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ABSTRACT. – In this paper we study the Brownian taboo process, which is a version of
Brownian motion conditioned to stay within a finite interval, and theα-perturbed Brownian taboo
process, which is an analogous version of anα-perturbed Brownian motion.We are particularly
interested in the asymptotic behaviour of the supremum of the taboo process, and our main results
give integral tests for upper and lower functions of the supremum ast → ∞. In the Brownian
case these include extensions of recent results in Lambert [4], but are proved in a quite different
way.  2001 Éditions scientifiques et médicales Elsevier SAS

AMS classification:60K05; 60J15

RÉSUMÉ. – Dans cet article, nous étudions le processus Brownien tabou qui est une version du
mouvement Brownien, conditionné à rester dans un intervalle fini, et le processus Brownien tabou
α-perturbé qui est une version semblable du mouvement Brownienα-perturbé. Nous sommes
particulièrement intéressés par le comportement asymptotique du supremum du processus tabou
et nos principaux résultats fournissent des intégrales tests pour des fonctions majorantes et
minorantes du supremum lorsquet → ∞. Dans le cas Brownien, ces résultats incluent des
extensions de résultats récents de Lambert [4], mais ceux-ci sont prouvés de maníère différente.
 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

The Brownian taboo process, a version of Brownian motion conditioned to stay within
a finite interval, was first introduced by Knight in [3]. In a recent paper Lambert [4] has
introduced an analogous version of a spectrally negative Lévy process, and proved some
results which are new even for the Brownian case. In particular he studied the asymptotic
behaviour of the maximum of the taboo process, and in the Brownian case his results are
as follows. LetPx denote the measure under which the coordinate process{Xt, t � 0} is
a Brownian taboo process on [0,a) starting atx, and writeSt = sups�t{Xs}.
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THEOREM 1.1 (Lambert). –
(i) For any fixedx ∈ [0, a) and any decreasing non-negative functionf ,

Px

{
a − St < f (t) i.o. ast → ∞}= 0 or 1

according asI := ∫∞
1 f (t)dt is finite or infinite.

(ii) For any fixedx ∈ [0, a)

Px

{
lim sup

t→∞
t (a − St}
log logt

= a3

π2

}
= 1. (1.1)

These results, and their extensions to the spectrally negative Lévy process case,
were established in [4] by exploiting the fact that the excursions of the taboo process
away from a fixed point form a Poisson point process. An alternative approach is to
rephrase these results as statements about the behaviour of the first passage time process
{Ty, x � y < a}, whereTy = inf{t : Xt > y}. This process has independent increments
and an explicit formula forEx{e−λTy } is available. From this, it is easy to see that under
P0 we can write

Ty
d= Vy + Uy, (1.2)

where, for fixedy,Vy andUy are independent, non-negative random variables withVy

having an exponential distribution andUy having a distribution whose tail decays at an
exponential rate which is faster than that ofVy. Moreover the parameter�(y) of Vy has
the asymptotic behaviour

�(a − ε) � επ2

a3
asε ↓ 0,

which explains the appearance of the quantitya3/π2 in (1.1). We show that it is possible
to exploit (1.2) to get sufficiently good bounds on the tail of the distribution ofTa−ε as
ε ↓ 0 to establish the following improvement of (1.1).

THEOREM 1.2. – For any fixedx ∈ [0, a) and any increasing non-negative function
g such thatf (t) = t−1g(t) decreases,

Px

{
a − St > f (t) i.o. ast → ∞}= 0 or 1

according asJ := ∫∞
1 t−1e−βg(t) dt is finite or infinite, whereβ = π2/a3.

It is also the case that a similar technique can be used to give an alternative proof of the
first statement in Theorem 1.1. Moreover it is clear that if we consider anα-perturbed
Brownian taboo process, by which we mean the process we get by taking a suitable
harmonic transforn of anα-perturbed Brownian motion, (see Chapters 8 and 9 of [7]
for background on this), then we can no longer use Lambert’s technique to study the
asymptotic behaviour of the maximum. This is because the excursions away from a fixed
point of this perturbed taboo process do not form a Poisson point process. However,
even though this process is no longer Markovian, its first passage process is a time-
inhomogeneous Markov process, and indeed has independent increments. There is also
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an analogue of (1.2), with the exponentially distributed random variable being replaced
by one having a Gamma distribution. Although the technical problems are somewhat
more onerous, in section 3 we state and sketch the proofs of results which extend both
theorems 1.1 and 1.2 to this perturbed situation.

2. The Brownian case

As previously remarked, the distribution of the first passage process underPx is
determined by the fact that it has independent increments and satisfies, withγ = π/a,

Ex

{
e−λTy

}=




sinyγ sinx
√

γ 2−2λ

sinxγ siny
√

γ 2−2λ
if 0 < x < y < a, λ < γ 2

2 ,
√

γ 2−2λsinyγ

γ siny
√

γ 2−2λ
if 0 = x < y < a, λ <

γ 2

2 .
(2.1)

The first statement here is a special case of Proposition 3.2 of [4], but can easily be
derived from the fact that the Taboo process is a space-time h-transform of Brownian
motion killed on exiting (0, a), with h(x, t) = sinγ x exp1

2tγ
2. SinceP0 is limx↓0 Px ,

the second statement also follows.
Introduce the notation�(y) = π2

2a2 {( ay )2 − 1}, and for any 0< b < c � ∞ write
D(b, c) for the distribution of a non-negative random variable which is zero with
probability b/c, and conditioned on being positive, has an Exp(b) distribution. Then
D(b,∞) coincides with the Exp(b) distribution, and a random variableD has the
D(b, c) distribution withc < ∞ if and only if we can write

Y1 = Y2 +D,

whereY2 andD are independent,Y1 has an Exp(b) distribution, andY2 has an Exp(c)
distribution. We then have

LEMMA 2.1. – For any0� x < y < a we have underPx

Ty
d= Vy + Uy, (2.2)

where the non-negative random variablesVy and Uy are independent,Vy has the
D(�(y),�(x)) distribution, and

Px{Uy > t} � c1e−tπ2/a2
for all t � 0, (2.3)

wherec1 is a constant, which depends only ona.

Proof. –Writing φx(y, λ) = Ex{e−λTy } andφ(y,λ) for φ0(y, λ) we see from (2.1) that
φx(y, λ) = φ(y,λ)/φ(x,λ) for x > 0. Also, if we write�k(y) = π2

2a2 {( kay )2 − 1} for
k � 1, so that�1(y) = �(y), we see from the infinite product representation of the sine
function that

φx(y, λ) =
∞∏
1

�k(y){λ+ �k(x)}
�k(x){λ+ �k(y)} =

∞∏
1

ϕx(y, λ, k) say. (2.4)
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Sinceϕx(y, λ, k) is the Laplace transform of theD(�k(y),�k(x)) distribution, the first
statement follows. Noting that�k(y) � �2(y) � 3π2/(2a2) for k � 2 this formula also
shows that for 0� θ � π2/a2 we have

Ex

{
eθUy

}
� E0

{
eθUa

}
� E0

{
e

π2

a2 Ua
} := c1, (2.5)

and the second result follows from Chebychev’s inequality.✷
The main estimate we need in the proof of Theorem 1.2 is as follows.

LEMMA 2.2. – Putβ = π2/a3; then for any fixed0� x < a,

Px{Ta−ε > t} � e−βtε astε → ∞ and tε2 → 0.

Proof. –Note first that ifε̃ = �(a − ε) then t ε̃ = tβε + O(tε2) asε ↓ 0. Using the
decomposition (2.2) and the bound (2.3) gives

Px{Ta−ε > t} =
t∫

0

Px{Va−ε > t − s}Px{Ua−ε ∈ ds} + Px{Ua−ε > t}

= e−t ε̃

{
1− ε̃

�(x)

} t∫
0

eε̃sPx{Ua−ε ∈ ds} + O
(
e− π2t

a2
)
,

and the result follows since the first inequality in (2.5) givesEx{eε̃Ua−ε} → 1. ✷
Proof of Theorem 1.2. – It is well-known (see Csáki [1] for a rigorous argument in a

similar situation) that we can restrict attention to the “critical” case, so henceforth we
assume that fort � t0

1

2β
log logt � g(t) � 3

2β
log logt. (2.6)

Let An = {a − Stn > f (tn)} = {Ta−f (tn) > tn}, wheretn = en, n � 1. A simple calculation
shows thatJ < ∞ is equivalent to the convergence of

∑∞
1 e−βhn , wherehn = g(tn).

Plainly (2.6) implies that
√
tnf (tn) → 0 andtnf (tn) → ∞ so we can apply Lemma 2.2

to get

Px{An} � exp
(−βtnf (tn)

)= exp(−βhn).

Then the Borel–Cantelli lemma establishes the result whenJ < ∞.
Now assume thatJ = ∞, so that

∑∞
1 Px{An} = ∞. We want to use the Kochen–Stone

modification of the Borel–Cantelli lemma to deduce from this thatPx{An i.o.} = 1. Note
that forj > i with rn = a − f (tn) we have

Px{Ai ∩Aj } =
ri∫

0

Px{Ai,Xti ∈ dy}Py{Trj > tj − ti}

� P{Trj > tj − ti}
ri∫

0

Px{Ai,Xti ∈ dy} = P{Trj > tj − ti}Px{Ai}.
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Since (tj − ti )f (tj ) → ∞ asi → ∞ we can apply Lemma 2.2 to get

P{Trj > tj − ti} � exp−β(tj − ti )f (tj ) = exp−βhj

(
1− ei−j

)
, (2.7)

provided that(tj − ti){f (tj )}2 → 0, and this is immediate from (2.6). Now given an
arbitraryδ > 0 we putmi = min(n � 1: hi+k � δek for all k � n), i = 1,2, . . . . It is easy
to see from (2.6) that for all large enoughi

mi � 1+ logh2i � 1+ 3

2b
log 2i.

Thus there existsNδ such that, for all large enoughn,

n∑
i=Nδ

i+mi∑
j=i+1

Px{Ai ∩Aj } � (1+ δ)

n∑
i=Nδ

i+mi∑
j=i+1

Px{Ai}exp−βhj

(
1− ei−j

)

� (1+ δ)

n∑
i=Nδ

miPx{Ai}exp−βhi

(
1− e−1)

� (1+ δ)

n∑
i=Nδ

miPx{Ai}i− 1
2 (1−e−1) � c2

n∑
i=1

Px{Ai}.

But also, sincehj(1− ei−j ) � hj − δ whenj > i +mi ,
n∑

i=Nδ

n∑
j>i+mi

Px{Ai ∩ Aj } � (1+ δ)

n∑
i=Nδ

n∑
j>i+mi

Px{Ai}eβδe−βhj

� (1+ 2δ)eβδ
n∑

i=1

n∑
j=i+1

Px{Ai}Px{Aj },

and sinceδ is arbitrary, it follows that

lim sup
n→∞

∑n
i=1
∑n

j=1 Px{Ai ∩ Aj }
(
∑n

i=1 Px{Ai})2
� 1,

and the result follows. ✷
3. The perturbed case

If B is a standard Brownian motion starting from zero,α < 1 is a constant, and
SB
t = sup0�s�t Bs , then the processY defined by

Yt = Bt + α

1− α
SB
t , t � 0,

is called anα-perturbed Brownian motion. It is immediate thatSY
t = sup0�s�t Ys is given

by

SY
t = 1

1− α
SB
t ,
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and it follows thatY is the pathwise unique solution of the functional equation

Yt = Bt + αSY
t , t � 0.

(For more information about this process see Chapters 8 and 9 of [7] and the references
given there.)

It is not difficult to construct an h-transform of the bivariate Markov process consisting
of anα-perturbed Brownian motion killed when it exits(0, a) and its supremum process,
which corresponds to conditioning theα-perturbed Brownian motion to remain within
this interval. We will refer to [6] for the details of this calculation, and merely record
that the required function is

h(x, s, t) = sinγ x

{sinγ s}α exp
1

2
tγ 2,

where againγ = π/a, and as previously noted, the perturbation parameter satisfies
α < 1. We call this anα-perturbed taboo process, and in this sectionP

(α)
x will denote

the measure under which the coordinate process is a version of this process starting from
x. The result corresponding to Theorem 1.2 is as follows.

THEOREM 3.1. – For any fixedx ∈ [0, a) and any increasing non-negative function
g such thatf (t) = t−1g(t) is decreasing,

P
(α)
x

{
a − St > f (t) i.o. ast → ∞}= 0 or 1

according asK := ∫∞
1 t−1g(t)−αe−βg(t) dt is finite or infinite, whereβ = π2/a3.

Remark 1. – A consequence of this result is that, with logk(·) denoting thekth iterate
of log(·), andᾱ = 1− α,

P
(α)
x

{
lim sup

t→∞
t (a − St) − β−1 log2 t

log3 t
= ᾱ

β

}
= 1,

so that the effect of the perturbation is only felt on the log3 t scale.

The result corresponding to the first part of Theorem 1.1 is:

THEOREM 3.2. – For any fixedx ∈ [0, a) and any non-negative functionf such that
g(t) = 1/(tf (t)) increases to∞,

Px

{
a − St < f (t) i.o. ast → ∞}= 0 or 1

according as

L :=
∞∫

1

dt

tg(t)ᾱ

is finite or infinite.

The key to our analysis is
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LEMMA 3.3. – UnderP(α)
x the first passage process{Ty, x � y < a} has independent

increments and

E
(α)
x

{
e−λTy

}= (
Ex

{
e−λTy

})ᾱ
,

where the righthand side is given explicitly in(2.1).

Proof. –The first statement follows from the fact{(Xt, St ), t � 0} is a Markov process
underP(α)

x . Also the Laplace transform of the time at which anα-perturbed Brownian
motion first exits a finite interval is known, (see, e.g., [2]), and the second result follows
by a simple calculation. ✷

Next, we introduce, for any 0< b < c � ∞ the distributionD(ᾱ)(b, c) of a non-
negative random variable with Laplace transform{b(λ+ c)/(c(λ+ b))}ᾱ if c < ∞, and
Laplace transform{b/(λ + b)}ᾱ if c = ∞. ThenD(ᾱ)(b,∞) coincides with the3(ᾱ, b)

distribution, and a random variableD has theD(ᾱ)(b, c) distribution withc < ∞ if and
only if we can write

Y1 = Y2 +D, (3.1)

whereY1 andY2 have3(ᾱ, b) and3(ᾱ, c) distributions andY2 andD are independent.
In the caseα = 0 the tail behaviour of this distribution is obvious, but now a little work
is required.

LEMMA 3.4. – If D has aD(ᾱ)(b, c) distribution with c � ∞ fixed,bt → ∞, and
b2t → 0 then

3(ᾱ)P (D > t) � (bt)−αe−bt . (3.2)

Proof. –If c = ∞ we know thatbD has a3(ᾱ,1) distribution and the result is
immediate. Whenc < ∞ we have3(ᾱ)P (D > t) � 3(ᾱ)P (Y1 > t) � (bt)−αe−bt , so
we only need a corresponding lower bound. For this we writeη = 2b/c and use (3.1) to
get

3(ᾱ)P (Y2 � ηt)P (D > t)�3(ᾱ)P
(
Y1 > t(1+ η)

)− 3(ᾱ)P (Y2 > ηt)

� (bt)−αe−bte−2b2t/c + O
(
(ηt)−αe−cηt

)
� (bt)−αe−bt .

SinceP(Y2 � ηt) → 1, the result follows. ✷
The analogue of Lemma 2.1 is straightforward:

LEMMA 3.5. – For any0� x < y < a we have underP(α)
x

Ty
d= Vy + Uy, (3.3)

where the non-negative random variablesVy and Uy are independent,Vy has the
D(ᾱ)(�(y),�(x)) distribution, and

P
(α)
x {Uy > t} � c2e−tπ2/a2

for all t � 0, (3.4)

wherec2 is a constant, which depends only ona andα.
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Proof. –The proof is the same as that of Lemma 2.1.✷
The result corresponding to Lemma 2.2 now follows.

LEMMA 3.6. – Putβ = π2/a3; then for any fixed0� x < a,

3(ᾱ)P(α)
x {Ta−ε > t} � (βtε)−αe−βtε astε → ∞ and tε2 → 0.

Proof. –It is immediate from (3.3), Lemma 3.4, and the fact thatε̃ = �(a − ε)

= βε + O(ε2) asε ↓ 0 that

3(ᾱ)P(α)
x {Ta−ε > t} � 3(ᾱ)P(α)

x {Va−ε > t} � (t ε̃)−αe−t ε̃ � (βtε)−αe−βtε.

But with η̃ = 2a2ε̃/π2

P
(α)
x {Ta−ε > t} � P

(α)
x

{
Va−ε > t (1− η̃)

}
P
(α)
x {Ua−ε � η̃t} + P

(α)
x {Ua−ε > η̃t}

� (t ε̃)−αe−t̃ ε/ 3(ᾱ)+ O
(
e−η̃tπ2/a2)� (βtε)−αe−βtε/ 3(ᾱ). ✷

Proof of Theorem 3.1. – This follows the same lines as the proof of Theorem 1.2,
so we omit some of the details. As before, we will assume (2.6) is in force, and
again putAn = {a − Stn > f (tn)} = {Ta−f (tn) > tn}, where tn = en, n � 1. A simple
calculation shows thatK < ∞ is equivalent to the convergence of

∑∞
1 (hn)

−αe−βhn ,
wherehn = g(tn). Then Lemma 3.6 gives

3(ᾱ)P(α)
x {An} � (βhn)

−α exp(−βhn),

and the Borel–Cantelli lemma establishes the result whenK < ∞.
Now assume thatK = ∞, so that

∑∞
1 P

(α)
x {An} = ∞. As before we need to estimate

P
(α)
x {Ai ∩ Aj }, and here the fact that{Xt, t � 0} is not Markov underP(α)

x introduces a
complication. Note that forj > i with rn = a − f (tn) we have

P
(α)
x {Ai ∩Aj } =

ri∫
0

ri∫
y

P
(α)
x {Ai,Xti ∈ dy,Sti ∈ dz}P(α)

y,z{Trj > tj − ti}, (3.5)

whereP
(α)
y,z stands for the measure under which the coordinate process is anα-perturbed

taboo process satisfying the initial conditions(X0, S0) = (y, z). Under this measure we
have the decomposition

Trj = T (1) + T (2), (3.6)

whereT (1) andT (2)are independent,T (1) has the distribution ofTz under theunperturbed
measurePy , andT (2) has the distribution ofTrj under theperturbed measureP(α)

z . Now
if α > 0 it is clear that

Py(Tz > t) � P
(α)
y (Tz > t) � P

(α)(Tz > t),
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whereP
(α) = P

(α)
0 , and hence, from (3.6) we getP

(α)
y,z{Trj > t} � P

(α){Trj > t}. Using this
in (3.5) and appealing to Lemma 3.6 we see that, whenα > 0, we have

P
(α)
x {Aj | Ai} � P

(α){Trj > tj − ti} � exp−βhj(1− ei−j )

3(ᾱ){βhj(1− ei−j )}α . (3.7)

It is now easy to conclude the proof in this case, as the final part of the proof of
Theorem 1.2 requires only minor modifications.

In the caseα < 0 we use the fact that, in (3.6),T (1) and T (2) are stochastically
dominated by independent random variablesW(1) andW(2) which have the distribution
of Tri under the measureP, and the distribution ofTrj under the measureP(α) to see that,
for anyθ ∈ (0,1),

P
(α)
x {Aj | Ai} �P

{
W(1) +W(2) > tj − ti

}
�P

{
W(1) > θ(tj − ti)

}+ P
{
W(2) > (1− θ)(tj − ti)

}
.

With the choice ofθ = f (tj )/f (ti) the requirements of Lemma 2.2 are satisfied and

P
{
W(1) > θ(tj − ti )

}
� exp−βθ(tj − ti )f (ti)

= exp−β(tj − ti )f (tj ) = o
{
P
(α){Trj > tj − ti}},

becauseα < 0, and it is easy to see that this term is asymptotically neglible. We can also
apply Lemma 3.6 to get

P
{
W(2) > (1− θ)(tj − ti)

}
� exp−βhj (1− ei−j )

3(ᾱ){β(1− θ)hj (1− ei−j )}α expθβhj

(
1− ei−j

)

� exp−βhj(1− ei−j )

3(ᾱ){βhj(1− ei−j )}α expβej−ih2
j/hi.

Since it follows from (2.6) that, for a suitablec3

lim
i→∞ sup

j�i+c3

(ej−ih2
j

hi

)
= 0,

it is not difficult to modify the argument used in the final part of the proof of Theorem 1.2
to get the required conclusion.✷

Clearly the proof of Theorem 3.2 will involve the behaviour ofP
(α)
x {Ta−ε � t}, and

this is given in the following.

LEMMA 3.7. – (i)Suppose thatt → ∞ andεt ↓ 0. Then for any fixedx ∈ [0, a)

P
(α)
x {Ta−ε � t} � (βεt)ᾱ

3(ᾱ + 1)
. (3.8)

(ii) Given arbitraryδ > 0 there existsKδ < ∞ such that for allε1 sufficiently small,
tε1 sufficiently large and allε2 ∈ (0, ε1)

P
(α)
a−ε1

{Ta−ε2 � t} � Kδ

(
ε2

ε1

)α

+ (1+ δ)(βε2t)
ᾱ

3(ᾱ + 1)
. (3.9)
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Proof. –First note that, for anyη ∈ [0, t],

P
(α)
x {Ta−ε � t} � P

(α){Ta−ε � t} � P
(α){Va−ε � t − η}P(α){Ua−ε � η}.

UnderP
(α) Va−ε has a3(ᾱ, ε̃) distribution, so choosingη = √

t , so thatη/t → 0 we
have

P
(α){Va−ε � t − η} � (ε̃t)ᾱ

3(ᾱ + 1)
� (βεt)ᾱ

3(ᾱ + 1)
.

But sinceη → ∞ we see from (2.3) thatP(α){Ua−ε � η} → 1, and this proves one half
of (3.8).

To get the other half, we note that

P
(α)
x {Ta−ε � t} � P

(α)
x {Va−ε � t}.

Assuming thatᾱ is not a positive integer (the contrary case is easier to deal with) and
writing 8 = ε̃/�(x), Lemma 3.3 gives

E
(α)
x

{
e−λε̃Va−ε

}=
{
8 + 1− 8

1+ λ

}ᾱ

= 8ᾱ
∞∑
0

(
ᾱ

k

)(
1−8

8(1+ λ)

)k

.

Inverting the Laplace transform, we see thatP
(α)
x {ε̃Va−ε = 0} = 8ᾱ and thatε̃Va−ε has,

underP(α)
x , a density on(0,∞) given by

8ᾱe−y
∞∑
1

(
ᾱ

k

)(
1−8−1)k yk−1

(k − 1}! � 8ᾱ
∞∑
1

(
α

k

)(
1− 8−1)k yk−1

(k − 1)! . (3.10)

It follows that withy > 0 andz = y(1− 8−1),

P
(α)
x {ε̃Va−ε � y} �8ᾱ

∞∑
0

(
ᾱ

k

)(
1− 8−1)k yk

k!

=8ᾱ
∞∑
0

(−1)k
3(α + k − 1)

3(α − 1)k!
(
1− 8−1)k yk

k!
=8ᾱF(α − 1;1;−z) = 8ᾱe−zF (ᾱ + 1;1; z), (3.11)

whereF(b; c; ·) denotes the confluent hypergeometric function and we have used a
standard transformation result. (See [5, p. 267].) Now ifx is fixed puttingy = ε̃t

we see thatz � ε̃t/8 → ∞ so we can use the known asymptotic behaviour of the
hypergeometric function (see [5, p. 289]) to conclude that

8ᾱe−zF (ᾱ + 1;1; z) � 8ᾱzᾱ

3(ᾱ + 1)
� (ε̃t)ᾱ

3(ᾱ + 1)
� (βεt)ᾱ

3(ᾱ + 1)
,
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which finishes the proof of (i). For (ii) we note that the same asymptotic result shows
that there existszδ with

sup
z�zδ

z−ᾱe−zF (ᾱ + 1;1; z) � 1+ δ

3(ᾱ + 1)
.

Now apply (3.11) withx = a − ε1, ε = ε2 andy = tε2 so that8 = ε̃2/ε̃1 � ε2/ε1, to see
that (3.9) holds if we takeKδ = 2F(ᾱ + 1;1; zδ). ✷

Proof of Theorem 3.2. – Let Bn = {a − Stn < f (tn)} = {Ta−f (tn) � tn}, where tn =
en, n � 1. A simple calculation shows thatL < ∞ is equivalent to the convergence of∑∞

1 {h(n)}−ᾱ, wherehn = g(tn). Sincex is fixed we can apply (i) of Lemma 3.7 to get

3(ᾱ + 1)Px{Bn} �
{
βtnf (tn)

}ᾱ = {βhn}−ᾱ.

Then the Borel–Cantelli lemma establishes the result whenL< ∞.
Now assume thatL = ∞, so that

∑∞
1 Px{Bn} = ∞. Note that forj > i with rn =

a − f (tn) we have

P
(α)
x {Bi ∩Bj } =

ti∫
0

P
(α)
x {Tri ∈ ds}P(α)

ri
{Trj � tj − s} � P

(α)
ri

{Trj � tj }
ti∫

0

P
(α)
x {Tri ∈ ds}

= P
(α)
ri

{Bj }P(α)
x {Bi}.

It follows from (ii) of Lemma 3.7 that for arbitraryδ > 0,

P
(α)
ri

{Bj } �Kδ

(
f (tj )

f (ti)

)ᾱ

+ (1+ δ)(βtjf (tj ))
ᾱ

3(ᾱ + 1)

=Kδ

(
tihi

tjhj

)ᾱ

+ (1+ δ)(βhj )
ᾱ

3(ᾱ + 1)

�Kδe
−ᾱ(j−i) + (1+ δ)(βhj )

ᾱ

3(ᾱ + 1)
.

From this, sinceδ is arbitrary, it is immediate that

lim sup
n→∞

∑n
i=1

∑n
j=1 Px{Bi ∩ Bj }

(
∑n

i=1 Px{Bi})2
� 1, (3.12)

and the key step in the proof is finished.✷
Remark 2. – An interesting question is whether or not the tail sigma-field of the first

passage-time process is trivial underP
(α)
x . In the caseα = 0, the triviality can be seen as a

consequence of the ergodicity of the (Markovian) taboo process, which was established
in [4]; we have not been able to resolve this question whenα �= 0. If this sigma-field is
trivial whenα �= 0, some of our proofs would be shorter, since it would only be necessary
to show, for example, that the lim sup in (3.12) is finite.
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