@article{AIHPB_2002__38_4_475_0, author = {Chen, Zhen-Qing and Zhang, Tu-Sheng}, title = {Girsanov and {Feynman-Kac} type transformations for symmetric {Markov} processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {475--505}, publisher = {Elsevier}, volume = {38}, number = {4}, year = {2002}, zbl = {1004.60077}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2002__38_4_475_0/} }
TY - JOUR AU - Chen, Zhen-Qing AU - Zhang, Tu-Sheng TI - Girsanov and Feynman-Kac type transformations for symmetric Markov processes JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2002 SP - 475 EP - 505 VL - 38 IS - 4 PB - Elsevier UR - http://www.numdam.org/item/AIHPB_2002__38_4_475_0/ LA - en ID - AIHPB_2002__38_4_475_0 ER -
%0 Journal Article %A Chen, Zhen-Qing %A Zhang, Tu-Sheng %T Girsanov and Feynman-Kac type transformations for symmetric Markov processes %J Annales de l'I.H.P. Probabilités et statistiques %D 2002 %P 475-505 %V 38 %N 4 %I Elsevier %U http://www.numdam.org/item/AIHPB_2002__38_4_475_0/ %G en %F AIHPB_2002__38_4_475_0
Chen, Zhen-Qing; Zhang, Tu-Sheng. Girsanov and Feynman-Kac type transformations for symmetric Markov processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 38 (2002) no. 4, pp. 475-505. http://www.numdam.org/item/AIHPB_2002__38_4_475_0/
[1] Perturbation of Dirichlet forms-lower semiboundedness, closability, and form cores, J. Funct. Anal. 99 (1991) 332-356. | MR | Zbl
, ,[2] Girsanov transform for symmetric diffusion with infinite dimensional state space, Ann. Probab. 21 (1993) 961-978. | MR | Zbl
, , ,[3] Markov Processes and Potential Theory, Academic Press, New York, 1968. | MR | Zbl
, ,[4] Quasi-homeomorphisms of Dirichlet forms, Nagoya Math. J. 136 (1994) 1-15. | MR | Zbl
, , ,[5] From Brownian Motion to Schrödinger's Equation, Springer, New York, 1995. | MR | Zbl
, ,[6] Probabilités et Potentiel, Chapites V à VIII, Hermann, 1980. | MR | Zbl
, ,[7] Markov Processes-Characterization and Convergence, Wiley, New York, 1986. | MR | Zbl
, ,[8] Even and odd continuous additive functionals, in: Dirichlet Forms and Stochastic Processes, De Gruyter, Berlin, 1988, pp. 139-154. | MR | Zbl
,[9] Absolute continuity of symmetric diffusions, Ann. Probab. 25 (1997) 230-258. | MR | Zbl
,[10] Limit theorems and variation properties for fractional derivatives of the local time of a stable processes, Ann. Inst. Henri. Poincarè 28 (1992) 311-333. | Numdam | MR | Zbl
, ,[11] On absolute continuity of multi-dimensional symmetrizalle diffusion, in: Functional Analysis in Markov Processes, Lect. Notes Math., 923, 1982, pp. 146-176. | MR | Zbl
,[12] Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin, 1994. | MR | Zbl
, , ,[13] A transformation of symmetric Markov processes and the Donsker-Varadhan theory, Osaka J. Math. 21 (1984) 311-326. | Zbl
, ,[14] Quadratic forms corresponding to the generalized Schrödinger semigroups, J. Funct. Anal. 125 (1994) 358-378. | MR | Zbl
, , , ,[15] Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, 1992. | MR | Zbl
, , ,[16] Absolute continuity of Markov processes, in: Seminaire de Probabilites X, Lect. Notes Math., 511, 1976, pp. 44-77. | Numdam | MR | Zbl
,[17] Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer, Berlin, 1992. | Zbl
, ,[18] Conditions for the absolute continuity of two diffusions, Trans. Amer. Math. Soc. 193 (1974) 413-426. | MR | Zbl
,[19] On absolute continuity of two symmetric diffusion processes, in: Lect. Notes Math., 1250, Springer, Berlin, 1987, pp. 184-194. | MR | Zbl
,[20] On a transformation of symmetric Markov processes and recurrence property, in: Lect. Notes Math., 1250, Springer, Berlin, 1987, pp. 171-183. | MR | Zbl
, ,[21] General Theory of Markov Processes, Academic Press, 1988. | MR | Zbl
,[22] Schrödinger semigroups, Bull. Amer. Math. Soc. 7 (1982) 447-526. | MR | Zbl
,[23] Topics on Dirichlet forms and symmetric Markov processes, Sugaku Expositions 12 (1999) 201-222. | MR | Zbl
,[24] Asymptotic properties of additive functionals of Brownian motion, Ann. Probab. 25 (1997) 940-952. | MR | Zbl
, ,[25] Generalized Feynman-Kac semigroups, associated quadratic forms and asymptotic properties, Preprint, 1998, To appear in Potential Analysis. | Zbl
,[26] On the fractional derivative of Brownian local time, J. Math. Kyoto Univ. 25 (1985) 49-58. | MR | Zbl
,[27] On some limit theorems for occupation times of one dimensional Brownian motion and its continuous additive functionals locally of zero energy, J. Math. Kyoto Univ. 26 (1986) 309-322. | MR | Zbl
,[28] A probabilistic principle and generalized Schrödinger perturbation, J. Funct. Anal. 101 (1991) 162-176. | MR | Zbl
,