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ABSTRACT. – For f : [0,1] → R, we considerLf
t , the local time of space-time Brownian

motion on the curvef . Let Sα be the class of all functions whose Hölder norm of orderα is
less than or equal to 1. We show that the supremum ofL

f
1 overf in Sα is finite if α > 1/2 and

infinite if α < 1/2.  2001 Éditions scientifiques et médicales Elsevier SAS

AMS classification:60J65; 60J55

RÉSUMÉ. – SoitWt un mouvement brownien et soitLf
t le temps local du processus(t,Wt )

pour la courbef : [0,1] → R, c’est à dire,Lf
t = limε→0

1
2ε

∫ t
0 1]f (s)−ε,f (s)+ε[(Ws) ds. Soit Sα

la classe des fonctions dont la norme holdérienne d’un ordreα est inférieure ou égale à 1. Nous
démontrons que supf∈Sα

L
f
1 <∞ p.s. siα > 1/2 et que ce supremum est infini p.s. siα < 1/2.

 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let Wt be one-dimensional Brownian motion and letf : [0,1] → R be a Hölder
continuous function. There are a number of equivalent ways to define the local time
of Wt along the curvef . We will show the equivalence below, but for now defineL

f
t as

the limit in probability of

1

2ε

t∫
0

1(f (s)−ε,f (s)+ε)(Ws) ds

asε → 0. Let

Sα = {f : sup
0�t�1

|f (t)| � 1, |f (s)− f (t)| � |s − t|α if s, t � 1
}
.

✩ Research partially supported by NSF grant DMS-9700721.
E-mail addresses:bass@math.uconn.edu (R.F. Bass), burdzy@math.washington.edu (K. Burdzy).
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We were led to the results in this paper by the following question.

QUESTION 1.1. – Is supf∈S1
L
f
1 finite?

Our interest in this problem arose when we were working on Bass and Burdzy [2].
A positive answer to Question 1.1 at that time would have provided a proof of uniqueness
for a certain stochastic differential equation; we ended up using different methods.

However, probably the greatest interest in Question 1.1 has to do with questions about
metric entropy. The metric entropy ofS1 is known to be of order 1/ε; see, e.g., Clements
[5]. That is, if one takes the cardinality of the smallestε-net forS1 (with respect to the
supremum norm) and takes the logarithm, the resulting number will be bounded above
and below by positive constants times 1/ε. It is known (see Ledoux and Talagrand [8])
that this is too large for standard chaining arguments to be used to prove finiteness of
supf∈S1

L
f
1 . Nevertheless, the supremum in Question 1.1 is finite.

It is a not uncommon belief among the probability community that metric entropy
estimates are almost always sharp: the supremum of a process is finite if the metric
entropy is small enough, and infinite otherwise. That is not the case here. Informally, our
main result is

THEOREM 1.2. –The supremum off → L
f
1 overSα is finite if α > 1

2 and infinite if
α < 1

2.

See Theorems 3.6 and 3.8 for formal statements.
The metric entropy ofSα whenα ∈ (1

2,1] is far beyond what chaining methods can
handle. Sometimes the method of majorizing measures provides a better result than that
of metric entropy. We do not know if this is the case here.

For previous work on local times for space-time curves, see Burdzy and San Martín [4]
and Davis [6]. For some results on local times on Lipschitz curves for two-dimensional
Brownian motion, see Bass and Khoshnevisan [3] and Marcus and Rosen [9].

In Section 2 we prove the equivalence of various definitions ofL
f
t as well as some

lemmas of independent interest. In Section 3 we prove finiteness of the supremum over
Sα whenα > 1

2 and that this fails whenα < 1
2. We also show that(f, t)→ L

f
t is jointly

continuous onSα × [0,1] whenα > 1
2.

The letterc with subscripts will denote finite positive constants whose exact values
are unimportant. We renumber them in each proof.

2. Preliminaries

We discuss three possible definitions ofL
f
t .

(i) L
f
t = limε→0

1
2ε

∫ t
0 1(f (s)−ε,f (s)+ε)(Ws) ds;

(ii) L
f
t is the continuous additive functional of space-time Brownian motion

associated to the potentialUf (x, t) = ∫ 1−t

0 p(s, x, f (t + s)) ds, wherep is the
transition density for one-dimensional Brownian motion;

(iii) (for f ∈ S1 only) Lf
t is the local time in the semimartingale sense at 0 of the

processWt − f (t).
One of the goals of this section is to show the equivalence of these definitions. We

begin with the following lemma which will be used repeatedly throughout the paper.
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LEMMA 2.1. –SupposeA1
t andA2

t are two nondecreasing continuous processes with
A1

0 = A2
0 = 0. LetBt = A1

t −A2
t . Suppose that for alls � t , and some right-continuous

filtration {Ft},
E
[
Ai

t −Ai
s | Fs

]
�M, a.s. i = 1,2,

and for all s � t ∣∣E[Bt −Bs | Fs]
∣∣� γ, a.s.

There existc1, c2 such that for allλ > 0,

P
(
sup
s�t

|Bs|> λ
√
γM

)
� c1e−c2λ.

Proof. –We have

(Bt −Bs)
2 = 2

t∫
s

(Bt −Br) dBr.

Using a Riemann sum approximation (cf. Bass [1, Exercise I.8.28]) we obtain

E
[
(Bt −Bs)

2 | Fs

]= 2E

[ t∫
s

(Bt −Br) dBr | Fs

]

= 2E

[ t∫
s

E[Bt −Br | Fr ]dBr | Fs

]

� 2E

[ t∫
s

γ
(
dA1

r + dA2
r

) | Fs

]
� 4γM.

This inequality holds a.s. for eachs. The left hand side is equal to

E
[
B2
t |Fs

]− 2BsE
[
Bt | Fs

]+B2
s

and hence is right continuous. Therefore there is a null set outside of which

E
[
(Bt −Bs)

2 | Fs

]
� 4γM

for all s. In particular, ifT is a stopping time, by Jensen’s inequality we obtain

E
[|Bt −BT | |FT

]
�
(
E
[
(Bt −BT )

2 | FT

])1/2 � (4γM)1/2.

Our result now follows by Bass [1, Theorem I.6.11], and Chebyshev’s inequality.✷
LetWt be one-dimensional Brownian motion. Define

p(t, x, y) = (2πt)−1/2 exp
(−|x − y|2/2t), (2.1)
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the transition density of one-dimensional Brownian motion. In the rest of the paper,Ft

will denote the (right-continuous) filtration generated byWt .
For a measurable functionf : [0,1] → R set‖f ‖ = supt�1 |f (t)|. Let

Df
t (ε)= 1

2ε

t∫
0

1(f (s)−ε,f (s)+ε)(Ws) ds.

PROPOSITION 2.2. –For f measurable on[0,1], there exists a nondecreasing
continuous processLf

t such thatE‖Df (ε)−Lf ‖2 → 0 asε → 0.

Proof. –Let E
(x,t) denote the expectation corresponding to the distribution of

Brownian motion starting fromx at time t , i.e., satisfyingWt = x. For anyx and any
t � 1,

E
(x,t) 1

2ε

1−t∫
0

1(f (t+s)−ε,f (t+s)+ε)(Wt+s) ds = 1

2ε

1−t∫
0

f (t+s)+ε∫
f (t+s)−ε

p(s, x, y) dy ds

� c1

1−t∫
0

1√
s
ds � c2

√
1− t � c2. (2.2)

This implies that,

E
[
D

f
1 (ε)−Df

t (ε) | Ft

]= E
(Wt ,t)

1

2ε

1−t∫
0

1(f (t+s)−ε,f (t+s)+ε)(Wt+s) ds � c2. (2.3)

The supremum of

1

2ε

f (t+s)+ε∫
f (t+s)−ε

p(s, x, y) dy

overε > 0, t � 1 ands � 1− t is bounded. By the continuity ofp(s, x, y) in y and the
bounded convergence theorem, asε → 0,

1

2ε

1−t∫
0

f (t+s)+ε∫
f (t+s)−ε

p(s, x, y) dy ds →
1−t∫
0

p
(
s, x, f (t + s)

)
ds

uniformly overx andt . Calculations similar to those in (2.2) and (2.3) yield the following
estimate: for anyη > 0,∣∣E[(Df

1 (ε1)−D
f
1 (ε2)

)− (Df
t (ε1)−Df

t (ε2)
) | Ft

]∣∣� η, a.s., (2.4)

for all t � 1 providedε1 andε2 are small enough.
Because of (2.3) and (2.4), we can apply Lemma 2.1 withA1

t = D
f
t (ε1) andA2

t =
D

f
t (ε2). The estimate in that lemma shows that, in a sense, the supremum of the
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difference betweenDf
t (ε1) and D

f
t (ε2) is of order

√
η. We see thatE(‖Df (ε1) −

Df (ε2)‖2) → 0 asε1, ε2 → 0. This implies that{Df (εn)} is a Cauchy sequence, and
thereforeDf (εn) converges asn → ∞, for any sequence{εn} converging to 0. Denote
the limit byLf

t ; it is routine to check that the limit does not depend on the sequence{εn}.
Since the convergence is uniform overt andt →D

f
t (ε) is continuous for everyε, then

L
f
t is continuous int . For a similar reason,t →L

f
t is nondecreasing. ✷

Remark2.3. – A very similar proof shows thatLf
t is the limit inL2 of

1

ε

t∫
0

1[f (s),f (s)+ε)(Ws) ds.

Remark2.4. – Let

Uf (x, t) =
1−t∫
0

p
(
s, x, f (t + s)

)
ds.

A straightforward limit argument shows that

E
[
L
f
1 −Lf

t | Ft

]= 1−t∫
0

p
(
s,Wt , f (t + s)

)
ds. (2.5)

It follows thatUf (Wt, t) is a potential for the space-time Brownian motiont → (Wt , t).
Hence the functionUf (x, t) is excessive with respect to space-time Brownian motion,
and thereforeLf

t can also be viewed as the continuous additive functional for the space-
time Brownian motion(Wt , t) whose potential isUf .

COROLLARY 2.5. –Supposefn → f uniformly. Then‖Lfn − Lf ‖ converges to0
in L2.

Proof. –From (2.5),

E
[
L
f
1 −Lf

u | Fu

]
� c1

1−u∫
0

1√
s
ds � c2

√
1− u� c2

and ∣∣E[Lfn
1 −Lfn

u | Fu

]− E
[
L
f
1 −Lf

u | Fu

]∣∣
=
∣∣∣∣∣

1−u∫
0

[
p
(
s,Wu,fn(u+ s)

)− p
(
s,Wu,f (u+ s)

)]
ds

∣∣∣∣∣
�

1−u∫
0

∣∣p(s,Wu,fn(u+ s)
)− p

(
s,Wu,f (u+ s)

)∣∣ds.
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The right hand side tends to 0 by the assumption thatfn → f uniformly, and the result
now follows by Lemma 2.1, using the same argument as at the end of the proof of
Proposition 2.2. ✷

If f is a Lipschitz function, thenWt − f (t) is a semimartingale. We can therefore
define a local time forWt along the curvef by settingKf

t to be the local time (in the
semimartingale sense) at 0 ofYt =Wt − f (t). That is,

Kf
t = |Yt | − |Y0| −

t∫
0

sgn(Ys) dYs.

PROPOSITION 2.6. –With probability one,Kf
t = L

f
t for all t .

Proof. –By Revuz and Yor [10, Corollary VI.1.9],

Kf
t = lim

ε→0

1

ε

t∫
0

1[0,ε)(Ys) d〈Y 〉s . (2.6)

SinceYt =Wt − f (t), then〈Y 〉t = 〈W 〉t = t , and so by Remark 2.3,Kf
t = L

f
t a.s. Since

bothKf
t andLf

t are continuous int , the result follows. ✷
3. The supremum of local times

Our first goal is to obtain an estimate on the number of rectangles of size(1/N) ×
(2/

√
N) that are hit by a Brownian path. Fix anya ∈ R andb ∈ (a, a + 2/

√
N ]. Let

Ij = {∃t ∈ [(j − 1)/N, j/N] :a �Wt � b)
}
,

and

Ak =
k∑

j=1

1Ij .

LEMMA 3.1. –There existc1 andc2 such that for allλ > 0,

P
(
Ak � λ

√
k
)
� c1e−c2λ.

Proof. –There is probabilityc3 > 0 independent ofx such that

P
x
(

sup
s�1/N

|Ws −W0|< 1/
√
N
)
> c3.

So by the strong Markov property applied at the firstt ∈ [(j − 1)/N, j/N] such that
a �Wt � b,

c3P
x(Ij )� P

x
(
Wj/N ∈ [a − (1/

√
N), a + (3/

√
N)
])
.
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This and the standard bound

P
x(Wt ∈ [c, d])=

d∫
c

1√
2πt

e−|y−x|2/2t dy � 1√
2πt

|d − c|,

imply that

P
x(Ij )� c4

1√
N

1√
j/N

= c4√
j
.

Therefore

E
xAk =

k∑
j=1

P
x(Ij )� c5

√
k. (3.1)

By the Markov property,

E[Ak −Ai | Fi/n] � 1+ E
W(i/n)Ak � c6

√
k. (3.2)

Corollary I.6.12 of Bass [1] can be applied to the sequenceAk/(c7

√
k), in view of (3.1)

and (3.2). That result says thatE exp(c8 supk Ak/(c7

√
k)) � 2 for somec8 > 0. This

easily implies our lemma. ✷
Fix an integerN > 0. LetR,m =R,m(N) be the rectangle defined by

R,m = [,/N, (,+ 1)/N] × [m/Nα, (m+ 1)/Nα
]
, 0� , �N, −Nα − 1 �m�Nα.

LetK be such thatN/K is an integer and
√
N <N/K �

√
N + 1. Set

Qik =Qik(N)= [iK/N, (i + 1)K/N] × [k(K/N)α, (k + 1)(K/N)α
]
,

for 0� i �K and−(N/K)α − 1 � k � (N/K)α . Note thatQik(N) =Rik(N/K) but it
will be convenient to use both notations.

PROPOSITION 3.2. – Let α ∈ (1/2,1] and ε ∈ (0,1/16). There existc1, c2, and c3

such that:
(i) there exists a setDN with P(DN)� c1N exp(−c2N

ε/2);
(ii) if ω /∈ DN and f ∈ Sα , then there are at mostc3N

(3/4)+(ε/2) rectanglesR,m in
[0,1] × [−1,1] which contain both a point of the graph off and a point of the
graph ofWt(ω).

Proof. –Let

Iikj = {∃t ∈ [iK/N + (j − 1)/N, iK/N + j/N]: k(K/N)α �Wt � (k + 1)(K/N)α
}
,

Aik =
K∑
j=1

1Iikj and Cik = Cik(N) = {Aik �K(1/2)+ε
}
.
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By Lemma 3.1 withk = [K] andλ=Kε, and the Markov property applied atkK/N we
haveP(Cik)� c4 exp(−c5K

ε).
There are at mostc6N

(1/2)+(α/2) rectanglesQik , so ifDN =⋃
i,k Cik, where 0� i �K

and−(N/K)α − 1� k � (N/K)α , then

P(DN)� c7N
(1+α)/2 exp

(−c5K
ε
)
� c7N exp

(−c8N
ε/2).

Now supposeω /∈DN . Letf be any function inSα. If f intersectsQik for somei and
k, thenf might intersectQi,k−1 andQi,k+1. But becausef ∈ Sα , it cannot intersectQir

for anyr such that|r − k|> 1. Thereforef can intersect at most 3(K + 1) of theQik .
Look at any one of theQik that f intersects. Sinceω /∈ DN , then there are at most

K(1/2)+ε integersj that are less thanK and for which the path ofWt(ω) intersects
([iK/N + (j − 1)/N, iK/N + j/N] × [−1,1]) ∩Qik . If f intersects a rectangleR,m,
then it can intersect a rectangleR,r only if |r − m| � 1, sincef ∈ Sα. Therefore there
are at most 3K(1/2)+ε rectanglesR,m contained inQik which contain both a point of the
graph off and a point of the graph ofWt(ω).

Since there are at most 3(K + 1) rectanglesQik which contain a point of the graph of
f , there are therefore at most

3(K + 1)3K(1/2)+ε � c9N
(3/4)+(ε/2)

rectanglesR,m that contain both a point of the graph off and a point of the graph of
Wt(ω). ✷

We can now iterate this to obtain a better estimate.

PROPOSITION 3.3. –Fix α ∈ (1/2,1] andδ, η > 0. There existc1 andN0 such that if
N �N0:

(i) there exists a setE with P(E)� η;
(ii) if ω /∈ E and f ∈ Sα , then there are at mostc1N

(1/2)+δ rectanglesR,m(N)

contained in[0,1] × [−1,1] which contain both a point of the graph off and a
point of the graph ofWt(ω).

Proof. –For anyε, the quantityc1N exp(−c2N
ε/2) is summable. First chooseε ∈

(0, δ/4) and then chooseN1 large so that, using Proposition 3.2 and its notation,

∞∑
N=N1

P(DN)�
∞∑

N=N1

c1N exp
(−c2N

ε/2)< η.

LetE =⋃∞
N=N1

DN .

Fix ω /∈E. SupposeN is large enough so that
√
N � 2N1. Recall the definition ofK

and note thatN/K differs from
√
N by at most 1. Then by Proposition 3.2 applied with

N/K , there are at mostc2(
√
N)(3/4)+ε rectanglesRik(N/K) that contain both a point of

the graph off and a point of the graph ofWt(ω). Recall the definitions of the eventsCik

andDN from Proposition 3.2 and its proof. Since we are assuming thatω /∈ E, we also
haveω /∈ Cik(N) for any i, k. This implies that inside each rectangleRik(N/K), there
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are at mostc3(
√
N)(1/2)+ε rectanglesR,m(N) that contain both a point of the graph off

and a point of the graph ofWt(ω). Thus there are at most

c4
(√

N
)(3/4)+ε(√

N
)(1/2)+ε = c4N

(5/8)+ε

rectanglesR,m(N) that contain both a point of the graph off and a point of the graph
of Wt(ω).

We continue iterating: takeN large so thatN � (4N1)
4. There arec4(

√
N)(5/8)+ε

rectanglesR,m(N/K) that contain both a point of the graph off and a point of the
graph ofWt(ω). Each of these contains at mostc5(

√
N)(1/2)+ε rectanglesR,m(N) that

contain both a point of the graph off and a point of the graph ofWt(ω), for a total of

c6
(√

N
)(5/8)+ε(√

N
)(1/2)+ε = c6N

(9/16)+ε

rectanglesR,m(N).
Continuing, ifN is large enough, we can get the exponent ofN as close to(1/2)+ ε

as we like. In particular, by a finite number of iterations, we can get the exponent less
than(1/2)+ δ. ✷

Recall the definition ofp(t, x, y) in (2.1).

LEMMA 3.4. –If ‖f − g‖ � ε, then for some constantc1 and all ε < 1
2 ,

1∫
0

∣∣p(t,0, f (t))− p
(
t,0, g(t)

)∣∣dt � c1ε log(1/ε).

Proof. –For t � ε2, we use the estimatep(t,0, x) � c2t
−1/2 and obtain

ε2∫
0

∣∣p(t,0, f (t))− p
(
t,0, g(t)

)∣∣dt � 2c2

ε2∫
0

1√
t
dt � c3ε.

For t � ε2, note that∣∣∣∣∂p(t,0, x)∂x

∣∣∣∣= c4t
−1/2 |x|

t
e−x2/2t = c4t

−1 |x|√
t
e−x2/2t � c5t

−1,

since|y|e−y2/2 is bounded. We then obtain

1∫
ε2

∣∣p(t,0, f (t))− p
(
t,0, g(t)

)∣∣dt �
1∫

ε2

∣∣f (t)− g(t)
∣∣c5t

−1dt

� c5ε

1∫
ε2

t−1 dt = c6ε log(1/ε).

Adding the two integrals proves the lemma.✷
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PROPOSITION 3.5. –Letf andg be two functions with

sup
(j−1)/N�t�j/N

∣∣f (t)− g(t)
∣∣� δ.

Then, for allλ > 0,

P
(∣∣(Lf

j/N −L
f
(j−1)/N

)− (Lg
j/N −L

g
(j−1)/N

)∣∣� λN−1/4(δ log(1/δ)
)1/2)� c1e−c2λ.

Proof. –Write s for (j − 1)/N andAf
t = L

f
s+t − Lf

s , Ag
t = L

g
s+t − Lg

s . We have for
s � r � t � s + (1/N),

E
[
Af

t −Af
r | Fr

]= E
WrA

f
t−r � sup

z
E
zA

f
1/N .

But for anyz,

E
zA

f
1/N =

1/N∫
0

p
(
t, z, f (t)

)
dt �

1/N∫
0

1√
t
dt � c3N

−1/2.

We have a similar bound forEzA
g
1/N . For the difference, we have

∣∣E[(Af
t −Ag

t

)− (Af
r −Ag

r

) | Fr

]∣∣= ∣∣EWr
[
A

f
t−r −A

g
t−r

]∣∣.
However, for anyz,

∣∣Ez
[
A

f
t−r −A

g
t−r

]∣∣= ∣∣∣∣∣
s+t−r∫
s

[
p
(
u, z, f (u)

)− p
(
u, z, g(u)

)]
du

∣∣∣∣∣
�

1∫
0

∣∣p(u,0, f̃ (u))− p
(
u,0, g̃(u)

)∣∣du,
where we definef̃ (u) = f (u) − z for all u and we definẽg(u) = g(u) − z if s � u �
s + (t − r) andg̃(u)= f̃ (u) otherwise. So‖f̃ (u)− g̃(u)‖ � δ, and by Lemma 3.4,∣∣Ez

[
A

f
t−r −A

g
t−r

]∣∣� c4δ log(1/δ).

Our result now follows by Lemma 2.1.✷
THEOREM 3.6. –For anyα ∈ (1/2,1], there exists̃Lf

t such that
(i) for eachf ∈ Sα , we havẽLf

t =L
f
t for all t , a.s.,

(ii) with probability one,f → L̃
f
1 is a continuous map onSα with respect to the

supremum norm, and
(iii) with probability one,supf∈Sα

L̃
f
1 <∞.
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Proof. –
Step 1. In this step, we will define and analyze a countable dense family of functions

in Sα.
LetN = 2n and letTn denote the class of functionsf in Sα such that on each interval

[(j −1)/N, j/N] the functionf is linear with slope eitherN1−α or −N1−α andf (j/N)

is a multiple of 1/Nα for eachj . Note that the collection of all functions which are
piecewise linear with these slopes contains some functions which are not inSα – such
functions do not belong toTn.

Consider any elementh of Sα. Let h(n) denote a function inTn which approximates
h in the following sense. We will defineh(n) inductively on intervals of the form
[(j −1)/N, j/N]. First we take the initial valueh(n)(0) to be the closest integer multiple
of 1/Nα to h(0) (we take the smaller value in case of a tie). The slope ofh(n) is chosen
to be positive on[0,1/N] if and only if h(n)(0)� h(0). Once the functionh(n) has been
defined on all intervals[(j − 1)/N, j/N], j = 1,2, . . . , k, we choose the slope ofh(n)

on [k/N, (k + 1)/N] to beN1−α if and only if h(n)(k/N) � h(k/N). Strictly speaking,
our definition generates some functions with values in[−1 − 1/Nα,1 + 1/Nα] rather
than in[−1,1] and soh(n) might not belong toSα. We leave it to the reader to check that
this does not affect our arguments.

We will argue that|h(n)(t)−h(t)| � 2/Nα for all t . This is true fort = 0 by definition.
Suppose that 1/Nα � |h(n)(t) − h(t)| � 2/Nα for somet = j/N . Then the fact that
both functions belong toSα and our choice for the slope ofh(n) easily imply that the
absolute value of the difference between the two functions will not be greater at time
t = (j + 1)/N than at timet = j/N . An equally elementary argument shows that in
the case when|h(n)(t) − h(t)| � 1/Nα , the distance between the two functions may
sometimes increase but will never exceed 2/Nα . The induction thus proves the claim for
all timest of the formt = j/N . An extension to all other timest is easy.

Later in the proof we will need to consider the difference betweenh(n) andh(n+1).
First let us restrict our attention to the interval[,/N, (,+ 1)/N]. The estimates from the
previous paragraph show that|h(n)(t)− h(n+1)(t)| � 4/Nα on this interval. Let

Fh,, = {∣∣(Lh(n)

(,+1)/N −Lh(n)

,/N

)− (Lh(n+1)

(,+1)/N −Lh(n+1)

,/N

)∣∣�N−(1/4)−(α/2)+ε
}
.

By Proposition 3.5 withλ=Nε, for anyh ∈ Sα, , andn,

P(Fh,,)� c1 exp
(−c2N

ε
)
.

There are onlyN + 1 integers, with 0 � , � N . For a fixed,, there are no more
than 3Nα possible values ofh(n)(,/N), and the same is true forh(n)((, + 1)/N). The
analogous upper bound for the number of possible values for each ofh(n+1)(,/N),
h(n+1)((,+ 1/2)/N) andh(n+1)((,+ 1)/N) is 6Nα . Hence, if we let

GN = ⋃
h∈Sα

⋃
0�,�N

Fh,,,

then

P(GN)� c3N
5α+1 exp

(−c2N
ε
)
.
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We will derive a similar estimate forf (n) andh(n), wheref,h ∈ Sα . Let us assume
that‖f − h‖ � 1/Nα . Then|f (n)(t)− h(n)(t)| � 5/Nα for all t . If we define

F̃f,h,, = {∣∣(Lf (n)

(,+1)/N −L
f (n)

,/N

)− (Lh(n)

(,+1)/N −Lh(n)

,/N

)∣∣�N−(1/4)−(α/2)+ε
}

then

P(F̃f,h,,)� c7 exp
(−c8N

ε
)
.

Next we let

G̃N = ⋃
f,h∈Sα

⋃
0�,�N

F̃f,h,,.

Counting all possible pathsf (n) andh(n) yields an estimate analogous to the one forGN ,

P(G̃N)� c9N
4α+1 exp

(−c8N
ε
)
.

Step 2. In this step, we will prove uniform continuity off → L
f
1 on the setT∞ =⋃∞

n=1Tn.
Fix arbitrarily smallη,β > 0. Chooseε > 0 so small that(1/4) − (α/2) + 2ε < 0.

Recall the eventsDN from Proposition 3.2. Since
∑

N(P(DN)+P(GN)+P(G̃N)) <∞,
we can takeN0 sufficiently large so thatP(H)� η, whereH =⋃∞

N=N0
(DN ∪GN ∪ G̃N).

Without loss of generality we may takeN0 to be an integer power of 2, sayN0 = 2n0.
Fix anω /∈H . Consider anyf,h ∈ T∞ with ‖f − h‖ � 1/Nα

0 . Note that

∣∣Lh
1 −Lh(n0)

1

∣∣� ∞∑
n=n0

∣∣Lh(n+1)

1 −Lh(n)

1

∣∣, (3.3)

and ∣∣Lh(n+1)

1 −Lh(n)

1

∣∣� 2n∑
m=1

∣∣(Lh(n+1)

(m+1)/2n −Lh(n+1)

m/2n
)− (Lh(n)

(m+1)/2n −Lh(n)

m/2n
)∣∣. (3.4)

Consider 2n = N � N0. Sinceω /∈ ⋃N�N0
DN , Proposition 3.3 implies that there are

at mostc1N
(1/2)+ε values ofm for which there is a rectangleRmi in which there is a

point of the graph ofh(n) or of h(n+1) and a point of the graph ofWt(ω). So there are no
more thanc1N

(1/2)+ε summands on the right hand side of (3.4) that are non-zero.
For a value ofm for which the summand on the right hand side is nonzero, it is at most

N−(1/4)−(α/2)+ε, becauseω /∈⋃N�N0
GN . Multiplying the number of nonzero summands

by the the largest value each summand can be, we obtain∣∣Lh(n+1)

1 −Lh(n)

1

∣∣� c1N
(1/2)+εN−(1/4)−(α/2)+ε

= c1N
(1/4)−(α/2)+2ε = c1

(
2n
)(1/4)−(α/2)+2ε

. (3.5)

We have assumed thatε is so small that(1/4)− (α/2)+ 2ε < 0, so the bound in (3.5) is
summable inn. We increasen0, if necessary, so that

∑
n�n0

c1(2n)(1/4)−(α/2)+2ε � β/3.
Then (3.3) implies that ∣∣Lh

1 −Lh(n0)

1

∣∣� β/3.
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Similarly, ∣∣Lf
1 −L

f (n0)

1

∣∣� β/3.

A similar reasoning will give us a bound for|Lf (n0)

1 −Lh(n0)

1 |. We have

∣∣Lf (n0)

1 −Lh(n0)

1

∣∣� 2n∑
,=1

∣∣(Lf (n)

(,+1)/N −L
f (n)

,/N

)− (Lh(n)

(,+1)/N −Lh(n)

,/N

)∣∣.
First, the number of non-zero summands is bounded byc1N

(1/2)+ε
0 , for the same reason

as above. We have assumed that‖f − h‖ � 1/Nα
0 , so, in view of the fact thatω /∈⋃

N�N0
G̃N , the size of a non-zero summand is bounded byN

−(1/4)−(α/2)+ε
0 . Hence,

∣∣Lf (n0)

1 −Lh(n0)

1

∣∣� c1N
(1/2)+ε
0 N

−(1/4)−(α/2)+ε
0 = c1

(
2n0
)(1/4)−(α/2)+2ε � β/3.

By the triangle inequality, with probability greater than 1− η,∣∣Lf
1 −Lh

1

∣∣� β

if f,h ∈ T∞ and‖f − h‖ � 1/Nα
0

df= δ(β). We now fix an arbitrarily smallη0 > 0 and a
sequenceβk → 0, and findδ(βk) > 0 such that with probability greater than 1− η0/2k ,∣∣Lf

1 −Lh
1

∣∣� βk,

if f,h ∈ T∞ and‖f −h‖ � δ(βk). This implies that, with probability greater than 1−η0,
the functionf → L

f
1 is uniformly continuous onT∞. Sinceη0 is arbitrarily small, the

uniform continuity is in fact an almost sure property, although the modulus of continuity
may depend onω.

For an arbitraryf ∈ Sα , defineL̃f = limn→∞ L
f (n)

1 . By Corollary 2.5,Lf = L̃f a.s.
ThereforeL̃f is a version ofLf .

Since the functionf → L
f
1 is uniformly continuous onT∞, its extension toSα is

uniformly continuous with the same (random) modulus of continuity. The familySα is
equicontinuous, hence a compact set with respect to‖ · ‖. Therefore the supremum of
L̃
f
1 overSα is finite, a.s. ✷
Remark3.7. – It is rather easy to see that, with probability one,f → L̃

f
t is actually

jointly continuous onSα × [0,1]. To see this, note that in the proof of Proposition 3.5
we used Proposition 2.1, so what we actually proved was that

P

(
sup

(j−1)/n�t�j/n

∣∣(Lf
t −L

f
(j−1)/n

)− (Lg
t −L

g
(j−1)/n

)∣∣� λN−1/4(δ log(1/δ)
)1/2)� e−c1λ.

If we replace (3.4) by

sup
t

∣∣Lh(n+1)

t −Lh(n)

t

∣∣� 2n∑
m=1

sup
m/2n�t�(m+1)/2n

∣∣(Lh(n+1)

t −Lh(n+1)

m/2n
)− (Lh(n)

t −Lh(n)

m/2n
)∣∣,
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then proceeding as in the proof of Theorem 3.6, we obtain the joint continuity.

We will show that, in a sense, supf∈Sα
L
f
1 = ∞, a.s., ifα < 1/2. This statement is

quite intuitive – one would like to letf (ω)= Wt(ω) so thatLf
1 (ω) = ∞ – but we have

not defined the local time simultaneously for allf ∈ Sα , and there is a difficulty with
the number of null sets. Theorem 3.6 suggests that the question of joint existence is tied
to the question of the finiteness of the supremum, so we have to express our result in a
different way.

THEOREM 3.8. –Supposeα < 1/2. Then there exists a countable familyF ⊂ Sα such
that supf∈F L

f
1 = ∞ a.s.

Proof. –Let ,xt be the ordinary local time atx for Brownian motion. It is well known
that there exists a version of this process which is jointly continuous inx and t (see
Karatzas and Shreve [7] but note that their local times are half of our local times).

Suppose that a piecewise linear functionf is equal toy on an interval[s, t]. Then
Proposition 2.2 and a similar well known result for,y show that with probability one,
for all u ∈ [s, t],

Lf
u −Lf

s = ,yu − ,ys .

Fix α ∈ (0,1/2). Let F be the countable family of all functionsf defined on the
interval [0,1] such that for some integersn = n(f ) andm = m(f ), on each interval of
the form[(j − 1)/n, (j − 1

2)/n] the functionf is a constant multiple of 2−m, f is linear
on the intervals[(j − 1

2)/n, j/n], andf ∈ Sα. Then, with probability one, for allj , all
f ∈ F andn = n(f ),

L
f((j−1)/n)
(j−(1/2))/n −L

f((j−1)/n)
(j−1))/n = ,

f ((j−1)/n)
(j−(1/2))/n − ,

f ((j−1)/n)
(j−1))/n . (3.6)

In the rest of the proof we assume that this assertion and the joint continuity of,xt hold
for all ω.

Let

T = inf
{
t : |Wt | � 1 or∃r, s � t such that|Wr −Ws | � (1

4|r − s|)α}. (3.7)

By the well-known results on the modulus of continuity for Brownian motion,T > 0 a.s.
Let ε > 0. There existsδ such thatP(T < δ) < ε. Fix n. On the interval[(j −

1)/n, (j − 1
2)/n], letf1(t)=W((j −1)/n). On the interval[(j − 1

2)/n, j/n] let f1(t) be
linear withf1(j/n)=W(j/n). Let f2(t)= f1(t) for t � δ/2 and constant fort � δ/2.

It is quite easy to show thatf2 ∈ Sα for eachω in the set{T > δ} using the definition
(3.7) ofT . By the Markov property, the random variables

Xj = ,
f2((j−1)/n)
(j−(1/2))/n − ,

f2((j−1)/n)
(j−1))/n
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form an independent sequence, and by Brownian scaling,Yj = √
2nXj has the same

distribution as,0
1. Let c1 = E,0

1. By Chebyshev’s inequality,

P

(∣∣∣∣∣
[δn/2]∑
j=1

(Yj − c1)

∣∣∣∣∣� c1δn/4

)
� [δn/2]VarY1

(c1δn/4)2
� c2E(,

0
1)

2

δn
= c3

δn
.

Taken large so thatc3/(δn) < ε. Then there exists a setAn of probability at most 2ε
such that ifω /∈ An, thenT (ω)� δ and

[δn/2]∑
j=1

Xj � c4

√
δn.

We now choosem large and findf3 ∈ F so that on each interval[(j −1)/n, (j− 1
2)/n]

the functionf3 is a multiple of 2−m, f3 is linear on the intervals[(j − 1
2)/n, j/n], and

[δn/2]∑
j=1

[
,
f3((j−1)/n)
(j−(1/2))/n − ,

f3((j−1)/n)
(j−1))/n

]
� c4

√
δn/2;

this is possible by the joint continuity of,xt .
By (3.6) we can replace, by L in the last formula, so

L
f3
1 �

[δn/2]∑
j=1

[
L
f3
(j−(1/2))/n −L

f3
(j−1))/n

]
� c4

√
δn/2.

We conclude that

sup
f∈F

L
f
1 � c4

√
δn/2,

with probability greater than or equal to 1− 2ε. Since n and ε are arbitrary, the
proposition is proved. ✷
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