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ABSTRACT. – We consider a multidimensional elliptic diffusionXα,β , whose driftb(α, x) and
diffusion coefficientsS(β, x) depend on multidimensional parametersα andβ. We assume some
various hypotheses onb andS, which ensure thatXα,β is ergodic, and we address the problem
of the validity of the Local Asymptotic Normality (LAN in short) property for the likelihoods,
when the sample is(Xk�n)0�k�n, under the conditions�n → 0 andn�n → +∞. We prove
that the LAN property is satisfied, at rate

√
n�n for α and

√
n for β: our approach is based on a

Malliavin calculus transformation of the likelihoods. 2002 Éditions scientifiques et médicales
Elsevier SAS

Keywords:Ergodic diffusion process; LAN property; Log-likelihood ratio; Malliavin
calculus; Parametric estimation

RÉSUMÉ. – Nous considèrons un processus de diffusion multidimensionnel elliptiqueXα,β ,
dont les coefficients de dériveb(α, x) et de diffusion S(β, x) dépendent de paramètres
multidimensionnelsα et β. Nous formulons plusieurs jeux d’hypothèses surb andS, assurant
l’ergodicité deXα,β , et nous nous intéressons à la validité de la propriété LAN (Local Asymptotic
Normality) pour les vraisemblances, quand l’échantillon observé est(Xk�n)0�k�n, sous les
conditions�n → 0 etn�n → +∞. Nous démontrons que la proprièté LAN est vérifiée, avec
les vitesses

√
n�n pourα et

√
n pourβ : notre approche repose sur une réécriture du rapport

de vraisemblance à l’aide du calcul de Malliavin. 2002 Éditions scientifiques et médicales
Elsevier SAS
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Introduction

Let P
α,β be the law of(Xα,β

t )t�0, theR
d -valued process solution of

Xα,β
t = x0 +

t∫
0

b
(
α,Xα,β

s

)
ds +

t∫
0

S
(
β,Xα,β

s

)
dBs, (0.1)

whereB is a d-dimensional Brownian motion,x0 is fixed and known,b and S are
known smooth functions. We are concerned with the estimation of the multidimensional
parameters(α,β) which belong to�, an open subset ofRnα × R

nβ (nα � 1, nβ � 1),
when the observation is the discretized path(Xk�n)0�k�n. The asymptotic aren→ +∞
and we consider the case when�n → 0 andn�n → +∞, assuming thatXα,β is ergodic.

The purpose of this paper is to prove the Local Asymptotic Normality (LAN in short)
property for the likelihoods under appropriate assumptions onb andS. We give a precise
formulation of the problem in our setting (for a general account on the subject, see Le
Cam and Yang [19], e.g.). IfFn = σ (Xk�n: 0� k � n), we denote the restriction ofP

α,β

toFn by P
α,β
n . The sequence((Rd)n,Fn, (Pα,βn )(α,β)∈�) of statistical models has the LAN

property for the likelihoods, at(α0, β0), with rates
√
n�n for α0 and

√
n for β0, with

covariance matrix�α
0,β0 ∈ R

nα+nβ ⊗R
nα+nβ if for any u ∈ R

nα and anyv ∈ R
nβ , one has

log
(
dP

α0+ u√
n�n

,β0+ v√
n

n

dP
α0,β0

n

)(
(Xk�n)0�k�n

)
=
(
u

v

)
.N α0,β0

n − 1

2

(
u

v

)
. �α

0,β0
(
u

v

)
+Rn, (0.2)

whereRn = Rn(u, v)
P
α0,β0

−→ 0 andN α0,β0

n

L(Pα0,β0
)−→ N α0,β0

defined as a centered Gaussian
vector with covariance matrix�α

0,β0
.

If the LAN property holds true and if�α
0,β0

is nondegenerate (this is somehow
related to an identification condition on the statistical models), minimax theorems can
be applied (see Hajek [10], Le Cam [18], or Le Cam and Yang [19] for a review) and
(�α

0,β0
)−1 gives the lower bound for the asymptotic variance of estimators. This justifies

the importance of such a property in parametric estimation problems.
The estimation procedure has been studied by several authors, mainly whend = 1

(see Prakasa Rao [22], Florens Zmirou [4], Kessler [16]), while Yoshida [24] adopts a
multidimensional setting (for a review, see also Chapter 3 from Prakasa Rao [23] on the
parametric inference for diffusion type processes from sampled data). The estimators
they propose are contrast ones: their construction is based either on a discretization
of the likelihood associated to the continuous observation (see Yoshida [24] and also
Genon-Catalot [6]), either on the use of some approximative schemes (see Florens
Zmirou [4], Kessler [16]) (see also Genon-Catalot et al. [7] for general contrast functions
in a different asymptotic framework). It is worth noticing that these estimators are
asymptotically efficient, since their variance achieve the lower bound given by(�α

0,β0
)−1

as the reader may see from the statement of the LAN property (see Theorem 4.1 below).
Some significant progresses have been recently realized by Kessler [16] concerning the
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assumptions on the form of the coefficients: in particular, he allows to deal with quite
general diffusion coefficientsS, whereas the previous works were restricted to the cases
when S(β, x) did not depend onx or was linear w.r.t. the parameters. Moreover, to
derive the asymptotic normality of the estimators, Kessler overcomes the restriction
n�n

2 → 0 (see Prakasa Rao [22]) orn�n
3 → 0 (see Florens Zmirou [4] and Yoshida

[24]), assuming onlyn�n
p → 0 for somep > 1: here, to get the LAN property, we need

not require some specific form of the coefficients or some additional assumption on the
decreasing rate of�n.

In a Markov setting, the log-likelihood ratio can be naturally expressed as a sum
of terms of the form logpα,β(�n,Xk�n,X(k+1)�n), wherepα,β(t, x, y) is the transition
density function ofXα,β

t , and to derive asymptotic properties, one may follow one of the
four following strategies.

(1) Either,pα,β is explicit (sinceXα,β has a Gaussian law, e.g.) and the computations
can follow a more or less classical routine: in this way, one can prove that the
LAN property holds true for the Ornstein–Uhlenbeck processes (see Jacod [13]).

(2) Either, one assumes that some specific estimates onpα,β(t, x, y), its derivatives
and some integrals involving these quantities are satisfied, and asymptotic
properties may be deduced (see Genon-Catalot et al. [8] when the observation
is restricted to[0,1]). But in general, the validity of these estimates turns to be
impossible to check. See also Höpfner, Jacod and Ladelli [12] for the case of
Markov chains or Markov step processes.

(3) Either, one uses an expansion ofpα,β(t, x, y) w.r.t. t, α,β up to an appropriate
order. This strategy has been successfully performed by Dacunha-Castelle
et al. [2] in the case of an one-dimensional elliptic diffusion for estimation
purposes, by deriving forpα,β(t, x, y) a quasi-explicit representation using a
Brownian bridge. This approach has also been used by Donhal [3] to prove
the LAMN property whend = 1, in the asymptotic assumptionn�n = 1. For
our objective, this strategy has some drawbacks: it essentially restricts the study
to the one-dimensional case, since the representation ofpα,β(t, x, y) cannot be
extended, using the same arguments, to a general multidimensional situation; even
for d = 1 in our setting, we need to impose a condition on the decreasing rate of
�n and more smoothness conditions on the coefficients than needed.

(4) Either, and this is the approach we are going to adopt, instead of expanding
logpα,β(�n, x, y) when α,β, x, y are fixed, we first transform

log(p
α0+ u√

n�n
,β0+ v√

n /pα
0,β0
)(�n,Xk�n,X(k+1)�n) using a Malliavin calculus inte-

gration by parts formula, and then, compute a stochastic expansion. We followed
this approach in [9] and derived, in a quite straightforward way, the LAMN prop-
erty whenn�n = 1, generalizing the result of Donhal [3] in a multidimensional
setting. Yoshida (e.g., [25,26]) has also used Malliavin calculus techniques to de-
rive some asymptotic expansions, but for other issues and in a really different way
than here.

The content of the paper is the following. Our purpose is to derive the LAN property
defined in (0.2), when the observation is(Xk�n)0�k�n, with the asymptotic�n → 0 2

2 In the sequel, we assume, without restriction, that�n � 1 for all n.
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and n�n → +∞: this property is known to be true only in the case of Ornstein–
Uhlenbeck processes (see Jacod [13]). We consider different sets of hypotheses onb

andS, under whichXα,β is ergodic. The diffusion coefficientS is always assumed to
be uniformly strictly elliptic, whereas various hypotheses onb will be made (including
the case of unbounded coefficients). A first set of models (which include the Ornstein–
Uhlenbeck processes) is defined in Section 1, whereas extensions will be briefly exposed
in Section 5. In Section 1, we state preliminary results concerning estimates on the
transition density (their proofs are postponed in Appendix A) and we define the notation
used in all the paper. To understand the chain of arguments to get the LAN property, we
propose a step-by-step proof. It starts in Section 2, where we expose Malliavin calculus
ideas, which allow to transform the log-likelihood ratio in a tractable way. Section 3
is devoted to the stochastic expansion of this log-likelihood, to exhib the main order
contribution: this is the crucial and technical part of the paper. Then, we state the LAN
property in Section 4 (see Theorem 4.1) and complete easily its proof, using the results
of Section 3. The validity of LAN property under other assumptions is discussed in
Section 5.

1. Assumptions, notations and preliminary results

As usual, we denote theith coordinate of the vectoru by ui , or ui,t if u= ut is time
dependent. For smooth functionsg(w), ∂wi g(w) stands for the partial derivative ofg
w.r.t.wi .

Now, let us consider�α (resp.�β) an open subset ofRnα (resp.Rnβ ) for some integer
nα � 1 (resp.nβ � 1): these two sets are used to define the parameterization of the
coefficients of the model of SDE’s which we are interested in.

Let b(α, x) be a map from�α × R
d into R

d , andS(β, x) a map from�β × R
d into

R
d ⊗ R

d . For fixedα andβ, these maps as function ofx are supposed to be globally
Lipschitz, so that there is an unique strong solution(Xα,β

t )t�0 to the homogeneous
stochastic differential equation

Xα,β
t = x0 +

t∫
0

b
(
α,Xα,β

s

)
ds +

t∫
0

S
(
β,Xα,β

s

)
dBs, (1.3)

where(Bt)t�0 is a standard Brownian motion inRd (with (Gt )t�0 its usual filtration) and
x0 is a deterministic initial condition. In the sequel, the indicesα,β, x0 in E

α,β
x0

stand in
reference for the expectation under the law of the diffusionXα,β starting atx0. When no
confusion is possible, we may simply writeXt instead ofXα,β

t .
In order to get asymptotic properties on the likelihood ratio, it is necessary to put

additional regularity conditions on the coefficients. To include the important case of
Ornstein–Uhlenbeck processes, we allow the drift coefficient to be unbounded: this
hypothesis will lead to technical difficulties, mainly concerning some estimates on
the transition density (see Proposition 1.2 below). The easier case of bounded drift
coefficient is discussed in Section 5. In the sequel, we assume the following hy-
potheses.
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Assumption(R). –
1. The functionsb(α, x) andS(β, x) are3 of classC1+γ w.r.t. (α, x) or (β, x), for

someγ ∈ (0,1).
2. Each partial derivative∂αib(α, x), ∂xib(α, x), ∂βiS(β, x), ∂xiS(β, x) is of classC1

w.r.t. x.
3. The following estimates hold:

(a) |b(α, x)| � c(1+ |x|) and|∂xib(α, x)| + |S(β, x)| + |∂xiS(β, x)| � c;
(b) |g(., x)| � c(1+ |x|q) for g = ∂αib, ∂

2
xi ,xj

b, ∂2
xi,αj

b, ∂βiS, ∂
2
xi ,xj

S or ∂2
xi ,βj

S;
(c)

|∂αib(α, x)− ∂αi b(α
′, x)|

|α − α′|γ + |∂βiS(β, x)− ∂βiS(β
′, x)|

|β − β ′|γ � c
(
1+ |x|q)

for some positive constantsc andq, independent of(α,α′, β,β ′, x) ∈�2
α ×�2

β ×
R
d .

To ensure the ergodicity of the process (1.3), we impose two conditions derived from
Has’minskii [11]: the drift coefficientb is strongly re-entrant and the matrixS is strongly
nondegenerate.

Assumption(D). – One has∀(α, x) ∈ �α × R
d b(α, x).x � −c0|x|2 + K for some

constantc0> 0.

Assumption(E). – The matrixS is symmetric, positive and satisfies an uniform
ellipticity condition:

∀(β, x) ∈�β × R
d,

1

c1
Id(x)� S(β, x)� c1Id(x)

for some constantc1 � 1.

Example1.1. – Set�α = (αmin
1 , αmax

1 ) × K (K is some open bounded subset of
R) and�β = (βmin, βmax). Then, the linear Ornstein–Uhlenbeck processX

α,β
t = x0 +∫ t

0(α1X
α,β
s + α2) ds + βBt fulfills the above assumptions whenαmax

1 < 0 andβmin> 0.

Under Assumptions (R), (D) and (E), the processXα,β has an unique invariant
probability measure: we denote it byµα,β and we are going to prove that it has squared
exponential moments.

PROPOSITION 1.1. – Under(R), (D) and(E), there is a constantCe > 0 such that:
(1) for anyC ∈ [0,Ce) and for anyλ > 0, one has

∀t � 0 E
α,β
x0

exp
(
C|Xt |2)� exp

(
C|x0|2)exp(−λt)+K, (1.4)

for some constantK =K(C,λ);

3 As usual, ‘f is of classC1+γ ’ means thatf is of classC1 and its partial derivatives areγ -Hölder
continuous.
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(2) for anyC <Ce, one has∫
Rd

exp
(
C|x|2)µα,β(dx) <∞. (1.5)

Proof. –Set f (x) = exp(C|x|2) and denote byLα,β the infinitesimal generator of
the diffusionXα,β . From Assumptions (R) and (D) and puttingCe = c0/c

2
1, one easily

deduces:

Lα,βf (x)= 2Cf (x)
∑
i

bi(α, x)xi + 2C2f (x)
∑
i,j

(
S2)

i,j
(β, x)xixj

+Cf (x)
∑
i

(
S2)

i,i
(β, x)

� 2C
(−c0 +Cc2

1

)|x|2f (x)+Kf (x)= −c′
0|x|2f (x)+Kf (x),

using for the last inequalityC ∈ [0,Ce), so thatc′
0> 0.

Now, it readily follows thatLα,βf (x)� −λf (x)+K ′(λ) for anyλ > 0; thus, ifg(t)=
E
α,β
x0
(f (Xt )), one hasg′(t)� −λg(t)+K ′(λ). To derive (1.4), compute(g(t)exp(λt))′

and use the previous inequality. We deduce (1.5) from (1.4). LetU be a compact subset
of R

d : from the ergodic theorem, one gets∫
Rd

exp
(
C|x|2)1x∈Uµα,β(dx)= lim

t→+∞ E
α,β
x0

(
exp
(
C|Xt |2)1Xt∈U)�K,

for some constantK independent ofU . Now, letU increase toRd and apply monotone
convergence theorem, to complete the proof.✷

Under (R) and (E), the law ofXα,β
t (t > 0) conditionally onXα,β

0 = x has a strictly
positive transition densitypα,β(t, x, y), which is, in particular, differentiable w.r.t.α and
β (see Proposition 2.2 below). Furthermore,pα,β(t, x, y) and its derivatives satisfy the
following estimates.

PROPOSITION 1.2. –Assume(R) and(E). There exist constantsc > 1 andK > 1 s.t.

pα,β(t, x, y)� K

td/2
exp
(

−|x − y|2
ct

)
exp
(
ct|x|2), (1.6)

pα,β(t, x, y)� 1

Ktd/2
exp
(

−c |x − y|2
t

)
exp
(−ct|x|2), (1.7)

and for anyν > 1, there exist other constantsc > 1,K > 1, q > 0 s.t.

E
α,β
x

∣∣∣∣∂αipα,βpα,β
(t, x,Xt )

∣∣∣∣ν �Ktν/2 exp
(
ct|x|2)(1+ |x|)q , (1.8)

E
α,β
x

∣∣∣∣∂βj pα,βpα,β
(t, x,Xt )

∣∣∣∣ν �K exp
(
ct|x|2)(1+ |x|)q , (1.9)

for 0< t � 1, (x, y) ∈ R
d × R

d , 1� i � nα, 1 � j � nβ and(α,α,β,β) ∈�α ×�α ×
�β ×�β .
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Analogous bounds for|∂αipα,β(t, x, y)| and |∂βj pα,β(t, x, y)| are also available, but
we will not use them in the sequel. To derive estimates (1.8) and (1.9), we somehow
exploit Malliavin calculus representations which we introduce in Section 2 below: so,
we admit for a while this proposition, the proof being postponed in Appendix A.

As far as the author knows, these estimates seem to be new in the context of
unbounded drift and bounded diffusion coefficients. Actually, when the functionsb

andS (and some of their derivatives) are bounded, Gaussian type bounds (i.e. of the
form K

tµ
exp(−|x−y|2

ct
)) for p and its derivatives are available (see e.g. Theorem 4.5,

Friedman [5]), whereas whenb and S have a linear growth (think of the geometric
Brownian motion e.g.), the upper bounds are not of Gaussian type, but only decreasing
faster than any polynomials.

Here, the boundedness of the diffusion coefficient enables to keep Gaussian bounds,
up to the factor exp(±ct|x|2). Actually, this latter term is unavoidable. Indeed, consider
again the Ornstein–Uhlenbeck process from Example 1.1: one haspα1,0,1(t, x, x) ∼

t→0
1√
2πt

exp(−1
2x

2α2
1t), estimate which should be compared to inequality (1.7).

Notation

In all the paper, the multi-index of parameters(α1, . . . , αnα , β1, . . . , βnβ ) is going
to be simply denoted by(α,β), and(α0, β0) = (α0

1, . . . , α
0
nα
, β0

1, . . . , β
0
nβ
) ∈ �α × �β

corresponds as usual to the true value of the parameters. Besides,(α,β) might be a row
vector as well a column vector: we will not distinguish the notation, since in the further
contexts, no confusion will be possible.

To define the local likelihood ratio around the parameter(α0, β0), we fix u ∈ R
nα ,

v ∈ R
nβ and set

(α+, β+) :=
(
α0 + u√

n�n

,β0 + v√
n

)
=
(
α0

1 + u1√
n�n

, . . . , α0
nα

+ unα√
n�n

,β0
1 + v1√

n
, . . . , β0

nβ
+ vnβ√

n

)
.

Our main issue is to study the weak convergence (underP
α0,β0

and under the assumptions

�n → 0, n�n → ∞) of the local likelihood ratioZn := dP
α+,β+
n

dP
α0,β0
n

((Xk�n)0�k�n), or the

convergence of its logarithmzn = log(Zn), which can be rewritten using the transition
densities as:

zn =
n−1∑
k=0

log
(
pα

+,β+

pα
0,β0

)
(�n,Xk�n,X(k+1)�n). (1.10)

But to deal with some perturbations around(α0, β0), we adopt more specific notation:

(α+
i , β

+)=
(
α0

1, . . . , α
0
i−1, α

0
i + ui√

n�n

, . . . , α0
nα

+ unα√
n�n

,β0
1 + v1√

n
, . . . ,

β0
nβ

+ vnβ√
n

)
,
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(
αi(l), β

+)=
(
α0

1, . . . , α
0
i−1, α

0
i + l

ui√
n�n

,α0
i+1 + ui+1√

n�n

, . . . , α0
nα

+ unα√
n�n

,

β0
1 + v1√

n
, . . . , β0

nβ
+ vnβ√

n

)
,

(α,β+
i )=

(
α0

1, . . . , α
0
nα
, β0

1, . . . , β
0
i−1, β

0
i + vi√

n
, . . . , β0

nβ
+ vnβ√

n

)
,

(
α,βi(l)

)=(α0
1, . . . , α

0
nα
, β0

1, . . . , β
0
i−1, β

0
i + l

vi√
n
,β0

i+1 + vi+1√
n
, . . . , β0

nβ
+ vnβ√

n

)
.

We also introduce the mean vector and the covariance matrix ofX
α,β
�n

:

mα,β(x)= (mα,β
i (x)

)
i
= (Eα,βx [Xi,�n]

)
i
,

V α,β(x)= (V α,β
i,j (x)

)
i,j

= (
E
α,β
x

[
Xi,�n −m

α,β
i (x)

][
Xj,�n −m

α,β
j (x)

])
i,j
.

We may write g(n, x,α,β) = R(εn, x) if the function g satisfies the estimate
|g(n, x,α,β)| � K(1 + |x|q)εn, for some positive constantsK andq, independent of
x, n, α ∈ �α andβ ∈ �β . Besides, the notationK will be kept for all finite positive
constants (independent ofx, n, α, β and so on), which will appear in proofs.

2. Transformation of the log-likelihood ratio using Malliavin calculus

In this section, we present the methodology to derive the convergence of the local
log-likelihood ratio: the main new idea is to use Malliavin calculus techniques to rewrite
this ratio in a tractable way. This strategy has already been performed in Gobet [9] and
we briefly expose it in this new setting.

Since one may write

pα
+,β+

pα
0,β0 = pα

+
1 ,β

+

pα
+
2 ,β

+ · · · p
α+
i
,β+

pα
+
i+1,β

+ · · · p
α+
nα ,β

+

pα,β
+
pα,β

+
1

pα,β
+
2

· · · p
α,β+

j

p
α,β+

j+1
· · · p

α,β+
nβ

pα
0,β0 ,

one easily deduces, using the smoothness property ofpα,θ , that Eq. (1.10) can be
transformed as

zn =
n−1∑
k=0

ζ
α1
k + · · · +

n−1∑
k=0

ζ
αi
k + · · · +

n−1∑
k=0

ζ
αnα
k

+
n−1∑
k=0

ζ
β1
k + · · · +

n−1∑
k=0

ζ
βj
k + · · · +

n−1∑
k=0

ζ
βnβ
k , (2.11)

where

ζ
αi
k = ui√

n�n

1∫
0

dl
∂αip

αi(l),β
+

pαi(l),β
+ (�n,Xk�n,X(k+1)�n), (2.12)

ζ
βj
k = vj√

n

1∫
0

dl
∂βjp

α,βj (l)

pα,βj (l)
(�n,Xk�n,X(k+1)�n). (2.13)
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The core of the analysis of the weak convergence ofzn is of course based on a good
understanding of the stochastic behavior ofζ

αi
k andζ

βj
k , which is going to be analyzed

through some stochastic expansions. To this purpose, the first step of this program is to

rewrite
∂αi p

α,β

pα,β
(T , x, y) and

∂βj p
α,β

pα,β
(T , x, y) as a conditional expectation, using Malliavin

calculus. For this, we need to introduce the material necessary to our computations (for
more details, see Nualart [21]).

2.1. Basic facts on Malliavin calculus

Fix a filtered probability space(8,F, (Ft ),P) and let(Wt)t�0 be ad-dimensional
Brownian motion. FixT ∈ (0,1]. Forh(.) ∈H = L2([0, T ],Rd),W(h) is the Itô integral∫ T

0 h(t) dWt .
Let S denote the class of random variables of the formF = f (W(h1), . . . ,W(hN))

where f ∈ C∞
p (R

N), (h1, . . . , hN) ∈ HN and N � 1. For F ∈ S , we define its
derivative DF = (DtF )t∈[0,T ] as theH -valued random variable given byDtF =∑N
i=1 ∂xif (W(h1), . . . ,W(hn))hi(t). The operatorD is closable as an operator from

Lp(8) to Lp(8,H), for any p � 1. Its domain is denoted byD1,p w.r.t. the norm
‖F‖1,p = [E|F |p + E(‖DF‖pH )]1/p.

We now introduceδ, the Skorohod integral, defined as the adjoint operator ofD:

DEFINITION 2.1. –δ is a linear operator onL2([0, T ]×8,Rd)with values inL2(8)

such that:
(1) The domain ofδ (denoted byDom(δ)) is the set of processesu ∈ L2([0, T ] ×

8,Rd) such that∀F ∈ D
1,2, one has|E(∫ T0 DtF.ut dt)| � c(u)‖F‖2.

(2) If u belongs toDom(δ), thenδ(u) is the element ofL2(8) characterized by the
integration by parts formula: ∀F ∈ D

1,2, E(Fδ(u))= E(
∫ T

0 DtF.ut dt).

We now state some properties of the Skorohod integral, which are going to be useful
in the sequel:

PROPOSITION 2.1. –
(1) For any p > 1, the space of weakly differentiableH -valued variablesD1,p(H)

belongs toDom(δ) and one has

‖δ(u)‖p � cp
(‖u‖Lp(8,H) + ‖Du‖Lp(8,H⊗H)

)
. (2.14)

(2) If u is an adapted process belonging toL2([0, T ] × 8,Rd), then the Skorohod
integral and the Itô integral coincides: δ(u)= ∫ T

0 ut dWt .

(3) If F belongs toD1,2, then for anyu ∈ Dom(δ) s.t.E(F 2
∫ T

0 u
2
t dt) <+∞, one has

δ(Fu)= Fδ(u)−
T∫

0

DtF.ut dt, (2.15)

whenever the r.h.s. above belongs toL2(8).
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2.2. Transformation of
∂αi

pα,β

pα,β (T , x,y) and
∂βj

pα,β

pα,β (T , x,y)

To allow some Malliavin calculus computations on transition densities while avoiding
some confusion with the observed process (1.3) generated by the Brownian motion
(Bt)t�0, we consider an independent Brownian motion(Wt)t�0 (with its usual filtration
(Ft )t�0) to which we associate an independent copy ofXα,β (still denoted byXα,β ),
which consequently solves

Xα,β
t = x +

t∫
0

b
(
α,Xα,β

s

)
ds +

d∑
l=1

t∫
0

Sl
(
β,Xα,β

s

)
dWl,s, (2.16)

whereSl is thelth column vector ofS.
Sinceb(α, x) and S(β, x) are assumed to be of classC1+γ , Xα,β

t is differentiable
as a function ofx, α andβ (see Kunita [17]), so that we can introduce its flow, i.e. the
Jacobian matrixY α,βt := ∇xX

α,β
t , and its derivative w.r.t.αi (resp.βj ) denoted by∂αiX

α,β
t

(resp.∂βjX
α,β
t ). This defines new processes, which solve a system of SDE’s:

Y α,βt = Id +
t∫

0

∇xb
(
α,Xα,β

s

)
Y α,βs ds +

d∑
l=1

t∫
0

∇xSl
(
β,Xα,β

s

)
Y α,βs dWl,s,

∂αiX
α,β
t =

t∫
0

(
∂αib

(
α,Xα,β

s

)+ ∇xb
(
α,Xα,β

s

)
∂αiX

α,β
s

)
ds

+
d∑
l=1

t∫
0

∇xSl
(
β,Xα,β

s

)
∂αiX

α,β
s dWl,s, (2.17)

∂βjX
α,β
t =

t∫
0

∇xb
(
α,Xα,β

s

)
∂βjX

α,β
s ds +

d∑
l=1

t∫
0

(
∂βj Sl

(
β,Xα,β

s

)
+ ∇xSl

(
β,Xα,β

s

)
∂βjX

α,β
s

)
dWl,s. (2.18)

Under (R), for anyt � 0, the random variablesXα,β
t , Y α,βt , (Y α,βt )−1, (∂αiX

α,β
t )i and

(∂βjX
α,β
t )j belong toD

1,p for any p � 1 (see Nualart [21, Section 2.2]). Besides, the
following crude estimates hold true:

E
α,β
x

(
sup

0�t�1
‖Zt‖p)+ sup

r∈[0,1]
E
α,β
x

(
sup
r�t�1

‖DrZt‖p)=R(1, x) (2.19)

for Zt = X
α,β
t , Y

α,β
t or (Y α,βt )−1. We now state the useful result for the analysis of the

log-likelihood.

PROPOSITION 2.2. – (Gobet [9, Proposition 4.1]). Assume(R) and (E) and setT ∈
(0,1]. For 1� l1 � d, let us defineUl1 = (Ul1,t )0�t�T theR

d -valued process whosel2th
component is equal toUl1l2,t = (S−1(β,X

α,β
t )Y

α,β
t (Y

α,β
T )−1)l2,l1. Then, one has
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∂αip
α,β

pα,β
(T , x, y)= 1

T
E
α,β
x

[
d∑

l1=1

δ
(
∂αiX

α,β
l1,T
Ul1
) ∣∣∣∣ Xα,β

T = y

]
,

∂βj p
α,β

pα,β
(T , x, y)= 1

T
E
α,β
x

[
d∑

l1=1

δ
(
∂βjX

α,β
l1,T
Ul1
) ∣∣∣∣ Xα,β

T = y

]
.

3. Expansion of the local log-likelihood ratio

From Proposition 2.2, each random variableζ αik (or ζ
βj
k ) can be rewritten as

ζ
αi
k = ui√

n�n

1∫
0

dl
1

�n

E
αi (l),β

+
Xk�n

[
Hαi(l),β

+
n |Xαi(l),β

+
�n

=X(k+1)�n

]
,

for some random variableHαi(l),β
+

n . To derive the convergence
∑n−1
k=0 ζ

αi
k underPα

0,β0
,

we may apply a classical convergence theorem for triangular arrays of random
variables, by checking the convergence of the sum of some conditional moments, e.g.∑n−1
k=0 E

α0,β0[ζ αik | Gk�n]: the fact that the expectations outside and inside refer to different
probability measures (P

α0,β0
andP

αi(l),β
+
) is a sizable difficulty.

Our approach to this problem is to perform a stochastic expansion ofHαi(l),β
+

n under
P
αi(l),β

+
. The miracle arises from the fact that this random variable is equal at the first

order to some functiong(αi(l), β+, n,Xαi(l),β
+

0 ,X
αi(l),β

+
�n

): consequently, its conditional
expectation is immediate to compute and thus, the checking of the convergence of
the sum of the conditional moments (underP

α0,β0
) of g(αi(l), β+, n,Xk�n,X(k+1)�n)

becomes much more easy.
Nevertheless, we have to prove that the remainder terms in these expansions have no

contribution in the limit ofzn. For this, it is necessary to obtain some specific results on
the convergence in probability of sums of conditional expectations: our crucial tools are
Propositions 3.1 and 3.2.

3.1. Some convergence results

The main purpose of this section is to prove the two following propositions.

PROPOSITION 3.1. – Assume(R), (D) and (E). Seti ∈ {1, . . . , nα}. LetH be aF�n-
measurable random variable, which satisfies for anyµ> 1:

E
αi(l),β

+
x [H ] = 0 and

(
E
αi(l),β

+
x |H |µ)1/µ =R

(
�n

3/2εn, x
)
,

for some sequenceεn → 0. Then, one has

n−1∑
k=0

ui√
n�n

1∫
0

dl
1

�n

E
αi(l),β

+
Xk�n

[
H |Xαi(l),β

+
�n

=X(k+1)�n

] P
α0,β0

−→ 0.
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PROPOSITION 3.2. – Assume(R), (D) and(E). Setj ∈ {1, . . . , nβ}. LetH be aF�n-
measurable random variable, which satisfies for anyµ> 1:

E
α,βj (l)
x [H ] = 0 and

(
E
α,βj (l)
x |H |µ)1/µ =R(�nεn, x),

for some sequenceεn → 0. Then, one has

n−1∑
k=0

vj√
n

1∫
0

dl
1

�n

E
α,βj (l)

Xk�n

[
H |Xα,βj (l)

�n
=X(k+1)�n

] P
α0,β0

−→ 0.

Actually, analogous results are proved in Gobet [9] (see Corollary 4.1), but they are
inefficient for our purpose. The main difference concerns the assumption on the mean
of H , which is taken to be 0 in this paper, whereas in [9], it was dominated by some
power of�n. This difference turns out to be crucial, and being a little careful in the
proof below, we may note that if the mean ofH is only supposed to be of order�n

ν , we
cannot obtain the result of the propositions above, unless we impose (as in Kessler [16]
and others) some restrictive conditions on the decreasing rate of�n such asn�n

ν ′ → 0.
In order to prove Propositions 3.1 and 3.2 and further results, we need a classical

discrete time ergodic theorem, which following version is adapted from Kessler [16].

LEMMA 3.1. – Assume(R), (D) and(E). There is a constantC ′
e > 0, such that, ifg is

a differentiable function satisfying|g(x)| + |∇g(x)| �K exp(C|x|2) withC <C ′
e, then

1

n

n−1∑
k=0

g(Xk�n)
P
α0,β0

−→
∫
Rd

g(x)µα
0,β0
(dx),

where the limit above is finite.

Proof. –TakeC ′
e � Ce whereCe is defined in Proposition 1.1: the continuous time

ergodic theorem ensures that1
n�n

∫ n�n
0 g(Xs) ds

P
α0,β0

−→ ∫
Rd
g(x)µα

0,β0
(dx). Thus, it is

enough to prove that

E
α0,β0

x0

∣∣∣∣∣ 1

n�n

n�n∫
0

g(Xs) ds − 1

n

n−1∑
k=0

g(Xk�n)

∣∣∣∣∣
� 1

n�n

n−1∑
k=0

(k+1)�n∫
k�n

E
α0,β0

x0
|g(Xs)− g(Xk�n)|ds

converges to 0. But using standard Itô’s calculus, one gets (for someλ > 0)

E
α0,β0

x0
|g(Xs)− g(Xk�n)|

�K
√
�n

√
E
α0,β0

x0 exp
(
λC|Xk�n |2

)
E
α0,β0

x0 exp
(
λC|Xs|2)�K

√
�n,
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for some new constantK , which is independent ofk�n and s owing the uniform
estimates of Proposition 1.1 up to choosingC small enough. The completion of the
proof now follows easily. ✷

The above lemma is going to be often combined with the following classical
convergence result about triangular arrays of random variables.

LEMMA 3.2. – (Genon-Catalot et al. [7, Lemma 9]). Let ξnk , U be random variables,

with ξnk beingG(k+1)�n-measurable. The two following conditions imply
∑n−1
k=0 ξ

n
k

P→U :

n−1∑
k=0

E
[
ξnk | Gk�n

] P→U and
n−1∑
k=0

E
[
(ξnk )

2 | Gk�n
] P→ 0.

Proof of Proposition 3.1. –Set ξnk = ui√
n�n

∫ 1
0 dl

1
�n

E
αi (l),β

+
Xk�n

[H | Xαi(l),β
+

�n
=

X(k+1)�n]: these areG(k+1)�n-measurable random variables, to which we are going to
apply Lemma 3.2.

1. Evaluation ofEα
0,β0[ξnk | Gk�n]. It reduces to evaluate

E
α0,β0[

E
αi(l),β

+
Xk�n

[
H |Xαi(l),β

+
�n

=X(k+1)�n

] | Gk�n]
= E

αi(l),β
+

Xk�n

[
H

pα
0,β0

pαi(l),β
+ (�n,X0,X�n)

]

= E
αi(l),β

+
Xk�n

[
H
pαi(l),β

+

pαi(l),β
+ (�n,X0,X�n) (3.20)

+H
(pα

+
i+1,β

+ − pαi(l),β
+
)+ (pα

+
i+2,β

+ − pα
+
i+1,β

+
)+ · · ·

pαi(l),β
+ (�n,X0,X�n)

+H
(pα,β

+ − pα
+
nα ,β

+
)

pαi(l),β
+ (�n,X0,X�n) (3.21)

+H
(pα,β

+
2 − pα

+
nα ,β

+
1 )+ · · · + (pα

0,β0 − p
α,β+

nβ )

pαi(l),β
+ (�n,X0,X�n)

]
. (3.22)

The term (3.20) is equal toEαi (l),β
+

Xk�n
[H ] = 0.

Each difference in (3.21) (strictly speaking, not the first one, but nevertheless, the
following arguments also apply to it) is equal to

E
αi(l),β

+
Xk�n

[
H
(pα

+
m+1,β

+ − pα
+
m,β

+
)

pαi(l),β
+ (�n,X0,X�n)

]

= − um√
n�n

1∫
0

dlE
αi(l),β

+
Xk�n

[
H
∂αmp

αm(l),β
+

pαm(l),β
+

pαm(l),β
+

pαi(l),β
+ (�n,X0,X�n)

]
.

Using Hölder’s inequality (withν1, ν2 and ν3 conjugate) and the estimate on
(E

αi(l),β
+

Xk�n
|H |ν1)1/ν1, the inequality (1.8), upper/lower bounds (1.6) and (1.7), it follows

that the r.h.s. of the above equality is bounded by
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K√
n�n

×R
(
�n

3/2εn,Xk�n
)×√�n exp

(
c�n|Xk�n |2

)
×
(∫

Rd

1

�n
ν3d/2

e−ν3
|Xk�n−y|2

c�n
+ν3c�n|Xk�n |2 1

�n
(1−ν3)d/2

× e−(1−ν3)c
|Xk�n−y|2

�n
−(1−ν3)c�n|Xk�n |2)

dy

)1/ν3

� R

(
�n

3/2εn√
n

,Xk�n

)
exp
(
c′�n|Xk�n |2

)
,

since the integral w.r.t.y is finite as soon as−ν3/c − (1 − ν3)c < 0: this condition is
satisfied up to choosingν3 closed to 1, i.e.ν1 andν2 enough large.

Using analogous arguments (and in particular estimate (1.9)), check that each
difference in (3.22) satisfies the following inequality∣∣∣∣Eαi(l),β+

Xk�n

[
H
(pα,β

+
m+1 − pα,β

+
m )

pαi(l),β
+ (�n,X0,X�n)

]∣∣∣∣
�R

(
�n

3/2εn√
n

,Xk�n

)
exp
(
c′�n|Xk�n |2

)
.

Taking into account thatc′�n � C ′
e/2 for n large enough, one has proved that

∣∣Eα0,β0[
ξnk | Gk�n

]∣∣� 1√
n�n

1

�n

R

(
�n

3/2εn√
n

,Xk�n

)
ec

′�n|Xk�n |2

� εn × 1

n
R(1,Xk�n)e

1
2C

′
e|Xk�n |2.

Apply Lemma 3.1 to the functionR(1, x)e
1
2C

′
e|x|2 and conclude that

∑n−1
k=0 E

α0,β0[ξnk |
Gk�n] P

α0,β0

−→ 0.
2. Evaluation ofEα

0,β0[(ξnk )2 | Gk�n]. Using repeatedly Jensen’s inequality, one has

E
α0,β0[

(ξnk )
2 | Gk�n

]
� |ui|2
n�n

1

�n
2

1∫
0

dlE
αi(l),β

+
Xk�n

[
H 2 p

α0,β0

pαi(l),β
+ (�n,X0,X�n)

]

� ε2
n × 1

n
R(1,Xk�n)exp

(
1

2
C ′
e|Xk�n |2

)
,

where the expectation underP
αi(l),β

+
has been evaluated as before, i.e. using Hölder’s

inequality, the estimate on(Eαi(l),β
+

Xk�n
|H |2ν1)1/ν1 and upper/lower bounds (1.6) and

(1.7). Lemma 3.1 completes the proof of
∑n−1

k=0 E
α0,β0[(ξnk )2 | Gk�n] P

α0,β0

−→ 0. Thus,
Proposition 3.1 is proved.✷

The proof of Proposition 3.2 is very similar to the previous one: we omit it.
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3.2. Stochastic expansion

The objective of this section is to derive some good approximations of the sums∑n−1
k=0 ζ

αi
k and

∑n−1
k=0 ζ

βj
k from (2.11): as explained before, it consists in performing a

stochastic expansion (w.r.t. the small time�n) of the random variables

d∑
l1=1

δ
(
∂αiX

αi(l),β
+

l1,�n
Ul1
)

and
d∑

l1=1

δ
(
∂βjX

α,βj (l)

l1,�n
Ul1
)

defined in Proposition 2.2. To neglect the contribution of the remainder terms, we apply
Propositions 3.1 and 3.2 above. The main difference with what we did in [9] is that we
have to keep in mind that these remainder terms have to be centered random variables:
this may explain that the next computations are little more intricate than in [9].

3.2.1. Contributions of the drift coefficient
LEMMA 3.3. – Assume(R), (D) and(E). Seti ∈ {1, . . . , nα}. If one defines

ζ̂
αi
k = 1√

n�n

1∫
0

dl ∂αi b
(
αi(l),Xk�n

)
.
[
S−2(β+,Xk�n)

(
X(k+1)�n −mαi(l),β

+
(Xk�n)

)]
,

then one has
∑n−1
k=0 ζ

αi
k − ui

∑n−1
k=0 ζ̂

αi
k

P
α0,β0

−→ 0.

Proof. –As in Proposition 2.2, defineUl1 = (Ul1,t )0�t��n as theR
d -valued process

with component equal toUl1l2,t = [S−1(β+,Xαi(l),β
+

t )Y
αi(l),β

+
t (Y

αi(l),β
+

�n
)−1]l2,l1, and set

X
αi(l),β

+
0 = x.
The above lemma is proved if one shows that

δ
(
∂αiX

αi(l),β
+

l1,�n
Ul1
)

=�n∂αi bl1
(
αi(l), x

)[
S−2(β+, x)

(
X
αi(l),β

+
�n

−mαi(l),β
+
(x)
)]
l1

+Hl1, (3.23)

for l1 ∈ {1, . . . , d}, with (Eαi(l),β
+

x |Hl1|µ)1/µ =R(�n
3/2εn, x) for all µ> 1 (εn → 0).

Indeed, one has thatEαi(l),β
+

x [Hl1] = 0 since both other random variables of equality
(3.23) are centered underP

αi(l),β
+

x . Thus, Proposition 3.1 applies and after a summation
over l1 of equalities (3.23), one gets the result.

Proof of(3.23). – Here, for simplicity, ifV is a random variable (possibly multidimen-
sional), we use the notationV =R′(εn, x) if for anyµ> 1, one has[Eαi (l),β+

x |V |µ]1/µ =
R(εn, x) uniformly in all variables (exceptx, µ andn). From (2.15), one has:

δ
(
∂αiX

αi(l),β
+

l1,�n
Ul1
)= ∂αiX

αi(l),β
+

l1,�n
δ(Ul1)−

�n∫
0

Dt ∂αiX
αi(l),β

+
l1,�n

.Ul1,t dt. (3.24)
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1. First of all, we are going to prove that

�n∫
0

Dt ∂αiX
αi(l),β

+
l1,�n

.Ul1,t dt =R′(�n
2, x
)
. (3.25)

Indeed, standard computations with Gronwall’s lemma yield sup0�s��n |∂αiXαi(l),β
+

s | =
R′(�n, x). Thus, deriving from (2.17) the equation solved by(Dt ∂αiX

αi(l),β
+

�n
)0�t��n ,

one can easily obtainedDt ∂αiX
αi(l),β

+
�n

= R′(�n, x) using the above estimates on
∂αiX

αi(l),β
+

s and (2.19). It remains to take into account estimates (2.19) to complete the
proof of (3.25).

2. Second, using standard Itô’s calculus, one gets from Eq. (2.17) that

∂αiX
αi(l),β

+
l1,�n

−�n∂αibl1
(
αi(l), x

)=R′(�n
3/2, x

)
. (3.26)

3. At last, setÛl1l2,t = (S−1)l1,l2(β
+,Xαi(l),β

+
t ) and writeδ(Ul1) = δ(Ûl1) + δ(Ul1 −

Ûl1): using (2.14) and estimates (2.19), it readily follows thatδ(Ul1 − Ûl1)=R′(�n, x).

Furthermore, sincêUl1 is an adapted process,δ(Ûl1) is simply an Itô integral. The
matrixS is invertible, thus one has

dWt = S−1(β,Xα,β
t

)
dXα,β

t − S−1(β,Xα,β
t

)
b
(
α,Xα,β

t

)
dt

= S−1(β, x) dXα,β
t + (Id − S−1(β, x)S

(
β,Xα,β

t

))
dWt

− S−1(β, x)b(α,Xα,β
t ) dt, (3.27)

for any(α,β). Consequently, easy computations yield

δ(Ûl1)=
d∑

l2=1

�n∫
0

(
S−1)

l1,l2

(
β+,Xαi(l),β

+
t

)
dWl2,t

=
d∑

l2=1

�n∫
0

(
S−1)

l1,l2
(β+, x) dWl2,t +R′(�n, x)

=
d∑

l3=1

(
S−2)

l1,l3
(β+, x)

�n∫
0

dX
αi(l),β

+
l3,t

+R′(�n, x)

= [S−2(β+, x)
(
X
αi(l),β

+
�n

−mαi(l),β
+
(x)
)]
l1

+R′(�n, x), (3.28)

where we used in particular thatmαi(l),β
+
(x) = x + R(�n, x). Combining estimates

(3.25), (3.26) and (3.28) in (3.24), one completes the proof of (3.23) takingεn =√
�n. ✷

3.2.2. Contributions of the diffusion coefficient
Now, we focus on the approximation of the sum

∑n−1
k=0 ζ

βj
k in (2.11).
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LEMMA 3.4. – Assume(R), (D) and(E). Setj ∈ {1, . . . , nβ}. If one defines

ζ̂
βj
k = 1√

n

1∫
0

dl
1

�n

Tr
{(
∂βj SS

−3)(βj (l),Xk�n)
× [(X(k+1)�n −mα,βj (l)(Xk�n)

)(
X(k+1)�n −mα,βj (l)(Xk�n)

)∗ − V α,βj (l)(Xk�n)
]}
,

then one has
∑n−1
k=0 ζ

βj
k − vj

∑n−1
k=0 ζ̂

βj
k

P
α0,β0

−→ 0.

Proof. –The techniques are very similar to those of Lemma 3.3, thus we expose a
shortened proof, voluntarily omitting some details (see also [9], Section 4.3 for many
analogies).

As before, setX
α,βj (l)

0 = x and defineUl1 as theR
d -valued process with component

equal toUl1l2,t = [S−1(βj (l),X
α,βj (l)
t )Y

α,βj (l)
t (Y

α,βj (l)

�n
)−1]l2,l1. The lemma is proved if

δ
(
∂βjX

α,βj (l)

l1,�n
Ul1
)= [∂βj SS−1(βj(l), x)(Xα,βj (l)

�n
−mα,βj (l)(x)

)]
l1

× [S−2(βj(l), x)(Xα,βj (l)

�n
−mα,βj (l)(x)

)]
l1

− (∂βj SS−1(βj (l), x)V α,βj (l)(x)S−2(βj (l), x))l1,l1 +Hl1, (3.29)

for l1 ∈ {1, . . . , d}, with (E
α,βj (l)
x |Hl1|µ)1/µ =R(�nεn, x) for all µ> 1 (εn → 0).

Indeed, easy algebra in equality (3.29) shows thatE
α,βj (l)
x [Hl1] = 0: thus, Proposi-

tion 3.2 applies. Then, if we sum overl1 equalities (3.29) and remind of Proposition 2.2,
we obtain the result taking into account that forA andB somed × d-matrixes andy
some vector ofRd , one hasAy.By = Tr(A∗Byy∗).

Proof of (3.29). – For simplicity, we writeV = R′(εn, x) if the random variableV
satisfies for anyµ> 1, [Eα,βj (l)x |V |µ]1/µ =R(εn, x) uniformly in all variables (exceptx,
µ andn). From (2.15), one has:

δ
(
∂βjX

α,βj (l)

l1,�n
Ul1
)= ∂βjX

α,βj (l)

l1,�n
δ(Ul1)−

�n∫
0

Dt ∂βjX
α,βj (l)

l1,�n
.Ul1,t dt. (3.30)

From Eq. (2.18), it readily follows

∂βjX
α,βj (l)

l1,�n
=

d∑
l2=1

�n∫
0

∂βj Sl1,l2
(
βj(l), x

)
dWl2,t +R′(�n, x)

= [∂βj SS−1(βj (l), x)(Xα,βj (l)

�n
−mα,βj (l)(x)

)]
l1

+R′(�n, x), (3.31)

where we used at the last equality the same arguments as for (3.28). As in the proof of
Lemma 3.3, one has

δ(Ul1)=
[
S−2(βj(l), x)(Xα,βj (l)

�n
−mα,βj (l)(x)

)]
l1

+R′(�n, x). (3.32)

Moreover, one checks that
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�n∫
0

Dt ∂βjX
α,βj (l)

l1,�n
.Ul1,t dt =

�n∫
0

d∑
l2=1

∂βj Sl1,l2
(
βj (l),X

α,βj (l)
t

)(
S−1)

l1,l2

(
βj (l),X

α,βj(l)
t

)
dt

+R′(�n
3/2, x

)=�n

[
∂βj SS

−1(βj (l), x)]l1,l1 +R′(�n
3/2, x

)
.

Besides, standard computations yieldV α,βj (l)(x) = �nS
2(βj (l), x) + R(�n

3/2, x), so
that one gets

�n∫
0

Dt ∂βjX
α,βj (l)

l1,�n
.Ul1,t dt =

(
∂βj SS

−1(βj(l), x)V α,βj (l)(x)S−2(βj(l), x))l1,l1
+R′(�n

3/2, x
)
.

Plug this last equality, estimates (3.31) and (3.32) into (3.30) to complete the proof of
(3.29). Lemma 3.4 is proved.✷
3.3. About an explicit approximation of the log-likelihood

To conclude this section on the expansion of the local log-likelihood ratio, we would
like to give an answer to the following question:

“Which explicit (or quasi-explicit) log-likelihood should we have to consider from the
beginning to find the same expansion that those given by Lemmas 3.3 and 3.4 combined
with equality (2.11)?”

Reasonable explicit likelihoods can be derived from Gaussian Markov chains and in
this setting, it is tempting to consider those given by the Euler scheme: nevertheless, as
it is underlined by Kessler [16], it does work only under some restrictive assumptions of
the decreasing rate of�n.

To get the ad hoc log-likelihood, let us denote by(Y α,βk )0�k�n the R
d -valued

Gaussian Markov chain, which fits the two first conditional moments of(X
α,β
k�n
)0�k�n,

i.e. defined byY α,β0 = x0 andY α,βk+1 = Y
α,β
k + εk+1, whereεk+1 is a Gaussian random

variable, independent ofε1, . . . , εk , with mean equal tomα,β(Y
α,β
k ) and variance equal

to V α,β(Y
α,β
k ).

Under our hypotheses,V α,β(x) is invertible and the transition density ofY α,β is equal
to

qα,β(x, y)

= 1√
(2π)d detV α,β(x)

exp
(

−1

2

(
y −mα,β(x)

)
.
[(
V α,β(x)

)−1(
y −mα,β(x)

)])
.

The local log-likelihood ratio function associated toY , in which we have replaced the ob-

served diffusion process, is thus given byzn =∑n−1
k=0 log( q

α+ ,β+

qα
0,β0 )(Xk�n,X(k+1)�n). This

quantity (explicit up the knowledge ofmα,β andV α,β ) is our candidate to give the same
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limit than the true local log-likelihood ratiozn, defined in 2.11. Indeed, one can prove

thatzn − zn
P
α0,β0

−→ 0. This can be done from Lemmas 3.3 and 3.4: we omit the details of
the computations, which are somehow standard since everything is explicit.

Of course, this result is not surprising: it confirms in some sense that the approach
of Kessler [16] was appropriate. Actually, it is not very interesting to obtain the result
now, while we have almost finished to prove the LAN property: it would have been more
efficient to have this approximation result from the beginning, but we do not have good
ideas to obtain it by direct arguments.

4. LAN property

4.1. Statement of the result

The main result of the paper is:

THEOREM 4.1. – Under(R), (D) and(E), one has

log
(
dP

α0+ u√
n�n

,β0+ v√
n

n

dP
α0,β0

n

)(
(Xk�n)0�k�n

) L(Pα0,β0
)−→
(
u

v

)
.N α0,β0 − 1

2

(
u

v

)
. �α

0,β0
(
u

v

)
,

whereN α0,β0
is a centeredRnα+nβ -valued Gaussian variable, with covariance matrix

�α
0,β0 =

�α0,β0

b 0

0 �
α0,β0

S

 ,
where the elements of matrix�α

0,β0

b ∈ R
nα ⊗ R

nα and�α
0,β0

S ∈ R
nβ ⊗ R

nβ are given by(
�
α0,β0

b

)
i,j

=
∫
Rd

∂αib(α
0, x).

[
S−2(β0, x)∂αj b(α

0, x)
]
µα

0,β0
(dx),

(
�
α0,β0

S

)
i,j

= 2
∫
Rd

Tr
[
∂βiS(β

0, x)S−1(β0, x)∂βj S(β
0, x)S−1(β0, x)

]
µα

0,β0
(dx).

First, it is worth noticing that�α
0,β0

b and�α
0,β0

S are the asymptotic Fisher information
matrixes for the continuous time diffusion (see Prakasa Rao [22], Dacunha-Castelle
et al. [2], Florens-Zmirou [4], Genon-Catalot [6], Yoshida [24], Kessler [16]). Second,
N α0,β0

has no correlation between the components involving a perturbation on the drift
coefficient and a perturbation on the diffusion coefficient: the efficient estimation of the
drift and diffusion parameters are asymptotically independent (see Florens-Zmirou [4],
Yoshida [24], Kessler [16]).

4.2. Proof

We are going to prove the following estimates:
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n−1∑
k=0

E
α0,β0[

ζ̂
αi
k | Gk�n

] P
α0,β0

−→ −1

2
ui
(
�
α0,β0

b

)
i,i

− ui+1
(
�
α0,β0

b

)
i,i+1 − · · ·

− unα
(
�
α0,β0

b

)
i,nα
, (4.33)

n−1∑
k=0

E
α0,β0[

ζ̂
αi
k ζ̂

αj
k | Gk�n

]− E
α0,β0[

ζ̂
αi
k | Gk�n

]
E
α0,β0[

ζ̂
αj
k | Gk�n

]
P
α0,β0

−→ (
�
α0,β0

b

)
i,j
, (4.34)

n−1∑
k=0

E
α0,β0[

(ζ̂
αi
k )

4 | Gk�n
] P

α0,β0

−→ 0, (4.35)

n−1∑
k=0

E
α0,β0[

ζ̂
βi
k | Gk�n

] P
α0,β0

−→ −1

2
vi
(
�
α0,β0

S

)
i,i

− vi+1
(
�
α0,β0

S

)
i,i+1 − · · ·

− vnβ
(
�
α0,β0

S

)
i,nβ
, (4.36)

n−1∑
k=0

E
α0,β0[

ζ̂
βi
k ζ̂

βj
k | Gk�n

]− E
α0,β0[

ζ̂
βi
k | Gk�n

]
E
α0,β0[

ζ̂
βj
k | Gk�n

]
P
α0,β0

−→ (
�
α0,β0

S

)
i,j
, (4.37)

n−1∑
k=0

E
α0,β0[

(ζ̂
αi
k )

4 | Gk�n
] P

α0,β0

−→ 0, (4.38)

n−1∑
k=0

E
α0,β0[

ζ̂
αi
k ζ̂

βj
k | Gk�n

]− E
α0,β0[

ζ̂
αi
k | Gk�n

]
E
α0,β0[

ζ̂
βj
k | Gk�n

] P
α0,β0

−→ 0. (4.39)

If we admit for a while these estimates, it is easy to derive Theorem 4.1 by an application
of Theorem VII-5-2 from Jacod et al. [14], e.g., combined with equality (1.10), (2.11),
Lemmas 3.3 and 3.4.

In the following computations, Lemma 3.1 is going to be frequently used without
being quoted. Furthermore, the notationεn refers to any subsequence converging to 0:
most of the time, it is equal to some positive power of1√

n�n
or

√
�n, the power possibly

depending of the Hölder exponentγ .

Proof of(4.33). – It is clear that

E
α0,β0[

ζ̂
αi
k | Gk�n

]= 1√
n�n

1∫
0

dl∂αi b
(
αi(l),Xk�n

)
× [S−2(β+,Xk�n)

(
mα0,β0

(Xk�n)−mαi(l),β
+
(Xk�n)

)]
.

From mα,β(x) = x + ∫ �n
0 E

α,β
x (b(α,X

α,β
t )) dt , it readily follows using Eqs. (2.17)

and (2.18) that the differencemα0,β0
(x)−mαi(l),β

+
(x) is equal to
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−�n∂αi b(α
0, x)

lui√
n�n

−�n∂αi+1b(α
0, x)

ui+1√
n�n

− · · ·

−�n∂αnα b(α
0, x)

unα√
n�n

+R

(
εn

√
�n

n
,x

)
.

The completion of proof of (4.33) is now straightforward.

Proof of (4.34). – With the previous arguments, one justifies thatE
α0,β0[ζ̂ αik | Gk�n]

× E
α0,β0[ζ̂ αjk | Gk�n] = R(n−2,Xk�n); thus, this term has a negligible contribution. On

the other hand, one easily gets

E
α0,β0[

ζ̂
αi
k ζ̂

αj
k | Gk�n

]
= 1

n�n

∑
l1,l2

1∫
0

1∫
0

dl dl′
[
S−2(β+,Xk�n)∂αi b

(
αi(l),Xk�n

)]
l1

× [S−2(β+,Xk�n)∂αj b
(
αj(l

′),Xk�n
)]
l2

× [V α0,β0

l1,l2
(Xk�n)

+ (mα0,β0
(Xk�n)−mαi(l),β

+
(Xk�n)

)
l1

(
mα0,β0

(Xk�n)−mαj (l
′),β+

(Xk�n)
)
l2

]
= 1

n
∂αib(α

0,Xk�n).
[
S−2(β0,Xk�n)∂αj b(α

0,Xk�n)
]+ εn

n
R(1, x),

so that convergence (4.34) holds true.

Proof of (4.35). – Basic estimates yieldEα
0,β0[(ζ̂ αik )4 | Gk�n] = R(n−2, x) and the

result follows.

Proof of(4.36). – One has that

E
α0,β0[

ζ̂
βi
k | Gk�n

]= 1√
n�n

1∫
0

dl Tr
{(
∂βiSS

−3)(βi(l),Xk�n)
× [((mα0,β0 −mα,βi(l)

)(
mα0,β0 −mα,βi(l)

)∗)
(Xk�n)

+ (V α0,β0 − V α,βi(l)
)
(Xk�n)

]}
.

Terms involving the difference withmα,β are clearly negligible. For the others, use the
equality

V
α,β
l1,l2
(x)= xl1xl2 +

�n∫
0

E
α,β
x

(
(S2)l1,l2

(
β,Xα,β

t

)+ bl1
(
α,Xα,β

t

)
X
α,β
l2,t

+ bl2
(
α,Xα,β

t

)
X
α,β
l1,t

)
dt −m

α,β
l1
(x)m

α,β
l2
(x),

and Eqs. (2.17), (2.18) to obtain that the differenceV α0,β0
(x)− V α,βi(l)(x) is equal to

−2�n(∂βiSS)(β
0, x)

lvi√
n

− 2�n(∂βi+1SS)(β
0, x)

vi+1√
n

− · · ·

− 2�n(∂βnβ SS)(β
0, x)

vnβ√
n

+R

(
εn
�n√
n
, x

)
.
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This completes the proof of (4.36).

Proof of (4.37). – We neglect the second product sinceE
α0,β0[ζ̂ βik | Gk�n]Eα0,β0[ζ̂ βjk |

Gk�n] =R(n−2, x). For the first term, we immediately obtain

E
α0,β0[

ζ̂
βi
k ζ̂

βj
k | Gk�n

]
= 1

n�n
2

∑
l1,l2,l3,l4

1∫
0

1∫
0

dl dl′
[
∂βiSS

−3(βi(l),Xk�n)]l1,l2[∂βj SS−3(βj (l′),Xk�n)]l3,l4
× E

α0,β0[((
X(k+1)�n −mα,βi(l)(Xk�n)

)
l1

(
X(k+1)�n −mα,βi(l)(Xk�n)

)
l2

− V
α,βi(l)
l1,l2

(Xk�n)
)((
X(k+1)�n −mα,βj (l

′)(Xk�n)
)
l3

(
X(k+1)�n −mα,βj (l

′)(Xk�n)
)
l4

− V
α,βj (l

′)
l3,l4

(Xk�n)
) | Gk�n

]
.

Long but standard computations give that the expectation inside the sum satisfies

E
α0,β0[· · · | Gk�n] =�n

2[(S2)l1,l3(S
2)l2,l4 + (S2)l1,l4(S

2)l2,l3
]
(β0,Xk�n)

+R
(
�n

2εn,Xk�n
)
.

The end of the proof of (4.37) now follows easily.

Proof of(4.38). – It is clear sinceEα
0,β0[(ζ̂ βik )4 | Gk�n] =R(n−2, x).

Proof of(4.39). – Using standard estimates, one has

E
α0,β0[

ζ̂
αi
k ζ̂

βj
k | Gk�n

]
= 1

n�n
3/2

∑
l1,l2,l3

1∫
0

1∫
0

dl dl′
[
S−2(β+,Xk�n)∂αi b

(
αi(l),Xk�n

)]
l1

× [∂βj SS−3(βj (l′),Xk�n)]l2,l3 × E
α0,β0[(

X(k+1)�n −mαi(l),β
+
(Xk�n)

)
l1

× ((X(k+1)�n −mα,βj (l
′)(Xk�n)

)
l2

(
X(k+1)�n −mα,βj (l

′)(Xk�n)
)
l3

− V
α,βj (l

′)
l2,l3

(Xk�n)
) | Gk�n

]=R
(
n−1

√
�n,Xk�n

)
.

Furthermore, it is clear thatEα
0,β0[ζ̂ αik | Gk�n]Eα0,β0[ζ̂ βjk | Gk�n] = R(n−2,Xk�n). This

completes the proof of (4.39).✷
5. Validity of the LAN property under other assumptions

In this section, we consider a new set of hypotheses, different of (R), (D) and (E), and
we discuss the validity of the result of previous sections under these assumptions. Our
motivation is to extend the class of ergodic models that we may consider for the LAN
property, to a class of SDE’s with bounded drift coefficient (for which (D) cannot be
fulfilled). Assumptions (R) and (D) have to be replaced by the following ones.



E. GOBET / Ann. I. H. Poincaré – PR 38 (2002) 711–737 733

Assumption(R′). – This is the same assumption as (R), except that|b(α, x)| � c(1 +
|x|) is replaced by|b(α, x)| � c.

Assumption(D′). – There are constantsK0> 0 andc0> 0 such that

∀(α, x) ∈�α × R
d (|x| �K0 �⇒ b(α, x).x � −c0|x|).

An analogous assumption to (D′) is made by Florens-Zmirou in [4] (see also
Has’minskii [11]). Now, we are going to briefly justify than under (R′), (D′) and (E),
Xα,β is ergodic: the main tool is time uniform controls on exponential moments which
we now state.

PROPOSITION 5.1. – LetfC(x) be a smooth function which coincides withexp(C|x|)
for |x| � 1. Under(R′), (D′) and(E), there is a constantCe > 0 such that

(1) For anyC ∈ [0,Ce), one has for some constantsλ= λ(C) > 0 andK =K(C):

∀t � 0 E
α,β
x0
fC(Xt)� fC(x0)exp(−λt)+K. (5.40)

(2) (Xα,β
t )t�0 is ergodic and its unique invariant measureµα,β satisfies for any

C <Ce: ∫
Rd

exp(C|x|)µα,β(dx) <∞. (5.41)

Proof. –We apply the same arguments as for the proof of Proposition 1.1. Using As-
sumptions (R′) and (D′), check that for|x| � 1, one hasLα,βfC(x)� CfC(x)(

b(α,x).x

|x| +
K1
|x| +K2C), henceLα,βfC(x) � −Cc0fC(x)/2 for |x| � (4K1/c0) ∨K0 ∨ 1 andC �
c0/(4K2). Thus, if g(t) = E

α,β
x0
fC(Xt), one has proved thatg′(t) � −λg(t) +K (with

λ= Cc0/2) and (5.40) easily follows.
Since one gets time uniform control on moments, the existence of an unique invariant

measure is a consequence (see Has’minskii [11]) of the strict positivity of the transition
density, this fact being clear under (R′) and (E′). The proof of (5.41) is obtained as
for (1.5). ✷

We now state that the LAN property is also valid for this class of models.

THEOREM 5.1. – Under (R′), (D′) and (E), the conclusion of Theorem4.1 remains
true.

Proof. –Apply exactly the same arguments as for Theorem 4.1. The main difference
comes from the estimates of Proposition 1.2, which have to be adapted to the new
hypotheses. Actually, one can prove, without difficulty, that estimates (1.6)–(1.9) are
valid without the factor exp(±ct|x|2): clearly, this modification does not change the
result, sinceµα

0,β0
has polynomial moments of any order.✷

The reader may have understood than weaker forms of assumption (R′) and (D′) are
available: the crucial fact is to ensure thatµα

0,β0
has enough moments to control the

growth of the derivatives ofb andS. For instance, if one replacesb(α, x).x � −c0|x| by
b(α, x).x � −c0|x|γ ′

with γ ′ ∈ (0,1) (this ensures polynomial moments forµα
0,β0

up to
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some orderq0), one can explicit the maximal polynomial growth order which is allowed
for the derivatives ofb andS.

Appendix A. Estimates on the transition density function

This appendix is devoted to the proof of Proposition 1.2, which assumptions we
assume.

A.1. Proof of (1.6) and (1.7)

Owing the Markov property, note that it is sufficient to prove these estimates only for
t � T0, whereT0> 0 is an arbitrary small positive constant depending only onb andS.

Our techniques are based on a Girsanov transformation. We introduce some notation
and recall some well known results.

For sake of simplicity,pα,β(t, x, y) (resp. E
α,β ) is simply denoted byp(t, x, y)

(resp.E). We also omit the parametersα and β in the coefficientsb and S. E
0 and

p0(t, x, y) refers to the law of the SDE’s (1.3) where the drift coefficient is removed,
i.e. Xt = x + ∫ t

0 S(Xs) dBs (B being a Brownian motion underE0). We setZt =
exp(

∫ t
0 S

−1(Xs)b(Xs) dBs − 1
2

∫ t
0 |S−1(Xs)b(Xs)|2ds). SinceS−1b has a linear growth,

(Zt)t�0 is a martingale (see Benes’ criterion, [15, p. 200]) and this allows a Girsanov
transformation.

Furthermore, it is well known (see Aronson [1], Friedman [5]) thatp0(t, x, y) is
smooth and satisfies

1

Ktd/2
exp
(

−c |x − y|2
t

)
�p0(t, x, y)� K

td/2
exp
(

−|x − y|2
ct

)
, (A.1)

∣∣∇xp
0(t, x, y)

∣∣� K

t(d+1)/2
exp
(

−|x − y|2
ct

)
(A.2)

for some uniform constants. We are going to derive (1.6) and (1.7), from (A.1) and
(A.2) using the announced Girsanov transformation. The following lemma gives the
other necessary estimates.

LEMMA A.1. –For anyµ1 > 1, anyq � 0, there are some constantsT0 > 0, c > 0,
K > 0 such that fort � T0, one has

E
0
x

(
Zµ1
t (1+ |Xt |)q)+ E

0
x

(
Z−µ1
t (1+ |Xt |)q)�K exp

(
ct|x|2)(1+ |x|)q .

Proof. –Since for anyr � 0, E
0
x(1 + |Xt |)r � K(1 + |x|)r , it suffices to prove

Lemma A.1 whenq = 0. Fixλ� 0. One has thatλ
∫ t

0 |S−1(Xs)b(Xs)|2ds � λKt(|x|2 +
sups∈[0,t ] |Xs−x|2), and besides, one easily checksE

0
x exp(λKt sups∈[0,t ] |Xs−x|2)�K1

for t small enough (use, e.g., a time-changed Brownian motion coordinate-wise); thus,
for t � T0(λ), one obtains that

E
0
x exp

(
λ

t∫
0

|S−1(Xs)b(Xs)|2ds
)

�K exp
(
ct|x|2). (A.3)
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WriteZµ1
t = exp(µ1

∫ t
0 S

−1(Xs)b(Xs) dBs−µ2
1

∫ t
0 |S−1(Xs)b(Xs)|2ds)exp(µ2

1

∫ t
0 |S−1×

(Xs)b(Xs)|2ds), take the expectation and apply the Cauchy–Schwarz inequality: the first
term is equal to 1 and the second one is estimated by (A.3) fort small enough. This com-
pletes the proof of the estimate forE

0
x(Z

µ1
t ). Same arguments apply forE

0
x(Z

−µ1
t ). ✷

A.1.1. Proof of (1.6)
Owing the Girsanov transformation, one has

p(t, x, y)= p0(t, x, y)E0
x(Zt |Xt = y). (A.4)

To deal with the above conditioning, we invoke the law of the diffusion bridge from
X0 = x to Xt = y (see Lyons et al. [20] e.g.), i.e. an other Girsanov transformation,
which transforms the Brownian motionB. in B. + ∫ .

0 S(Xu)
∇xp0(t−u,Xu,y)

p0(t,x,y)
du. Hence,

sinceZt = 1+ ∫ t0 ZsS−1(Xs)b(Xs) dBs , one gets

E
0
x(Zt |Xt = y)= 1+ 1

p0(t, x, y)

t∫
0

E
0
x

[
Zsb(Xs).∇xp

0(t − s,Xs, y)
]
ds.

Applying Hölder’s inequality (withµ1 andµ2 conjugate), Lemma A.1, upper bounds
(A.1) and (A.2), one obtains (fort small enough) that|E0

x[Zsb(Xs).∇xp
0(t − s,Xs, y)]|

is bounded by

K exp
(
ct|x|2)(1+ |x|)

[∫
Rd

dz

sd/2(t − s)(d+1)µ2/2
exp
(

−|x − z|2
cs

−µ2
|z− y|2
c(t − s)

)]1/µ2

�K exp
(
ct|x|2)(1+ |x|) 1

td/(2µ2)(t − s)(d+1)/2−d/(2µ2)
exp
(

−|x − y|2
c′t

)
.

We now chooseµ2 closed to 1 to ensure that(d+1)/2−d/(2µ2) < 1: it readily follows
that

E
0
x(Zt |Xt = y)� 1+ K

p0(t, x, y)

exp(ct|x|2)(1+ |x|)
t(d−1)/2

exp
(

−|x − y|2
c′t

)
.

Using exp(ct|x|2)|x|/t(d−1)/2 �K exp(c′t|x|2)/td/2 combined with the inequality above,
equality (A.4) and upper bound (A.1), one completes the proof of (1.6) fort small
enough.

A.1.2. Proof of (1.7)
From equality (A.4), Jensen’s inequality yields

1

p(t, x, y)
� 1

p0(t, x, y)
E

0
x(Z

−1
t |Xt = y) (A.5)

with Z−1
t = 1− ∫ t0 Z−1

s S
−1(Xs)b(Xs) dBs + ∫ t0 Z−1

s |S−1(Xs)b(Xs)|2ds. Introducing the
diffusion bridge as before, we can prove that
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x

( t∫
0

Z−1
s S

−1(Xs)b(Xs) dBs |Xt = y

)∣∣∣∣∣
� K

p0(t, x, y)

exp(ct|x|2)
td/2

exp
(

−|x − y|2
ct

)
. (A.6)

Besides, using Hölder’s inequality (withµ1 andµ2 conjugate), one gets fors < t

E
0
x

(
Z−1
s

∣∣S−1(Xs)b(Xs)
∣∣2 |Xt = y

)
= 1

p0(t, x, y)
E

0
x

(
Z−1
s

∣∣S−1(Xs)b(Xs)
∣∣2p0(t − s,Xs, y)

)
� K exp(ct|x|2)(1+ |x|2)

p0(t, x, y)

exp(−|x−y|2
ct

)

td/(2µ2)(t − s)d/2−d/(2µ2)
,

so that choosingµ2 closed to 1, one obtains that

E
0
x

( t∫
0

ds Z−1
s

∣∣S−1(Xs)b(Xs)
∣∣2 |Xt = y

)

� 1

p0(t, x, y)

K exp(ct|x|2)
td/2

exp
(

−|x − y|2
c′t

)
. (A.7)

Combining (A.5), (A.6), (A.7) and (A.1), one completes the proof of the lower bound of
p(t, x, y) for t small enough. ✷
A.2. Proof of (1.8) and (1.9)

The arguments being similar for both estimates, we only detail the proof of (1.8).
Using Jensen’s inequality and Proposition 2.2, one obtains:

E
α,β
x

∣∣∣∣∂αipα,βpα,β
(t, x,Xt )

∣∣∣∣ν �
∫
Rd

dy pα,β(t, x, y)
1

tν
E
α,β
x

[∣∣∣∣∣
d∑

l1=1

δ
(
∂αiX

α,β
l1,t
Ul1
)∣∣∣∣∣
ν∣∣∣Xα,β

t = y

]

� 1

tν
E
α,β
x

[
pα,β(t, x,X

α,β
t )

pα,β(t, x,X
α,β
t )

∣∣∣∣∣
d∑

l1=1

δ
(
∂αiX

α,β
l1,t
Ul1
)∣∣∣∣∣
ν]
.

Apply Hölder’s inequality (withµ1 and µ2 conjugate). On one hand, check that

E
α,β
x

[pα,β (t,x,Xα,βt )

pα,β (t,x,X
α,β
t )

]µ1 is bounded by exp(ct|x|2) up to choosingµ1 closed to 1 (see the

arguments used to prove (A.7)). On the other hand,E
α,β
x [|∑d

l1=1 δ(∂αiX
α,β
l1,t
Ul1)|νµ2] is

estimated byt3νµ2/2(1+|x|)q , applying the arguments as in the proof of Lemma 3.3. We
are finished. ✷
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