du rapport
de vraisemblance a I'aide du calcul de Malliavin2002 Editions scientifiques et médicales
Elsevier SAS
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I ntroduction

Let P*# be the law of(X;"”),o, theR¢-valued process solution of
t t
XP = xo+ /b(a, X*P) ds +/S(,6, x*F)dB,, (0.1)
0 0

where B is a d-dimensional Brownian motionyg is fixed and knownp and S are
known smooth functions. We are concerned with the estimation of the multidimensional
parameterse, 8) which belong to®, an open subset @&« x R" (n, > 1, ng > 1),
when the observation is the discretized patha,)o<k<,. The asymptotic are — +oo
and we consider the case whap — 0 andn A, — 400, assuming thax*# is ergodic.

The purpose of this paper is to prove the Local Asymptotic Normality (LAN in short)
property for the likelihoods under appropriate assumptionsamdS. We give a precise
formulation of the problem in our setting (for a general account on the subject, see Le
Cam and Yang [19], e.g.). If, = 0 (Xxa,: 0 < k < n), we denote the restriction &#
to 7, by P“#. The sequenc@R?)", F,, (P*#) 4 p)co) Of statistical models has the LAN
property for the likelihoods, ai®, %), with rates/nA, for «® and /n for g°, with
covariance matriX'®*#° e Rt @ Rra+1s if for any u € R™ and anyw € R"#, one has

u 0, v

W IR
lo ( dIP,aO,ﬁO >((XkAn)0<k<n)

(U w00 _1(u a0 p0 (U
_<v>'Nn 2<U>.F <v>+Rn, 0.2)

0 40 20 g0
whereR, = R, (1, v) —> 0 and\V@’-A° LEID A8 defined as a centered Gaussian
vector with covariance matrik®*#°.

If the LAN property holds true and ite®A° is nondegenerate (this is somehow
related to an identification condition on the statistical models), minimax theorems car
be applied (see Hajek [10], Le Cam [18], or Le Cam and Yang [19] for a review) and
(re®p%-1 gives the lower bound for the asymptotic variance of estimators. This justifies
the importance of such a property in parametric estimation problems.

The estimation procedure has been studied by several authors, mainlydwhdn
(see Prakasa Rao [22], Florens Zmirou [4], Kessler [16]), while Yoshida [24] adopts a
multidimensional setting (for a review, see also Chapter 3 from Prakasa Rao [23] on th
parametric inference for diffusion type processes from sampled data). The estimator
they propose are contrast ones: their construction is based either on a discretizatic
of the likelihood associated to the continuous observation (see Yoshida [24] and als
Genon-Catalot [6]), either on the use of some approximative schemes (see Florer
Zmirou [4], Kessler [16]) (see also Genon-Catalot et al. [7] for general contrast functions
in a different asymptotic framework). It is worth noticing that these estimators are
asymptotically efficient, since their variance achieve the lower bound given%%;ﬁ(’)—l
as the reader may see from the statement of the LAN property (see Theorem 4.1 below
Some significant progresses have been recently realized by Kessler [16] concerning t
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assumptions on the form of the coefficients: in particular, he allows to deal with quite
general diffusion coefficientS, whereas the previous works were restricted to the cases
when S(B, x) did not depend orx or was linear w.r.t. the parameters. Moreover, to
derive the asymptotic normality of the estimators, Kessler overcomes the restrictior
nA,? — 0 (see Prakasa Rao [22]) on\,®> — O (see Florens Zmirou [4] and Yoshida
[24]), assuming only: A,,” — O for somep > 1: here, to get the LAN property, we need
not require some specific form of the coefficients or some additional assumption on the
decreasing rate af,,.

In a Markov setting, the log-likelihood ratio can be naturally expressed as a sum
of terms of the form logp*# (A,, Xia,, Xa+1)a,), Wherep®f(z, x, y) is the transition
density function ofx**, and to derive asymptotic properties, one may follow one of the
four following strategies.

(1) Either,p®# is explicit (sinceX*# has a Gaussian law, e.g.) and the computations

can follow a more or less classical routine: in this way, one can prove that the
LAN property holds true for the Ornstein—Uhlenbeck processes (see Jacod [13]).

(2) Either, one assumes that some specific estimatgs*éiy, x, y), its derivatives
and some integrals involving these quantities are satisfied, and asymptotic
properties may be deduced (see Genon-Catalot et al. [8] when the observatio
is restricted tdO0, 1]). But in general, the validity of these estimates turns to be
impossible to check. See also Hopfner, Jacod and Ladelli [12] for the case of
Markov chains or Markov step processes.

(3) Either, one uses an expansion©ff (¢, x, y) W.r.t. £, @, B up to an appropriate
order. This strategy has been successfully performed by Dacunha-Castelle
et al. [2] in the case of an one-dimensional elliptic diffusion for estimation
purposes, by deriving fop*#(z, x, y) a quasi-explicit representation using a
Brownian bridge. This approach has also been used by Donhal [3] to prove
the LAMN property whend = 1, in the asymptotic assumptiotA, = 1. For
our objective, this strategy has some drawbacks: it essentially restricts the stud
to the one-dimensional case, since the representatigrt-6fz, x, y) cannot be
extended, using the same arguments, to a general multidimensional situation; eve
for d = 1 in our setting, we need to impose a condition on the decreasing rate of
A,, and more smoothness conditions on the coefficients than needed.

(4) Either, and this is the approach we are going to adopt, instead of expanding
log p*?(A,,x,y) when o,B,x,y are fixed, we first transform

log(p® s P 1 pB) (A, Xea, s Xarna,) Using a Malliavin calculus inte-
gration by parts formula, and then, compute a stochastic expansion. We followec
this approach in [9] and derived, in a quite straightforward way, the LAMN prop-
erty whenn A, = 1, generalizing the result of Donhal [3] in a multidimensional
setting. Yoshida (e.g., [25,26]) has also used Malliavin calculus techniques to de-
rive some asymptotic expansions, but for other issues and in a really different way
than here.

The content of the paper is the following. Our purpose is to derive the LAN property

defined in (0.2), when the observation(i;, )o<k<n, With the asymptoticA, — 02

21n the sequel, we assume, without restriction, that< 1 for all n.
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and nA,, — +oo: this property is known to be true only in the case of Ornstein—
Uhlenbeck processes (see Jacod [13]). We consider different sets of hypothdses on
and S, under whichX*# is ergodic. The diffusion coefficierf is always assumed to

be uniformly strictly elliptic, whereas various hypotheseshanill be made (including

the case of unbounded coefficients). A first set of models (which include the Ornstein-
Uhlenbeck processes) is defined in Section 1, whereas extensions will be briefly expose
in Section 5. In Section 1, we state preliminary results concerning estimates on the
transition density (their proofs are postponed in Appendix A) and we define the notation
used in all the paper. To understand the chain of arguments to get the LAN property, wi
propose a step-by-step proof. It starts in Section 2, where we expose Malliavin calculu:
ideas, which allow to transform the log-likelihood ratio in a tractable way. Section 3
is devoted to the stochastic expansion of this log-likelihood, to exhib the main order
contribution: this is the crucial and technical part of the paper. Then, we state the LAN
property in Section 4 (see Theorem 4.1) and complete easily its proof, using the result
of Section 3. The validity of LAN property under other assumptions is discussed in
Section 5.

1. Assumptions, notations and preliminary results

As usual, we denote thih coordinate of the vectar by u;, or u;, if u = u, is time
dependent. For smooth functiogsw), 9,,g(w) stands for the partial derivative @f
W.I.t. w;.

Now, let us conside®,, (resp.©g) an open subset @" (resp.R"#) for some integer
ny = 1 (resp.ng > 1): these two sets are used to define the parameterization of the
coefficients of the model of SDE’s which we are interested in.

Let b(a, x) be a map from®, x R? into RY, and S(B, x) a map from®; x R? into
R? ® R?. For fixeda and g, these maps as function efare supposed to be globally
Lipschitz, so that there is an unique strong solut'(dff’ﬁ),>0 to the homogeneous
stochastic differential equation

1 t
xeh :x0—|—/b(a, X*P) ds +/S(ﬁ, X¢P) dB;, (1.3)
0 0

where(B,),>0 is a standard Brownian motion & (with (G,),>o its usual filtration) and
xo is a deterministic initial condition. In the sequel, the indiaeg, xo in E%” stand in
reference for the expectation under the law of the diffusiér starting atcy. When no
confusion is possible, we may simply writ instead ofx®” .

In order to get asymptotic properties on the likelihood ratio, it is necessary to put
additional regularity conditions on the coefficients. To include the important case of
Ornstein—Uhlenbeck processes, we allow the drift coefficient to be unbounded: this
hypothesis will lead to technical difficulties, mainly concerning some estimates on
the transition density (see Proposition 1.2 below). The easier case of bounded drif
coefficient is discussed in Section 5. In the sequel, we assume the following hy-
potheses.
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Assumption(R). —

1. The functionsh(x, x) and S(8, x) are® of classC*” w.r.t. (a, x) or (B, x), for
somey € (0, 1).

2. Each partial derivative,, b(a, x), d,,b(a, x), 35,S(B, x), 9, S(B, x) is of classC?
w.rt. x.

3. The following estimates hold:
(@) 1b(a, x)| < c(1+ |x]) and |3y, b(a, x)| + [S(B, )| + 13, S(B, )| < c;
(D) 1g(., x)| <c(L+ |x|7) for g = d,.b, 32 b 92 b, 35S 92 .S orafhﬂjS;

HRE I R I o7 > XX
(©)

|90, b (e, X) — 0, b(et’, %) + 105, S(B,x) — 05, S(B, x)|

o1+ bl
@ —al BB “ar b

for some positive constantsandg, independent ofa, ', 8, 8/, x) € 2 x 6}% X
R,

To ensure the ergodicity of the process (1.3), we impose two conditions derived fromr
Has’'minskii [11]: the drift coefficiend is strongly re-entrant and the mati§xs strongly
nondegenerate.

AssumptionD). — One hasv(a, x) € ©, x R? b(a, x).x < —colx|?> + K for some
constantg > 0.

Assumption(E). — The matrixS is symmetric, positive and satisfies an uniform
ellipticity condition:

V(B,x) € ©p x RY, Cildm < S(B,x) < cala(x)
1

for some constant; > 1.

Examplel.1l. — Set®, = (", ") x K (K is some open bounded subset of
R) and®g = (8™, M3 Then, the linear Ornstein—Uhlenbeck procﬁsﬂ = xo +
fé(alX;"ﬂ + a2) ds + BB, fulfills the above assumptions whef'® < 0 andg™" > 0.

Under Assumptions (R), (D) and (E), the proce¥$? has an unique invariant
probability measure: we denote it y# and we are going to prove that it has squared
exponential moments.

PropPosITION 1.1. — Under(R), (D) and(E), there is a constanf, > 0 such that
(1) foranyC € [0, C,.) and for anyAr > 0, one has

Vi >0 E&Pexp(CIX,[%) < exp(Clxol®) exp(—At) + K, (1.4)
for some constank = K (C, 1);

3 As usual, ‘f is of classC1*7’ means thatf is of classc! and its partial derivatives arg-Hoélder
continuous.
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(2) foranyC < C,, one has

/ exp(Clx|?) u*f (dx) < oo. (1.5)
R4
Proof. —Set f(x) = exp(C|x|?) and denote byL*# the infinitesimal generator of

the diffusion X*#. From Assumptions (R) and (D) and puttiity = co/c2, one easily
deduces:

LOP f(x) =2CF () ) bi(, )xi +2C2 f(x) Y (8?), (B, ¥)xix;
i i,j

+CF (038748, %)

<2C(—co+Ccf)|x[P £ (x) + K f (x) = —colx [P £ (x) + K f (x),
using for the last inequalit¢’ € [0, C,), so thatc, > O.

Now, it readily follows thatL®# f (x) < —Af(x)+ K'(») for anyi > 0; thus, ifg(r) =
Eg‘f(f(xt)), one hag'(r) < —Xig(t) + K'(1). To derive (1.4), computég (1) exp(rt))’
and use the previous inequality. We deduce (1.5) from (1.4)ULké a compact subset
of R?: from the ergodic theorem, one gets

/exp(C|x| ) er,u"‘ﬂ(dx)— I|m E“ﬁ(exp(ax, 1) 1x,cv) < K,
Rd

for some constank independent of/. Now, letU increase t&R¢ and apply monotone
convergence theorem, to complete the proafi

Under (R) and (E), the law ok{"* ( > 0) conditionally onX&* = x has a strictly
positive transition densitp®#(z, x, y), which is, in particular, differentiable w.r4. and
B (see Proposition 2.2 below). Furthermope;? (¢, x, y) and its derivatives satisfy the
following estimates.

PropPosSITION 1.2. —AssumégR) and (E). There exist constants> 1 andK > 1s.t.

o K lx —yI?
p@P(t, x,y) < Wexp(— ” )exp(ct|x|2), (1.6)
1 lx = yI?
a,B _ — 2
per(t, x,y) > T2 exp( c— ) exp(—ct|x|°), .7)
and for anyv > 1, there exist other constants> 1, K > 1, ¢ > 0s.t.
8 v
E%? (z x, X))| < Kt"?exp(et|x|?)(1+ |x]), (1.8)
@ Bﬁ/p ’ 2
ES (t,x,X,)| <Kexp(ct|x]|?)(1+ |x])?, (1.9
p*

forO<r <1, (x, y)eRded 1<i<ng 1< j<ngand(e, @, B, B) € Oy x O, x
®5X®ﬁ
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Analogous bounds fopd,, p*# (¢, x, y)| and |8ﬁ_/.p“*ﬂ(t, x,y)| are also available, but
we will not use them in the sequel. To derive estimates (1.8) and (1.9), we somehow
exploit Malliavin calculus representations which we introduce in Section 2 below: so,
we admit for a while this proposition, the proof being postponed in Appendix A.

As far as the author knows, these estimates seem to be new in the context c
unbounded drift and bounded diffusion coefficients. Actually, when the functhons
and S (and some of their derivatives) are bounded, Gaussian type bounds (i.e. of th

form t%exp(—"‘;—ty'z)) for p and its derivatives are available (see e.g. Theorem 4.5,
Friedman [5]), whereas wheh and S have a linear growth (think of the geometric
Brownian motion e.g.), the upper bounds are not of Gaussian type, but only decreasin
faster than any polynomials.

Here, the boundedness of the diffusion coefficient enables to keep Gaussian bound
up to the factor ex@kct|x|?). Actually, this latter term is unavoidable. Indeed, consider

again the Ornstein—Uhlenbeck process from Example 1.1: OﬂQ?‘f‘ré)Sl(t,x,x)t;\a

J% exp(—1x2et), estimate which should be compared to inequality (1.7).

Notation

In all the paper, the multi-index of parameteks,, ..., ay,, B1,---, By,) IS going
to be simply denoted by, 8), and(a?, 8%) = (f, ..., a0 , B9, ..., ﬂ,?ﬂ) € 0, x O
corresponds as usual to the true value of the parameters. Bagidgsmight be a row
vector as well a column vector: we will not distinguish the notation, since in the further
contexts, no confusion will be possible.

To define the local likelihood ratio around the parametet, 8°), we fix u € R",
v € R" and set

(Ol+, ﬂ+) = <O{O+ u ”30_’_ L)

JnA, Jn
_ 0 u 0 I/lna 0 U1 0 vnﬁ
= (al—i_\/ﬁ"”’an”—i_ﬁ’ﬂl+ﬁ"”’ﬁnﬂ + \/ﬁ)
Our main issue is to study the weak convergence (uﬁ%ﬁf’e@o and under the assumptions

a+,ﬂ+
A, — 0,nA, — o0) of the local likelihood ratioZ, := ﬁ,ﬂ;oﬂo ((Xka,)o<k<n), Or the

convergence of its logarithm, = log(Z,), which can be rewritten using the transition
densities as:

pa+,ﬂ+

n—1
W= |09<w> (Ans Xkas Xk+1)a,)- (1.10)
k=0

But to deal with some perturbations aroud, 8°), we adopt more specific notation:
B = (el el M+

nA,
0 , Ung
ﬁnﬁ + ) )

i

Uny ﬁo+£
N7 N A
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(Ofi(l),ﬂ+)=<0‘?’--- oy, ‘H\/—n l+1+;i o, LZMA”
ﬁf+%,...,ﬁfﬁ+%>,
(a,ﬁlf)=<a‘f,...,a,?a,,6$,.. B B+ j’— - By, f;,%)
(o, i (D)) = (ozl,...,a,?a,ﬁf,.. B BY +l[ ﬂl+l+:/+—1 --,ﬂ,?ﬁj%)-

We also introduce the mean vector and the covariance matéX, 6

m®P (x) = (m" (1)), = (E2P[X;a,1),.

Vel oo = (Vi ), = B [Xia, —mi (0] [Xa, =mP 0]), .
We may write g(n,x,a, 8) = R(e,,x) if the function g satisfies the estimate
lg(n, x,a, B)| < KA+ |x|9)e,, for some positive constant& andg, independent of

x,n, a0, andp € ©4. Besides, the notatiok” will be kept for all finite positive
constants (independent of n, «, 8 and so on), which will appear in proofs.

2. Transformation of thelog-likelihood ratio using Malliavin calculus

In this section, we present the methodology to derive the convergence of the loca
log-likelihood ratio: the main new idea is to use Malliavin calculus techniques to rewrite
this ratio in a tractable way. This strategy has already been performed in Gobet [9] an
we briefly expose it in this new setting.

Since one may write

al Bt ot Bt b BT B a.pf a.By
p Pt P pret ptt p p
pa0’ﬁ0 - pa;”% o pai‘:l,ﬁJr e pavﬂ+ pa,ﬁ; o pot,ﬂ;rl o pot

at gt

OﬁO’

one easily deduces, using the smoothness property*éf that Eq. (1.10) can be
transformed as
n—1 n—1 n—1

=) Gt Y G+ +Z§“”“
k=0 k=0

n—1 n—1 n—1

Bn
+Z§fl+...+25 +. +Z§ ﬁ’ (2.11)
k=0 k=0
where
al(l) ,B
i = «/nA /dl ai (D). p* (Ans Xia,s Xw+a,)s (2.12)

Bi _ Vi B pri®
g- J — /le(An, XkAn, X(k+l)An) (213)
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The core of the analysis of the weak convergence,d of course based on a good

understanding of the stochastic behavior §f and ;ﬁ 7, which is going to be analyzed

through some stochastic expansions. To this purpose, the first step of this program is

. O, poP 9g. p@P . . . ..
rewrite 'ﬁﬁ (T,x,y) and ﬁfa_ (T, x, y) as a conditional expectation, using Malliavin

calculus. For this, we need to introduce the material necessary to our computations (fc
more details, see Nualart [21]).

2.1. Basic factson Malliavin calculus

Fix a filtered probability space2, F, (F;),P) and let(W;),>o be ad-dimensional
Brownian motion. FixI" € (0, 1]. Forh(.) € H = L,([0, T], RY), W (h) is the It6 integral
o h(t)dW,.

Let S denote the class of random variables of the fdrma= f (W (hy), ..., W(hy))
where f € C*(RY), (h1,...,hy) € HY and N > 1. For F € S, we define its
derivative DF = (D, F);cj0,r) as the H-valued random variable given b, F =
Zf\’:l Oy, f(W(hy), ..., W(hy,))h;(t). The operatorD is closable as an operator from
L,(R) to L,(R2, H), for any p > 1. Its domain is denoted bpl? w.r.t. the norm
IF|ls, = [EIF|” + E(IDFI5)1Y7.

We now introduce$, the Skorohod integral, defined as the adjoint operatd@:of

DEFINITION 2.1. -8 is alinear operator ornL,([0, T] x 2, R?) with values inL,()
such that
(1) The domain of (denoted byDom(d)) is the set of processese L,([0, T] x
Q,R?Y) such thatv F € D*2, one hasE( [, D, F.u,dt)| < c(u)|| F|2.
(2) If u belongs tobom(s), thend(u) is the element of.,(2) characterized by the
integration by parts formulaV F € D2, E(F8(u)) = E(fy D, F.u, dt).

We now state some properties of the Skorohod integral, which are going to be usefu
in the sequel:

PROPOSITION 2.1. —
(1) For any p > 1, the space of weakly differentiablé-valued variablesD? (H)
belongs tdbom(§) and one has

18N < cp(lullz,.m + 1Pully,@.0em))- (2.14)
(2) If u is an adapted process belonging £a([0, 7] x £, R¢), then the Skorohod

integral and the It6 integral coincides (u) = fOT u; dW;.
(3) If F belongs tdD'2, then for anyu € Dom(8) s.t. E(F2 [ u?dt) < +oc, one has

T
§(Fu) = F8(u) — /DIF.u,dt, (2.15)
0

whenever the r.h.s. above belongdtg2).
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. B 9g. p»P
2.2. Transformation of a"‘;’fﬂ (T, x, y) and ﬂlfﬂ—ljﬂ(T,x, y)

To allow some Malliavin calculus computations on transition densities while avoiding
some confusion with the observed process (1.3) generated by the Brownian motio
(B:):>0, We consider an independent Brownian motid¥} ), (with its usual filtration
(F):>0) to which we associate an independent copyxéf® (still denoted byX«#),
which consequently solves

X“ﬁ:x—i—/b , X2F) ds+Z/Sl (B, X*PYdW,, (2.16)
110

wheres; is thelth column vector ofs.

Sinceb(a, x) and S(8, x) are assumed to be of clagg*”, x*P is differentiable
as a function ofc, @ and g (see Kunita [17]), so that we can introduce its flow, i.e. the
Jacobian matrix;? := v, X/, and its derivative w.r.t; (resp.8;) denoted by, X; A

(resp.dg; X?”S). This defines new processes, which solve a system of SDE'’s:

Y“ﬂ—|d+/v1a o, X“ﬁ)Y“ﬁdHZ/v Si(B, X“P)y®F aw, ,
=1y

t
8 X0 = [ (0o X09) Vbl XE4)0, X0)
0

+Z/v Si(B, X2P) 3y, X2F AW, §, (2.17)
=17

aﬁX"‘ﬂ—/Vb X“ﬂ)aﬁ/xaﬁderZ/ 3, 81(B, XF)
llo

+ VS (B, XEP) 0, XEP) AW . (2.18)

Under (R), for anyr > 0, the random variablex"*, v**, (v?F)=1, (8, X?); and

(0p, X; ﬂ)J belong toD? for any p > 1 (see Nualart [21, Section 2.2]). Besides, the
foIIowmg crude estimates hold true:

EXP( sup 1Z,11”) + sup EX*( sup |D,Z|I”) = R(1, x) (2.19)
0<r<1 rel0,1] r<r<l

for Z, = X%, v? or (¥**)~1. We now state the useful result for the analysis of the
log-likelihood.

PROPOSITION 2.2. — (Gobet [9, Proposition 4.1JAssumgR) and (E) and setT e
(0,1]. For 1< Iy < d, let us defindJ;, = (U, 1)o<i <7 theR?-valued process whoggth
component is equal to/,,;,, = (S1(8, X{"?)Y,"* (v;*#)=1),,... Then, one has
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aaipa,ﬂ 1 o, 01
oy (T, x,y) = ZE ‘3[26 ao,,X,lTUll)’ Tﬁ:y],
11=1

3 1 ”
i; (T x,y) = —Eaﬁ[z)s 9, Xiy'rUn) ’ ﬁ:)’]-
11=1

3. Expansion of thelocal log-likelihood ratio

From Proposition 2.2, each random variabfé (or g,f 7) can be rewritten as

1
i Ui i(l i (0 + il,+
é.01 — i / Ea()ﬁ I:HOZ().B |X‘Z’f)ﬂ =X(k+1)An]’
Ano

\/n_ Xkan

for some random variablé&/®®-#*. To derive the convergence—3 ¢ underP="#’,

we may apply a classmal convergence theorem for triangular arrays of randorr
variables, by checking the convergence of the sum of some conditional moments, e.(
i 1E°‘ ﬁo &' | Gra, 1: the fact that the expectations outside and inside refer to different
probability mea:sureéP’(*oﬂﬁo andP«®-£") is a sizable difficulty.

Our approach to this problem is to perform a stochastic expansiaﬂ,fié(’?*ﬁ+ under
P« ®-£" The miracle arises from the fact that this random variable is equal at the first
order to some functiog (e (1), B+, n, Xg'#", x%®-F7): consequently, its conditional
expectation is immediate to compute and thus, the checking of the convergence c
the sum of the conditional moments (undé?fo’f‘o) of g(a; (1), BT, n, Xea,» Xa+1a,)
becomes much more easy.

Nevertheless, we have to prove that the remainder terms in these expansions have
contribution in the limit ofz,,. For this, it is necessary to obtain some specific results on
the convergence in probability of sums of conditional expectations: our crucial tools are
Propositions 3.1 and 3.2.

3.1. Some convergence results

The main purpose of this section is to prove the two following propositions.
PROPOSITION 3.1. — AssumgR), (D) and(E). Seti € {1, ...,n,}. LetH be aF,, -
measurable random variable, which satisfies for any 1.

EOF H1=0 and (EOF"|HM)" = R(A,¥2,, x),

for some sequenag — 0. Then, one has

_ 1
n pe®.80

il 0N
Ea()ﬂ [H|XZ,,()}3 =X(k+l)A,,] — 0

Xkan

k=0

O
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PrRoPOSITION 3.2. — Assum€R), (D) and(E). Setj € {1,...,ng}. LetH be aFx, -
measurable random variable, which satisfies for any 1.

POHI=0 and (EXP1HP) Y = R(Ae. ).

for some sequenag — 0. Then, one has

1
v; 1 w0 o.B(D) pa®.p°
—/ Z—E UH 1 X0 = Xgspa,] — O
0

X
—~ «/ﬁ kAn

Actually, analogous results are proved in Gobet [9] (see Corollary 4.1), but they are
inefficient for our purpose. The main difference concerns the assumption on the mea
of H, which is taken to be 0 in this paper, whereas in [9], it was dominated by some
power of A,,. This difference turns out to be crucial, and being a little careful in the
proof below, we may note that if the meanmfis only supposed to be of ordey,,”, we
cannot obtain the result of the propositions above, unless we impose (as in Kessler [1¢
and others) some restrictive conditions on the decreasing rate sfich as1A,” — 0.

In order to prove Propositions 3.1 and 3.2 and further results, we need a classice
discrete time ergodic theorem, which following version is adapted from Kessler [16].

LEMMA 3.1. — AssumgR), (D) and(E). There is a constant, > O, such that, ifg is
a differentiable function satisfying (x)| + |Vg(x)| < K exp(C|x|2) with C < C,, then

1 pa?.p0 0 50
= g (Xka,) — [ g)u P (dx),
=0 o

where the limit above is finite.

Proof. —Take C, < C, whereC, is defined in Proposition 1.1: the continuous time

0,50
ergodic theorem ensures thaib [ (X)) ds '—> ot 8™ (dx). Thus, it is
enough to prove that

nin n—1
o9, 80 1
B [ e(tyds = 1Y e
"o =0
a1 (DA,
1 aO ﬁo
<= B g(X,) — g(Xia,)lds
nA, =
=0 A,

converges to 0. But using standard Ité’s calculus, one gets (for aom@)
0 »0
ES P 19(Xy) — g(Xia,)|

< KB ES exp(hC| Xpa, [2)ES exp(.CIX,[2) < K /A,
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for some new constank, which is independent okA, ands owing the uniform
estimates of Proposition 1.1 up to choosi@gsmall enough. The completion of the
proof now follows easily. O

The above lemma is going to be often combined with the following classical
convergence result about triangular arrays of random variables.

LEMMA 3.2. — (Genon-Catalot et al. [7, Lemma.dlet&), U be random variables,
with & beingG.1)a,-measurable. The two following conditions impi}—3 £ Lu:

n—1 n—1

n P n P
> E[5 1G] > U and > E[E)*|Gis,] 0.
k=0 k=0
Proof of Propositon 3.1.Set & = —“— [FdIEELDT(H | x4 =

Xx+1)a,]: these argj.1)a,-measurable random variables, to which we are going to
apply Lemma 3.2.

1. Evaluation ofE“O’ﬂo[sg‘ | Gka, 1. It reduces to evaluate

EC P RGP (H X3P = Xaena,] 1 Gia, ]

Xkan

aO,ﬂO
_ o).t p
=E |:Hp0!;(l),ﬁ+ (AnaX07 XAn)

Xkan
gy {H%(An, X0, X»,) (3.20)
P ai(l)’w);,»((ﬁf,iz’w PR Ko X
+ a’ﬁ;a;lf :f‘”ﬁ) (An, Xo, Xa,) (3.21)
e S R Yy S DN o0 BT

pai(l)aﬁJr

The term (3.20) is equal ﬂE")‘("k(il’ﬂ+[H] —0.
Each difference in (3.21) (strictly speaking, not the first one, but nevertheless, the

following arguments also apply to it) is equal to

+ + + g+
» N Otm+1».3 —_ p%m-B
R (-8 { (p p )(An, Xo, Xa,)

Xian paiD.B*

N X apr B Xo, X, )

Using Hoélder's inequality (withvy, v, and vz conjugate) and the estimate on

(E‘j{,fi)’l’ﬂ+|H|”1)1/"l, the inequality (1.8), upper/lower bounds (1.6) and (1.7), it follows
that the r.h.s. of the above equality is bounded by

1 + +
_ Up, dl Eot,‘ (l),ﬁ+ H aam pam (O} pam .8
- pam (ON:2 p
0
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K
N X R(A, e, Xia,) X VA, eXpleAy| Xia, %)

X 2
(/ V3 leg +v3cAnl Xia, | — 5
_ 2 1—v3)d/2
Us . fn( v3)d/

Xga, =12 1/vs
o @ 19 gea, X, | )dy>

< R(An3/28ﬂ X ) exp( /A |X |2>
X ’ c n ’
NG kA, kA,
since the integral w.r.ty is finite as soon as-vz/c — (1 — v3)c < 0: this condition is
satisfied up to choosing; closed to 1, i.ev; andv, enough large.

Using analogous arguments (and in particular estimate (1.9)), check that eacl
difference in (3.22) satisfies the following inequality

Y P ni1 — pohi)
EXI\'A;«, H pa[(l)sﬁ+ (Anv XO! XA,,)

A113/2811 / 2
<Rl ———, X exp(c’ A, X .
( NG kA,,) p(c’ Ayl X, %)
Taking into account that' A, < C, /2 for n large enough, one has proved that
1 1 R(A,,3/28,,
S JnA, A, Jn

l 1 2
<én X ZR(L Xya, ezl
n

B2 [ | Gea, ]| <

'An|Xia, 2
, X](An> ec nl nl

Apply Lemma 3.1 to the functioR (1, x)e2<** and conclude thaEZ;éE"‘oﬂﬁo[g,?
0.0
Gka,] — O.

2. Evaluation of[E“O”SO[(S,{’)2 | Gka, 1. Using repeatedly Jensen’s inequality, one has

0
«0,p0 e i? 1 g @6 [ g2 P o
B2 Gus] < a2 dlxml H2 e (B Xo. Xa,)

1
<e?x —R(l, Xia,) eXp<§C;|XkA,,|2>,
n

where the expectation und®#-#" has been evaluated as before, i.e. using Holder’s

inequality, the estimate omE‘}{k(i:ﬁWH |21)Y/v1 and upper/lower bounds (1.6) and
O 0

(1.7). Lemma 3.1 completes the proof dF/—1E“"£[(£1)2 | Gia,] “% 0. Thus,
Proposition 3.1 is proved. O

The proof of Proposition 3.2 is very similar to the previous one: we omit it.
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3.2. Stochastic expansion

The objective of this section is to derive some good approximations of the sums
POy Og“k and EZ;& g“,f-’ from (2.11): as explained before, it consists in performing a
stochastic expansion (w.r.t. the small timg) of the random variables

X a,Bi(l)
> 8(a, Zl(Qﬂ U,) and Za 3s, X103 UL)
I1=1 =1

defined in Proposition 2.2. To neglect the contribution of the remainder terms, we apply
Propositions 3.1 and 3.2 above. The main difference with what we did in [9] is that we
have to keep in mind that these remainder terms have to be centered random variable
this may explain that the next computations are little more intricate than in [9].

3.2.1. Contributions of the drift coefficient
LEMMA 3.3. — Assumé€R), (D) and(E). Seti € {1, ..., n,}. If one defines

1 ) o
&' = M/dl ;b (i (1), Xy, )-[ST2(BT, Xea,) (Xsnya, —m ’(Z)’ﬁ+(XkAn))],
)
a0, 40
then one ha$~j—3 ¢ — u; ThZ5 & = O.

Proof. —As in Proposition 2.2, defin®,, = (U,.,)o<:<a, @s theR?-valued process
with component equal t@,,;,, = [S~L(8*, X7 )y @-F" (ye®F1y-1), | and set
Xgi(l)’ﬁ*— =x.
The above lemma is proved if one shows that

8(0u, X010 U,)
= Ay by (i (1), %) [S 2B+, ) (X" — m*OF7 ()], + Hy,,  (3.23)

forly € {1, ..., d}, with (B4 " | H, )1 = R(A,%/%,, x) for all u > 1 (s, — 0).

Indeed, one has thﬁgi(l)’f”[H,l] = 0 since both other random variables of equality
(3.23) are centered und@t:-#". Thus, Proposition 3.1 applies and after a summation
over/; of equalities (3.23), one gets the result.

Proof of(3.23) — Here, for simplicity, ifV is a random variable (possibly multidimen-
sional), we use the notation = R’(s,, x) if for any u > 1, one hagE® @ -#" |y |#]V/r =
R(&,, x) uniformly in all variables (except, u andn). From (2.15), one has:

(o7} s + (&%} B + i s +
8(3, X' VP U = 0, XU P s (U) — / Doy, X1 VP Uy, dt. (3.24)
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1. First of all, we are going to prove that

All
[ D X0 U dr = R (2,2, ). (3.25)
0

Indeed, standard computations with Gronwall's lemma yielgsup, , 13, X% ©-#"| =

R'(A,, x). Thus, deriving from (2.17) the equation solved &, 3, X% " Yoci<a,

one can easily obtalne(ﬂ)tao,,X""(W = R'(A,,x) using the above estimates on

g, X% D #" and (2.19). It remains to take into account estimates (2.19) to complete the
proof of (3.25).

2. Second, using standard I1td’s calculus, one gets from Eq. (2.17) that
0y X 0P — A8y (i (1), x) = R'(A, Y2, x). (3.26)

3. At last, setl;,, = (71,8, X"y and writes(Uy,) = 8(Uyy) + 8(U, —
U,l) using (2.14) and estimates (2.19), it readily follows thdf;, — Uzl) = R'(A,, x).

Furthermore, smc&*;],l is an adapted proces&(U,l) is simply an It6 integral. The
matrix S is invertible, thus one has

dw, =SB, x*P)ax*? — 7B, X*P)b(a, X*P) dt
=SYB, x)dX*P + (14— STHB, x)S (B, X:F)) dW,
— S7Y(B, x)b(a, X*P) dt, (3.27)
for any («, 8). Consequently, easy computations yield

d B

6((711):2/(S )lllz('B+ Xal(l) fﬁ)dwl t

Z/ 11 lz('B »X) dleJ + R/(An’ x)

Ay

d
. +
Z 11 13('B+’ X) /dX;);,EZ)’ﬁ + R/(Anv .X)

= [S72(8™, x) (X a,(l)ﬂ ai(z>,ﬁ+(x))]ll+R’(An,x), (3.28)

where we used in particular that®®-#"(x) = x + R(A,, x). Combining estimates
(3.25), (3.26) and (3.28) in (3.24), one completes the proof of (3.23) taking
A,. O

3.2.2. Contributions of the diffusion coefficient
Now, we focus on the approximation of the syij_ é;f’ in (2.11).
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LEMMA 3.4. — Assum€R), (D) and(E). Setj € {1, ..., ng}. If one defines

1
~B, 1 1 _
= a5 0.0

x [(Xasna, =m*PV(Xea,) (Xarpa, —m*POXea,))" = VIO (Xia, )],
n—1,Bj n—1428; pe#°
then one has~}—5¢.” —v; Y208 — O.

Proof. —The techniques are very similar to those of Lemma 3.3, thus we expose &
shortened proof, voluntarily omitting some details (see also [9], Section 4.3 for many
analogies).

As before, setxg’ﬁ 1 = x and definel;, as theR?-valued process with component
equal toU,,;,, = [S~2(8; (), X\ Oy P10 (v PiDy=1), | The lemmais proved if

a,Bi( _ a,Bi(l a. B
8(2s, X1, Un,) = [0, (B, (1), ) (X2P" — m*1 0 (x))]

X [$72(8;0. ) (X5 = m* PO 0)]
_ (aﬁjss—l(ﬁj D), x)VeriOx)S~2(8; (1), x))zl,zl + H,, (3.29)
forly e {1, ..., d}, with (B H, )2 = R(Aen, x) for all o > 1 (e, — 0).
Indeed, easy algebra in equality (3.29) shows ﬂb}“ﬁ‘?f(l)[Hll] = 0: thus, Proposi-
tion 3.2 applies. Then, if we sum ovirequalities (3.29) and remind of Proposition 2.2,

we obtain the result taking into account that #rand B somed x d-matrixes andy
some vector oR?, one hasAy.By = Tr(A* Byy*).

I

Proof of (3.29) — For simplicity, we writeV = R'(¢,, x) if the random variable/

satisfies for any. > 1, [ fﬁ’ﬂ’(l)WW]l/ﬂ = R(g,, x) uniformly in all variables (except,

w andn). From (2.15), one has:

A}l
a.pjd a,Bid a,Bil

5(0p, X1 UL = 0, X1 Vs (UL — / D3y, X, 5" Uy, dt (3.30)

0
From Eg. (2.18), it readily follows
d B
B
s, XZ,ﬁAjn( = Z / 9p; Sty (:3] O, x) AW, + R' (A, x)
lz:lo

= (95,55, (0. x) (X3P " = m*F1 0 (x))] + R'(Ay,x), (3.31)

where we used at the last equality the same arguments as for (3.28). As in the proof ¢
Lemma 3.3, one has

(Ui = [S2(B; (1) x) (XX — m*P D)), + R (A, x). (3.32)

Moreover, one checks that
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Ap Ay d

a,Bi(l a,Bi( _ ,Bil
J D X U= |57 0, S50, X0 ) (579, (8,0 X0
0 0 k=1

+ R'(A%,x) = A, [05,S57H(B; (D), X))+ R' (A3 x).

Besides, standard computations yiéld-# (x) = A,S%(8; (1), x) + R(A,¥? x), so
that one gets

l1,lh

Ay
/ D3, X 30 Uy s di = (95,5572 (B;(1), x) VPO () S72(B; (1), x))
0

+R'(A%2,x).

Plug this last equality, estimates (3.31) and (3.32) into (3.30) to complete the proof of
(3.29). Lemma 3.4 is proved.O

3.3. About an explicit approximation of the log-likelihood

To conclude this section on the expansion of the local log-likelihood ratio, we would
like to give an answer to the following question:

“Which explicit (or quasi-explicit) log-likelihood should we have to consider from the
beginning to find the same expansion that those given by Lemmas 3.3 and 3.4 combine
with equality (2.11)?”

Reasonable explicit likelihoods can be derived from Gaussian Markov chains and ir
this setting, it is tempting to consider those given by the Euler scheme: nevertheless, ¢
it is underlined by Kessler [16], it does work only under some restrictive assumptions of
the decreasing rate df,,.

To get the ad hoc log-likelihood, let us denote by,f"ﬁ)ogk@ the R¢-valued
Gaussian Markov chain, which fits the two first conditional momentﬁXtﬁﬁi)ogk@,

i.e. defined byry” = xo and Y = ¥*# + &,,1, whereg, ;1 is a Gaussian random
variable, independent @fi, ..., g, with mean equal tm“’ﬁ(Yf”s) and variance equal
to VB (Y& ).

Under our hypothese®,*#(x) is invertible and the transition density Bf# is equal
to

q*P (x,y)

1 -1
_ Ty — B a,p _ B
= N T exp( Z(y m*P (). [(V¥F(x)) (y—m (x))]).

The local log-likelihood ratio function associatedrtpin which we have replaced the ob-
Dl+. + .

served diffusion process, is thus givenHy= ZZ;& Iog(‘;aO—_Zo)(XkAn, X+1)a,)- This

quantity (explicit up the knowledge @f*# andV*#) is our candidate to give the same



E. GOBET /Ann. |. H. Poincaré — PR 38 (2002) 711-737 729

limit than the true local log-likelihood ratig,, defined in 2.11. Indeed, one can prove
0 40

thatz, — z, Pa—'i 0. This can be done from Lemmas 3.3 and 3.4: we omit the details of
the computations, which are somehow standard since everything is explicit.

Of course, this result is not surprising: it confirms in some sense that the approacl
of Kessler [16] was appropriate. Actually, it is not very interesting to obtain the result
now, while we have almost finished to prove the LAN property: it would have been more
efficient to have this approximation result from the beginning, but we do not have good
ideas to obtain it by direct arguments.

4. LAN property

4.1. Statement of theresult

The main result of the paper is:
THEOREM 4.1. — Under(R), (D) and(E), one has

0+ u ﬁ0+Lr

o
dP niAp’ Jn E(]P)ao,ﬁo) u 0 R0 1 u 00 (U
) o o, B
IOg( defo,ﬂo ) (( kA")nggn) (v) N 2 (v) a (v) ’

0 20 . . . . . .
whereN®-#" is a centeredR”« "4 -valued Gaussian variable, with covariance matrix

0 g0 0,80 i
where the elements of matii¥, ** € R" @ R" andI's ¥ € R" @ R" are given by

("), = / 80, b(@®, x).[S72(B0, x) By, b(@®, )] P (dx),
Rd
(Fgo’ﬂo)i,]’ :Z/Tr[aﬁ;s(ﬁovX)S_l(ﬁovx)aﬁ_/s('Bo’x)S_l(’Bo’x)]Maogﬁo(dx)'
Rd

First, it is worth noticing thail“l‘fo"30 and rg°’ﬂ° are the asymptotic Fisher information
matrixes for the continuous time diffusion (see Prakasa Rao [22], Dacunha-Castelle
et al. (12], Florens-Zmirou [4], Genon-Catalot [6], Yoshida [24], Kessler [16]). Second,
Ne*£" has no correlation between the components involving a perturbation on the drift
coefficient and a perturbation on the diffusion coefficient: the efficient estimation of the
drift and diffusion parameters are asymptotically independent (see Florens-Zmirou [4]
Yoshida [24], Kessler [16]).

4.2. Proof

We are going to prove the following estimates:
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n—1

. aO,ﬂO 1 0 20 0 »0
Zan’ﬂo (21 Gia, | = _Eui(rg ’ﬂ )i,i —uiy1 (T ! >isi+1 o
k=0
— Up, (Fgogﬁo)i,na’ (433)

n—1
SCECPLE G 1 Ges) — BTG 1 Gua, JET (6] Gra, )
k=0

.40 0 .0

- (FZ i )ij’ (4-34)
n—1 o0 ﬂo Aona IP)010,50
ZE P Gra, ] — 0, (4.39)
k=0
n—1 . 050 1 0 g0 o0 g0
Zan’ﬂo B/fjl | Gia,] > _Evi(FS i’ )i,i —vi1(Ts ’ )i,i+1 -
k=0

aO 0
- vn,ﬁ (FS P )i,n,g’ (436)

n—1
SCECPIEEE 1 Gen,) B (G 1 Gea JE (6 1 Gia, ]
k=0

pelp® 0 50

e (FS B )i,j’ (4.37)
n—1 40 ﬂo . Pao_ﬁo
SEC (G Ga,) > O (4.38)
k=0
n—1 0

e - ~ B, 0.8
SB[ Gea,] —EXP (80 | Gen, JEP 8 1 Grs,] T 0. (4.39)
k=0

If we admit for a while these estimates, it is easy to derive Theorem 4.1 by an applicatior
of Theorem VII-5-2 from Jacod et al. [14], e.g., combined with equality (1.10), (2.11),
Lemmas 3.3 and 3.4.

In the following computations, Lemma 3.1 is going to be frequently used without
being quoted. Furthermore, the notatignrefers to any subsequence converging to O:
most of the time, it is equal to some positive poweb%: or /A, the power possibly
depending of the Holder exponent '

Proof of (4.33) — It is clear that

1
0 20~ l
B (80 | G, ] = ——— / 190, b (1), X, )
VA, /

< [ST2(BT, Xpa,) (m®F° (Xin,) — mOF* (Xin )]

From m*f(x) = x + [ E%P(b(a, X{"P))dt, it readily follows using Egs. (2.17)
and (2.18) that the differenae®”#’ (x) — m®©-#* (x) is equal to
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lu; U;
0 1 0 i+1
—A, 04, b(x ,x)\/m — A0y, b(a”, x) A —

n An
— Anda, b(@®, x) 2t +R(8M/—,x).
“ A, n

The completion of proof of (4.33) is now straightforward.

Proof of (4.34) —With the previous arguments, one justifies tHAT#°[Z% | Gy ]
x E<F°139 | Gea, 1 = R(n~2, Xya,); thus, this term has a negligible contribution. On
the other hand, one easily gets

B [5080 | Gia,)
1 11
=3 [ [d1arisET Xes b0, Xis, ),
0

nA, i)

aO 0
x [ST2(B™, Xea,)du,b(; (1), Xea, )], x Vi (Xea,)

0 /0 . 0 g0 ('
+ (m* P (Xya,) = m O (Xya)), (O (Xia,) = m O (X))

1 En
= ;aa,.b«x", Xia)-[S72(B%, Xea,) 0o, b(@®, Xia,)] + —R(1,),

so that convergence (4.34) holds true.

Proof of (4.35) —Basic estimates yield*"£°[({%)* | Gia,] = R(n~2,x) and the
result follows.

Proof of (4.36) —One has that
1
~ B, 1
B8 | Gia, ) = mo/dl Tr{(35557°) (B: (), Xxa,)

s [((m*F° — m@BOY (B — @B OV (X a)
+ (V= VR O) (X, )] )

Terms involving the difference witm®# are clearly negligible. For the others, use the
equality

Ay
Vo) =g, + [ B2 (S (B, X07) 4 by (o, X)X
0

+ biy (o, XP) X170 dt = miy” ()miy (o),
and Egs. (2.17), (2.18) to obtain that the differede-#° (x) — VA (x) is equal to
lv,-

Jn
0 U"ﬁ An
~ 28, (05, SHE DT+ R{e v ).

Vit1

—2A,(35,58) (8% x) Jn

— 2A,(35,,,5) (B, x)




732 E. GOBET/ Ann. I. H. Poincaré — PR 38 (2002) 711-737
This completes the proof of (4.36).

Proof of (4.37) —We neglect the second product sife€#°[¢/ | Gea, TEF°[2]7 |
Gia,1 = R(n2, x). For the first term, we immediately obtain

BB 120 0 | Gea,)

11

1

- / / dLdl' (95,5572 (B0, Xea, ), 1, [0, SS 2 (B;0). Xew)] . o
40 0

nA” 11,12,13,14

0 . .

x B [(Xgma, —m*PO(Xea,)),, (Xasna, —m™H O (Xea,)),,

— VRO Xea) (Xasna, —m*P O Xea ), (Xarna, —m*P O (Xpa,)),
Bi)

— Vigte (Xka) | Gea, -

Long but standard computations give that the expectation inside the sum satisfies
0 20
B2 Grand = A2 [50S4 + (521,14 (5D)1,15] (B, Xia,)
+ R(A%en, Xia,)-

The end of the proof of (4.37) now follows easily.
Proof of (4.38) — It is clear sinceE*™£°[(£/)* | Gia, 1= R(n"2 x).
Proof of (4.39) — Using standard estimates, one has

E«F° [é:f e gkAn]

3/2 > / / dldl'[ST2(B*, Xia,)0a,b(ci (D), Xia, )],

2l

x [85, 8873 (B, Xea,)] 1,
< ((Xasna, =m0 Xea), Xarna, =m0 Xea,),,
ol O (Xea)) | Gea,) = R(17H Ay, Xea,).-

Furthermore, it is clear tha?£°[Z% | Gea, TE®*F°[2 | Gia,1 = R(n2, Xya,). This
completes the proof of (4.39).0

nA,,

0 p0 . +
X BP (X wrna, —mOP (Xea,)),,

5. Validity of the LAN property under other assumptions

In this section, we consider a new set of hypotheses, different of (R), (D) and (E), anc
we discuss the validity of the result of previous sections under these assumptions. Ot
motivation is to extend the class of ergodic models that we may consider for the LAN
property, to a class of SDE’s with bounded drift coefficient (for which (D) cannot be
fulfilled). Assumptions (R) and (D) have to be replaced by the following ones.
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Assumptior(R). — This is the same assumption as (R), except|t@t, x)| < c(1+
|x]) is replaced byb(a, x)| < c.

Assumptior(D’). — There are constan#s, > 0 andcy > 0 such that
Y(e, x) €0, x RY (x| = Ko == b(a, x).x < —co|x|).

An analogous assumption to [Dis made by Florens-Zmirou in [4] (see also
Has'minskii [11]). Now, we are going to briefly justify than underYRD’) and (E),
X%# is ergodic: the main tool is time uniform controls on exponential moments which
we now state.

PrROPOSITION 5.1. — Let f-(x) be a smooth function which coincides wétkp(C|x|)
for |x| > 1. Under(R’), (D’) and(E), there is a constanf, > 0 such that
(1) ForanyC € [0, C,), one has for some constants= A(C) > 0andK = K (C):

Vi>20 ELP fe(X)) < fo(xo) exp(—Ar) + K. (5.40)
2) (Xf"ﬁ),>o is ergodic and its unique invariant measupe? satisfies for any
C <(C,:
/ exp(Clx)u*f (dx) < . (5.41)
R4

Proof. —We apply the same arguments as for the proof of Proposition 1.1. Using As-
sumptions (R and (D), check that forix| > 1, one had.®# f¢(x) < Cfc(x)(2ex:x 4

|x]
% + K>C), henceL*” fc(x) < —Ccofc(x)/2 for |x| = (4K1/co) V Ko v 1 andC <
co/(4K>3). Thus, ifg(#) = Efjéﬂfc(Xt), one has proved that' (t) < —Ag() + K (with
A= Cc/2) and (5.40) easily follows.
Since one gets time uniform control on moments, the existence of an unique invarian
measure is a consequence (see Has’minskii [11]) of the strict positivity of the transition
density, this fact being clear under’fRand (E). The proof of (5.41) is obtained as

for (1.5). O

We now state that the LAN property is also valid for this class of models.

THEOREM 5.1. — Under (R'), (D) and (E), the conclusion of Theoresh1 remains
true.

Proof. —Apply exactly the same arguments as for Theorem 4.1. The main difference
comes from the estimates of Proposition 1.2, which have to be adapted to the ne\
hypotheses. Actually, one can prove, without difficulty, that estimates (1.6)—(1.9) are
valid without the factor exgkct|x|?): clearly, this modification does not change the
result, sincaﬂoﬁo has polynomial moments of any ordero

The reader may have understood than weaker forms of assumptjoan@(D) are

available: the crucial fact is to ensure tmi)to’ﬁo has enough moments to control the
growth of the derivatives df andS. For instance, if one replacésa, x).x < —cglx| by
b(a, x).x < —colx|”" with y’ € (0, 1) (this ensures polynomial moments ﬁo‘i‘o’f‘o up to
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some ordeg), one can explicit the maximal polynomial growth order which is allowed
for the derivatives ob andSS.

Appendix A. Estimates on the transition density function

This appendix is devoted to the proof of Proposition 1.2, which assumptions we
assume.

A.l. Proof of (1.6) and (1.7)

Owing the Markov property, note that it is sufficient to prove these estimates only for
t < To, WwhereTp > 0 is an arbitrary small positive constant depending only @md S.

Our techniques are based on a Girsanov transformation. We introduce some notatic
and recall some well known results.

For sake of simplicity,p*f(t, x,y) (resp.E%#) is simply denoted byp(z, x, y)
(resp.E). We also omit the parametess and 8 in the coefficientsh and S. E° and
pO(t, x, y) refers to the law of the SDE’s (1.3) where the drift coefficient is removed,
i.e. X, =x + [y S(X,)dB, (B being a Brownian motion undekE®). We setZ, =
exp(fo STHX)b(X,)dB, — § [51S7H(X,)b(X,)|?ds). SinceS~b has a linear growth,
(Z:):>0 Is a martingale (see Benes’ criterion, [15, p. 200]) and this allows a Girsanov
transformation.

Furthermore, it is well known (see Aronson [1], Friedman [5]) thdtz, x, y) is
smooth and satisfies

Ix — yI?

1t K = yP
K2 exp(—c ) <pOt,x,y) < a exp(— = ) (A1)

K x —yI?
0
’pr (, x, y)| SWGXD(— p” ) (A.2)

for some uniform constants. We are going to derive (1.6) and (1.7), from (A.1) and
(A.2) using the announced Girsanov transformation. The following lemma gives the
other necessary estimates.

LEMMA A.l.—Foranyu; > 1, anyq > 0, there are some constanis > 0, ¢ > 0,
K > 0 such that forr < Ty, one has

Eo(ZM 1+ |1X,)9) + EX(Z7 (1 + X)) < K exp(ct|x]?) (1 + |x])?.

Proof. —Since for anyr > 0, E%(1 + |X,|)" < K(1 + |x|)", it suffices to prove
Lemma A.1 whery = 0. FixA > 0. One has thak [; |S~1(X,)b(X,)|2ds < AKt(|x|>+
SUR.c0..1 1 Xs —x|?), and besides, one easily che@{sexp(» Kt sup g, |X; —x|%) < K1
for + small enough (use, e.g., a time-changed Brownian motion coordinate-wise); thus
for t < Tp(A), one obtains that

DN exp(k / |S‘1(Xs)b(Xs)|2ds> < K exp(ct|x|?). (A.3)
0
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Write Z{"* = explus fo STHX)b(X,) d By — i3 [5 ISTHX)b(X,) [P ds) explud fo |7
(X,)b(X,)|?ds), take the expectation and apply the Cauchy—Schwarz inequality: the first
term is equal to 1 and the second one is estimated by (A.3)siorall enough. This com-
pletes the proof of the estimate féf (z/"*). Same arguments apply f&f(Z,**). O

A.1.1. Proof of (1.6)
Owing the Girsanov transformation, one has

p(t,x,y) = p°t, x, NEXZ, | X, = y). (A.4)

To deal with the above conditioning, we invoke the law of the diffusion bridge from
Xo=x to X; =y (see Lyons et al. [20] e.g.), i.e. an other Girsanov transformation,

which transforms the Brownian motioB_ in B. + [; S(X,,)Wdu Hence,
sinceZ, = 1+ [y Z,S~1(X,)b(X,) d By, one gets

EX(Z, | X, = y) = /EOZb(Xpr( — 5. X, y)] ds

O(t X,

Applying Hdélder’s inequality (withi,; and u, conjugate), Lemma A.1, upper bounds
(A.1) and (A.2), one obtains (farsmall enough) thaE[ Z,b(X,).V, p°(t — s, X, )]
is bounded by

K exp(ct|x|?) (1 / eXp\ — B
petlx|%) (1 + |x|)[ | 572 = 5)@*Diar2 p( cs H2 —S))]
R

< K exp(ct|x]?) (1 + |x]) L exp( X~ 2F
= P 1d/@u2) (¢ — 5)d+1)/2=d/(2u2) P c't )

We now choose, closed to 1 to ensure that + 1) /2 —d/(2u,) < 1: it readily follows
that

E%Z | X, =y) <1+

K expler]x>)(1+ |x]) exp(— Ix—y|2>

pO(t’x’ y) t(d—l)/2 C/t

Using exgct|x|?)|x]/t9~D/2 < K exp(c’t|x|?) /t¢/? combined with the inequality above,
equality (A.4) and upper bound (A.1), one completes the proof of (1.6} femall
enough.

A.1.2. Proof of (1.7)
From equality (A.4), Jensen’s inequality yields

1 1
p(t,x,y)  po(t,x,y) *

EXZ M X, =) (A.5)

with Z71=1— [§ Z71S " Y(X)b(X,) d By + [y Z7HS™1(X,)b(X,)|?ds. Introducing the
diffusion bridge as before we can prove that
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t
o ( / Z7ESTHX)b(X) dBy | X, = y) ‘
0

K explct|x|? —y?
Xplet x| >exp<_ I — vl ) A6)
pot,x,y) 12 ct
Besides, using Holder’s inequality (wify andu, conjugate), one gets for< ¢
E2(Z7 S HX0b(X0)|* | X, = )
1 2
= E%ZYSsY(X)b(X,)| PO -5, X4,
) HZTHSTHX)b(X) | PPt — 5, X, y))
_vl2
_ Kexplerx|)(A+ x[?) exp(— 220
pO(t, x, y) 14/ @u2) (1 — 5)d/2-d[2u2)°
so that choosing, closed to 1, one obtains that
t
Ef?( / ds Z7HSTHX)b(X)| | X, = y)
0
1 K exp(ct|x|? —y?
plet x| )exp<— lx — yl ) (A7)
po(t, x,y) td/2 c't

Combining (A.5), (A.6), (A.7) and (A.1), one completes the proof of the lower bound of
p(t,x,y) for r small enough. O

A.2. Proof of (1.8) and (1.9)

The arguments being similar for both estimates, we only detail the proof of (1.8).
Using Jensen’s inequality and Proposition 2.2, one obtains:

/dyp“ﬂax V- E“ﬂ[

Vv

0, a,
7R\ 2l > 8(3, X7 UL)

=1
U‘|

Apply Holder's inequality (withx; and w; conjugate). On one hand, check that

e

< Lgos| P

\[U X

PPB(t,x, XOP) | &

o,
7 x| 2 o Xii )

E* f‘[%]”1 is bounded by ex@?|x|?) up to choosingu; closed to 1 (see the

arguments used to prove (A.7)). On the other héEEfjd*?H Z;’Fl(S(aaiXZ’,’fU,l)WZ] is
estimated by®'#2/2(1+ |x|)?, applying the arguments as in the proof of Lemma 3.3. We
are finished. O
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