Glauber dynamics of spin glasses at low and high temperature
Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 5, pp. 681-710.
@article{AIHPB_2002__38_5_681_0,
     author = {De Santis, Emilio},
     title = {Glauber dynamics of spin glasses at low and high temperature},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {681--710},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2002},
     mrnumber = {1931583},
     zbl = {1034.82051},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2002__38_5_681_0/}
}
TY  - JOUR
AU  - De Santis, Emilio
TI  - Glauber dynamics of spin glasses at low and high temperature
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2002
SP  - 681
EP  - 710
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/item/AIHPB_2002__38_5_681_0/
LA  - en
ID  - AIHPB_2002__38_5_681_0
ER  - 
%0 Journal Article
%A De Santis, Emilio
%T Glauber dynamics of spin glasses at low and high temperature
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2002
%P 681-710
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/item/AIHPB_2002__38_5_681_0/
%G en
%F AIHPB_2002__38_5_681_0
De Santis, Emilio. Glauber dynamics of spin glasses at low and high temperature. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 5, pp. 681-710. http://www.numdam.org/item/AIHPB_2002__38_5_681_0/

[1] M. Aizenman, R. Holley, Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Shlosman regime, in: Percolation Theory and Ergodic Theory of Infinite Particle Systems (Minneapolis, Minn., 1984-1985), IMA Vol. Math. Appl., 8, Springer, New York, 1987, pp. 1-11. | Zbl

[2] F. Cesi, C. Maes, F. Martinelli, Relaxation in disordered magnets in the Griffiths regime, Comm. Math. Phys. 188 (1) (1997) 135-173. | MR | Zbl

[3] L. Chayes, J. Machta, Graphical representations and cluster algorithms. Part I: Discrete spin system, Phys. A 239 (1997) 542-601.

[4] E. De Santis, Swendsen-Wang dynamics on Zd for disordered non-ferromagnetic systems, Preprint.

[5] E. De Santis, A. Gandolfi, Bond percolation in frustrated systems, Ann. Probab. 27 (4) (1999) 1781-1808. | MR | Zbl

[6] R. Diestel, Graph Theory, Springer-Verlag, Berlin, 1997. | MR | Zbl

[7] P. Diaconis, D. Stroock, Geometric bounds for eigenvalues of Markov chains, Ann. Appl. Probab. 1 (1) (1991) 36-61. | MR | Zbl

[8] R. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularities, Theory Probab. Appl. 13 (1968) 197-224. | Zbl

[9] S. Edwards, P. Anderson, Theory of spin glasses, J. Phys. F 5 (1975) 965-974.

[10] J.A. Fill, Eigenvalue bounds on the convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process, Ann. Appl. Probab. 1 (1) (1991) 62-87. | MR | Zbl

[11] L. Fontes, M. Isopi, Y. Kohayakawa, P. Picco, The spectral gap of the REM under Metropolis Dynamics, Ann. Appl. Probab. 8 (3) (1998) 917-943. | MR | Zbl

[12] G. Gallavotti, A. Martin-Löf, S. Miracle-Solé, Some problems connected with the description of coexisting phases at low temperatures in the Ising model, Statistical Mechanics and Mathematical Problems, Battelle Seattle 1971 Rencontres, 1971, p. 162.

[13] A. Gandolfi, C.M. Newman, D.L. Stein, Zero-temperature dynamics of ±J spin glasses and related models, Comm. Math. Phys. 214 (2000) 373-387. | MR | Zbl

[14] G. Gielis, C. Maes, Percolation techniques in disordered spin flip dynamics: Relaxation to the unique invariant measure, Comm. Math. Phys. 177 (1) (1996) 83-101. | MR | Zbl

[15] R.J. Glauber, Time dependent statistics of the Ising model, J. Math. Phys. 4 (1963) 294-307. | MR | Zbl

[16] R. Griffiths, Non-analytic behavior above the critical point in a random Ising ferromagnet, Phys. Rev. Lett. 23 (1969) 17-19.

[17] H. Kesten, Percolation Theory for Mathematicians, Progress in Probability and Statistics, Birkhäuser, 1982. | MR | Zbl

[18] O. Lanford, D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969) 194-215. | MR

[19] T. Liggett, Interacting Particle Systems, Springer-Verlag, Berlin, 1985. | MR | Zbl

[20] S.L. Lu, H.T. Yau, Spectral gap logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Comm. Math. Phys. 156 (2) (1993) 399-433. | MR | Zbl

[21] F. Martinelli, E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region I. The attractive case, Comm. Math. Phys. 161 (3) (1994) 447-486. | MR | Zbl

[22] F. Martinelli, E. Olivieri, Approach to equilibrium of Glauber dynamics in the one phase region II. The general case, Comm. Math. Phys. 161 (3) (1994) 487-514. | MR | Zbl

[23] F. Martinelli, E. Olivieri, R.H. Schonmann, Systems weak mixing implies strong mixing, Comm. Math. Phys. 165 (1) (1994) 33-47. | MR | Zbl

[24] F. Martinelli, E. Olivieri, E. Scoppola, On the Swendsen-Wang dynamics. II. Critical droplets and homogeneous nucleation at low temperature for the two-dimensional Ising Model, J. Statist. Phys. 62 (1-2) (1991) 135-159. | Zbl

[25] C.M. Newman, D.L. Stein, Zero-temperature dynamics of Ising spin systems following a deep quench: results and open problems, Phys. A 279 (2000) 159-168. | MR

[26] R. Swendsen, J. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett. 58 (86) (1987) 86-88.

[27] L.E. Thomas, Bound on the mass gap for finite volume stochastic Ising models at low temperature, Comm. Math. Phys. 126 (1) (1989) 1-11. | MR | Zbl

[28] D.W. Stroock, B. Zegarlinski, The logarithmic Sobolev inequality for discrete spin systems on a lattice, Comm. Math. Phys. 149 (1) (1992) 175-193. | MR | Zbl

[29] B. Zegarlinski, On log-Sobolev inequalities for infinite lattice systems, Lett. Math. Phys. 20 (3) (1990) 173-182. | MR | Zbl