
Ann. I. H. Poincaré – PR37, 3 (2001) 339–372

 2001 Éditions scientifiques et médicales Elsevier SAS. All rights reserved

S0246-0203(00)01070-0/FLA

ON ESTIMATING THE DIFFUSION COEFFICIENT:
PARAMETRIC VERSUS NONPARAMETRIC

Marc HOFFMANN
Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR 7599,

Université Paris 6 et 7, 16, rue Clisson, 75013 Paris, France

Received 2 September 1999, revised 29 August 2000

ABSTRACT. – We consider the following problem: estimate the Lipschitz continuous diffusion
coefficientσ 2 from the path of a 1-dimensional diffusion process sampled at timesi/n, i =
0, . . . , n, when we believe thatσ 2 actually belongs to a smaller regular parametric set�0. By
introducing random normalizing factors in the risk function, we obtain confidence sets which
can be essentially better than the minimax raten−1/3 of estimation for Lipschitz functions in
diffusion models. With a prescribed confidence levelαn, we show that the best possible attainable

(random) rate is(
√

logα−1
n /n)2/5. We construct an optimal estimator and an optimal random

normalizing factor in the sense of Lepski (1999).
This has some consequences for classical estimation: our procedure is adaptive w.r.t.�0 and

enables us to test the hypothesis thatσ 2 is parametric against a family of local alternatives
with prescribed 1st and 2nd-type error probabilities. 2001 Éditions scientifiques et médicales
Elsevier SAS

AMS classification:62G05; 62M05

1. Introduction

In this paper, we study the statistical estimation of the diffusion coefficient, when one
observes a 1-dimensional diffusion process at timesi/n, i = 0, . . . , n, and asymptotics
are taken asn→∞. The sample size increases not because of a longer observation
period but, rather, because of more frequent observations. This setting has been
addressed by several authors, both from a parametric or a nonparametric point of view.
A brief summary of the state of the art yields the following conclusions:

(1) In regular parametric models, the LAMN property holds with rate 1/
√
n (see

Donhal [1], or more recently Gobet [3]), but the MLE is not tractable in general.
Computationnally fast methods based on contrasts are known and possess good
optimality properties as far as rates of convergence are concerned (Genon-Catalot
and Jacod [2]).
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(2) For nonparametric models, if the diffusion coefficient has smoothness of order
s (in a Sobolev or Hölder sense for instance but this can easily be embedded in
a Besov space framework), estimators based on kernels (see Jacod [8]) or linear
wavelets techniques (see [6]) achieve the raten−s/(1+2s). This, of course, under
some restriction which are specific to diffusion processes. Moreover, the rate
n−s/(1+2s) has been proved to be optimal in the minimax sense when the diffusion
coefficient possesses at least bounded derivatives up to order 2 (see [6]). However,
from a practical point of view, the methods proposed have drawbacks and are not
always easily implementable on numerical data.

(3) But, for nonparametric models with low order of smoothness (precisely: with
diffusion coefficient no more regular than Lipschitz continuous), the Nadaraya–
Watson estimator, introduced in this context by Florens in [4] – which historically
is the first nonparametric estimator of the diffusion coefficient – has good
convergence properties and is easy to implement in practice. (In this paper, we
also complete Florens’ results by showing that the Nadaraya–Watson estimator
achieves the raten−1/3 if the diffusion coefficient is Lipschitz continuous and that
this rate is optimal in the minimax sense.)

A caricatural synthesis could be the following: theoretically optimal and computation-
nally fast methods are known when the underlying model is either parametric and regular
(take then the contrast estimators of Genon-Catalot and Jacod and the – optimal – rate
1/
√
n is achievable) or nonparametric but the diffusion coefficient is Lipschitz contin-

uous (take the Nadaraya–Watson estimator of Florens and the – optimal – raten−1/3 is
achievable).

In this paper, we address the following problem: how can we combine both
technologies and what precise mathematical consequences can we derive? We believe
that such a question has some importance in practice: given two different methods, a
practitioner – motivated by a specific experiment in e.g. finance, biology or physics,
say – would legitimately ask which one to choose. Of course, aprior knowledge,
intuition, suspicion or guess about the underlying structure of the model (parametric)
usually exists, and this should be taken into account, even at a mathematical level. Also,
the answer we want to give must be numerically feasible and must quantify precisely
the consequences of the choice (parametric versus nonparametric), especially when the
initial suspicion turns out to be wrong. Our angle is thus the following: we believe that
the diffusion coefficient has a given regular parametric structure, but we wish to take
into account the possibility that this prior intuition is wrong, in which case the diffusion
coefficient could be any Lipschitz continuous function within a certain nonparametric
class.

To formulate and solve this problem mathematically, we use the notion ofminimax
risk with random normalizing factors, which is based onadaptive estimationand
nonparametric testing(Theorems 1 and 2 below). The method is easily tractable on
numerical data. The ideas developed here heavily rely on the work of Lepski [11].
However, Lepski considers in [11] a slightly different problem in the white noise model
context. Therefore, both techniques and answers given here differ a bit from his paper,
and we borrow his formalism and mathematical devices rather than complete his theory.
Note also that our approach is different from robustness, where misspecified models
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are allowed. In general, such models are defined around tubular neighbourhoods of the
original parametric model, at a distance vanishing asn→∞, an assumption we do not
have to make here.

A by-product of our approach is that we complete Florens’ paper [4] (and also [6]) by
showing that her estimator is optimal in the minimax sense under squared-error loss for
Lipschitz continuous diffusion coefficients (Proposition 2), but we know from [9] that
this is no longer true for a diffusion coefficient with a higher degree of smoothness.

1.1. Statistical setting

We observeXn = (Xi/n, i = 0, . . . , n) where(Xt)t∈[0,1] is a 1-dimensional diffusion
process of the form

Xt = x0+
t∫

0

b(s,Xs) ds +
t∫

0

σ (Xs) dWs, t ∈ [0,1] (1.1)

with x0 ∈ R, W a standard Brownian motion,b smooth,σ Lipschitz continuous and
nonvanishing. Our aim is to estimate the function(σ 2(x), x ∈ I ), for an arbitrary
compact intervalI . In this setting, the driftb cannot be identified from the data and
is a nuisance parameter.

Formally, we takeX as the canonical process on the space� = C([0,1],R) of
continuous functions equipped with the norm of uniform convergence, endowed with
its Borel σ -field F . We assume that the driftb has linear growth, therefore (1.1) has
a unique solution. We further denote byPσ2 the probability measure on(�,F) under
whichX solves (1.1).

There are several ways of assessing the quality of an estimation procedure. First, the
estimation ofσ 2(x) at a pointx ∈ I is meaningful only if the processX hits the point
x before time 1, or ifLx1(X) > 0, whereLx1(X)= limε→0

1
2ε

∫ 1
0 1|Xs−x|�ε ds denotes the

local time ofX at levelx and time 1. So if

D(x, ν)= {ω ∈�: Lx1
(
X(ω)

)
� ν

}
,

we shall restrict our attention to the setD(x, ν) for a givenν > 0, fixed throughout
the paper. However, the setD(x, ν) is not observable, therefore it is better for practical
purposes to replace – like in Jacod, [8] – the setD(x, ν) by a setDn(x, ν) measurable
w.r.t. the σ -field Gn generated by theXi/n, i = 0, . . . , n, at stagen. To do so, we
introduce the following empirical local time

Lxn
(
Xn
)= 1

2n2/3

n∑
i=1

1X(i−1)∈[x−n−1/3, x+n−1/3] (1.2)

which converges toLx1(X) asn→∞ (see, e.g., [9]). The choice of the bandwithn−1/3

will prove to be technically useful. Define

Dn(x, ν)= {ω ∈�: Lxn
(
Xn(ω)

)
� ν

}
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accordingly. We will further restrict our attention toDn(x, ν). For c > 1, let �c =
{f : R→R; c−1 � f (x)� c} and define the Lipschitz class

� =�c(L)= {f : R→R; |f (x)− f (y)|�L|x − y|} ∩�c.
The space� describes the minimal smoothness properties we require for the unknown
parameterσ 2.

An estimatorTn = (Tn(X
n, x), x ∈ I ) of (σ 2(x), x ∈ I ) is a function which is

Gn ⊗ B(I ) measurable; we evaluate its performance uniformly over� by means of its
minimax risk

Rn(Tn,�,ϕn)= sup
σ2∈�

Eσ2

{
ϕ−2
n

∫
I

(
Tn
(
Xn,x

)− σ 2(x)
)2
dx |Dn

I (ν)

}

whereDn
I (ν) =

⋂
x∈I Dn(x, ν) and ϕn > 0 is a normalizing factor. Of course, the

finiteness ofRn will only be meaningful if ϕn → 0 as n→ ∞. Here,Eσ2 means
integration with respect to the probabilityPσ2. Thus we measure the quality of estimation
in integrated quadratic loss, conditional on the eventDn

I (ν).

1.2. Statement of the problem and objectives

An estimatorT !n is said to attain an optimal rate of convergenceϕn(�) if

lim sup
n→∞

Rn

(
T !n ,�,ϕn(�)

)
<+∞ (1.3)

and no estimator can attain a better rate:

lim inf
n→∞ inf

Tn
Rn

(
Tn,�,ϕn(�)

)
> 0 (1.4)

where the infimum is taken over all estimators. In Section 2, we show thatϕn(�)= n−1/3

is an optimal rate of convergence and prove that the Nadaraya–Watson estimator,
introduced in this context by Florens in [4] attains the optimal rate (see also [8]). We
understandϕn(�) as anaccuracy of estimation: for any confidence levelα > 0, we
guarantee from (1.3) the existence of (an explicitly computable)γα > 0 s.t.

sup
σ2∈�

P
n,ν

σ2

{∥∥T !n − σ 2∥∥
I
� γαϕn(�)

}
� α, (1.5)

where Pn,ν
σ2 (·) = Pσ2{· | Dn

I (ν)} and ‖f ‖I = (
∫
I f

2(x) dx)1/2. Furthermore, in the
optimality sense described by (1.4), this accuracy is the best one achievable uniformly
over�.

However, suppose we suspectσ 2 to actually lie in a smaller parametric set, namely
σ 2 ∈�0=�0(I ) given by

�0(I )= {f ∈�: f (x)= σ 2
0 (x, θ), θ ∈%, x ∈ I

}
,

where%⊂Rs , s � 1 is given and the functionσ 2
0 (·, θ) is known up toθ .
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Under some regularity assumptions on% andσ 2
0 (see Section 2 below), an optimal rate

of convergence over�0 is ϕn(�0)= n−1/2 and is attained by the least-square estimator
T (0)n = σ 2

0 (·, θ̂n), where

θ̂n = arg min
θ∈%

n∑
i=1

((
&ni X

)2− σ 2
0 (X(i−1)/n, θ)

)2
(1.6)

and where we denote&ni X =
√
n(Xi/n − X(i−1)/n) the normalized increments of the

observed process. Based on the hypothesis:σ 2 ∈ �0 ⊂ �, we can hope to improve
the accuracy of estimation. A traditional way of improvement is the so-calledadaptive
approach.

1.2.1. The adaptive approach
Intuitively, a practitioner would presumably: (1) test the hypothesisσ 2 ∈�0, (2) based

on the acceptance of the test, choose the parametric estimatorT (0)n , (3) keep the
nonparametric estimatorT !n otherwise. From a mathematical point of view, such a
procedure – call it temporarilyT (a)n = T (a)n (x,Xn) – is admissible if it adapts to the
sets(�0,�) in the following sense: define theadaptive rate

ψn(σ
2)=

{
n−1/2 if σ 2 ∈�0,
n−1/3 if σ 2 ∈� \�0.

(1.7)

ThenT (a)n should verify

lim sup
n→∞

Rn

(
T (a)n ,�,ψn(·))<+∞. (1.8)

However, even if we have satisfied the adaptive criterion (1.8), we are unable to state any
accuracy of the method sinceψn =ψn(σ 2) depends on the unknown, we cannot provide
any confidence set of the type (1.5).

In this paper, we propose an alternative approach by introducing a procedure based
on random normalizing factors (r.n.f. for abbreviation), following Lepski in [11] and [7].
This will enable us to improve the accuracy of estimation in the sense of (1.5). We will
even show that a procedure based on r.n.f. can simultaneoulsy give an improvement of
accuracy and be adaptive in the sense of (1.8).

1.2.2. Random normalizing factors
We introduce the class of observable normalizing factors (r.n.f.)

�n = {ρn ∈ (0, ϕn(�)]: ρn is Gn-measurable
}
,

whereGn is the σ -field generated by the obervationXi/n, i = 0, . . . , n. Clearly, any
estimatorTn satisfying

lim sup
n→∞

Rn(Tn,�,ρn) <∞ for someρn ∈�n (1.9)

attains the optimal rate of convergence over�. But in contrast to an adaptive estimator,
we now guarantee the existence of an explicitly computableγα from (1.9) such that for
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anyα > 0:

sup
σ2∈�

P
n,ν

σ2

{∥∥T !n − σ 2∥∥
I
� γαρn

}
� α,

where we have set – recall (1.5) –Pn,ν
σ2 (·)= Pσ2{· |Dn

I (ν)}. This provides us with a new
(possibly random) accuracy of estimation. The possibility thatσ 2 belongs to�0 may
give a value toρn essentially better thanϕn(�) = n−1/3 with some probability, while
still ensuring a confidence set uniformly over�.

Next, we need a consistent way to compare 2 r.n.f. in order to define an optimality cri-
terion. Since a r.n.f. is random, we introduce the following (deterministic) characteristic:

DEFINITION 1. –For a given confidence level0 < αn < 1, the characteristic of
ρn ∈�n is

χn(ρn)= inf
{
t ∈ (0, ϕn(�)]: inf

σ2∈�0

P
n,ν

σ2 (ρn � t)� 1− αn}.
Note thatχn(ρn) depends onαn and on�0.

Remark. – A heuristic approach to understand this definition can be the following: let
us fix t > 0 “small”, i.e. at least smaller thanϕn(�). What we require is that a “good”
ρn will provide improvement of accuracy if the guess(σ 2 ∈ �0) turns out to be true.
This means that underPn,ν

σ2 , for σ 2 ∈�0, the event “ρn � t” has a controlled probability.
Mathematically, we translate this idea by saying that for a given confidence levelαn, we
guarantee that

inf
σ2∈�0

P
n,ν

σ2 (ρn � t)� 1− αn. (1.10)

Next, the smallert we can find such that (1.10) holds, the betterρn henceχn(ρn) is
defined as infimum oft providing (1.10).

We now have a canonical way to compare r.n.f. We naturally derive the following
optimality criterion:

DEFINITION 2. –ρ!n ∈�n is optimal(or α-optimal) w.r.t. (�,�0) if
(i) There exists an estimatorT !!n such that

lim sup
n→∞

Rn(T
!!
n ,�,ρ

!
n) <+∞.

(ii) For anyρn ∈�n such that

χn(ρn)

χn(ρ!n)
→ 0, asn→∞,

we have

lim inf
n→∞ inf

Tn
Rn(Tn,�,ρn)=+∞

where the infimum is taken over all estimators.
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Remark2. – Following Lepski, we callT !!n an α-adaptive estimator. Note that by
definition, we always haveρ!n � ϕn(�). Thus anα-adaptive estimator is optimal with
respect to�. Also, note that anα-optimal random normalizing factor may depends in
general on the quantityαn.

The aim of this paper is to construct an optimal random normalizing factor w.r.t
(�.�0) following Definition 2 and anα-optimal estimator accordingly.

1.3. Organization of the paper

In Section 2, we recall and adapt some facts about statistical estimation of the diffusion
coefficient from discrete observations. The nonparametric kernel estimator of Section 2.2
was introduced in [4] and later generalized to our setting in [8]. However, we give a self
containing proof of the upper bound. The lower bound is new, and follows the same
strategy as Proposition 1 in [6], with new technicalities.

Section 3 is devoted to the construction of an optimal r.n.f. for the diffusion coefficient
under a parametric hypothesis. We discuss the link to adaptive estimation and show
how a slight modification of the optimal (α-adaptive) estimator enables to obtain
simultaneously an optimal accuracy of estimation and an adaptive estimator. Links to
testing are also mentioned. The proofs are delayed until Section 4.

2. Preliminary results

2.1. Parametric estimation

We need the following regularity assumptions on% andσ 2
0 .

Assumption A. – We have
(1) The set% is compact inRs =R.
(2) For someM =MI > 0,

sup
x∈I

∣∣σ 2
0 (x, θ1)− σ 2

0 (x, θ2)
∣∣�M|θ1− θ2| for θ1, θ2 ∈%.

(3) For someη= ηI > 0, inf(x,θ)∈I×% | ddθ σ 2
0 (x, θ)|� η.

(4) The functionsd
2

dx2σ
2
0 and d

dx
d
dθ
σ 2

0 are well defined and continuous onI ×%.
(5) The equalityσ 2

0 (x, θ1)= σ 2(x, θ2) for all x ∈ I impliesθ1= θ2.

Remark1. – The above assumptions are standard in parametric estimation but do not
claim to be minimal. For instance, A5 can be relaxed but known extensions are usually
difficult to check (see, e.g., [2]).

By Ito formula, the model given by (1.1) can be recast in a regression setting, having

(
&ni X

)2= n
i/n∫

(i−1)/n

σ 2(Xs) ds + εni + a higher order term, (2.11)



346 M. HOFFMANN / Ann. I. H. Poincaré – PR 37 (2001) 339–372

whereεni = 2n
∫ i/n
(i−1)/n(Xs −X(i−1)/n) dWs is a martingale increment. Thus we observe

on the non-uniform random grid(X(i−1)/n, i = 1, . . . , n) the valuen
∫ i/n
(i−1)/n σ

2(Xs) ds ∼
σ 2(X(i−1)/n), contaminated by the noiseεni , plus a negligible drift effect. From this
formulation, we readily obtain the least-square estimatorT (0)n = σ 2

0 (·, θ̂n), whereθ̂n is
defined by (1.6).

PROPOSITION 1. –Grant Assumption A. Thenϕn(�0)= n−1/2 is an optimal rate of
convergence and is attained byT (0)n .

The proof of the upper bound is readily obtained from Theorem 1 in [2]. We simply
addedad hocassumptions in order to obtain the uniformity inθ ∈% for the integrated
risk. The proof of the lower bound follows from the LAMN property of the parametric
model (see, e.g., [1]).

Remark2. – Note that̂θn is not the best available parametric estimator ofθ – it is not
equivalent to the MLE – but since we focus on rates of convergence only, this intuitively
simple choice is sufficient.

2.2. Nonparametric estimation

We assume (with no loss of generality as far as practical considerations are concerned)
thatI is on a dyadic scale, namely

I = [k02
−j0, k12−j0

]
, for some integersk0, k1, j0.

For integers(k, j), let Ijk = [k2−j , (k+ 1)2−j ) and define forj � j0

V
j
I = {f ∈L2: f is constant onIjk, Ijk ⊂ I }

the finite element space of functions which are piecewise constant onI over a grid of
mesh 2−j . Indeed an orthogonal basis forV jI is given by the family

φjk = 2j/2φ
(
2j · −k), k such thatIjk ⊂ I,

whereφ = 1[0,1). We estimateσ 2 by an element ofV jnI , for some projection leveljn
chosen in accordance with the asymptotics in the following way. Let

ĉjnk =
1

n 2jnk

n∑
i=1

(
&ni X

)2
φjnk(X(i−1)/n),

(with 0/0= 0), where2jnk = 2jn
n

∑n
i=1 1X(i−1)/n∈Ijnk . Informally, we use the regression

analogy (
&ni X

)2∼ σ 2(X(i−1)/n)+ εni
defined in (2.11) and we weight the local average by an approximation2jnk of the time
spent by the processX in Ijnk . Finally, the nonparametric estimatorT !n (x) of σ 2(x) is



M. HOFFMANN / Ann. I. H. Poincaré – PR 37 (2001) 339–372 347

defined by

T !n (x)=
∑

k: Ijnk⊂I
ĉjnk φjnk(x)

and is specified by the projection leveljn. The performances ofT !n are summarized in
the following result. Forx ∈R, we denote by�x� the integer part ofx.

PROPOSITION 2. –An optimal rate of convergence over� is ϕn(�) = n−1/3.
Moreover,T !n , calibrated byjn = �1

3 logn∨ j0� is optimal for the criterion given by(1.3)
and(1.4).

3. Main result

This section is devoted to the construction of an optimal r.n.f.ρ!n in the sense of
Definition 2. Accordingly, we construct anα-adaptive estimator w.r.t.(�0,�). Our
algorithm can be described as follows:

(1) Estimate the distancêdn (for the‖ · ‖I seminorm) betweenσ 2 and�0,
(2) Takeρ!n = n−1/3 if d̂n is above some threshold level (possibly depending on the

confidence levelαn).
(3) Takeρ!n = ϕn,αn > 0 for some normalizing factorϕn,αn (tuned with the asymptot-

ics) otherwise.
We will show that we can takeϕn,αn converging to 0 faster thann−1/3 by a polynomial

power. The valueϕn,αn corresponds to the acceptance thatσ 2 ∈ �0 and measures the
improvement of the accuracy of estimation. The assumptions on the parametric family
�0 are less stringent than in Section 2.

Assumption B. – We have
(1) The set% is compact inRs , s � 1.
(2) There existµ> 0 andM =MI,µ > 0 such that

sup
x∈I

∣∣σ 2
0 (x, θ1)− σ 2

0 (x, θ2)
∣∣�M‖θ1− θ2‖µ for θ1, θ2 ∈%.

(3) For allθ ∈%, σ 2
0 (·, θ) ∈�0.

(4) There existθ0 ∈% andL̃ < L such thatσ 2
0 (·, θ0) ∈�c(L̃).

3.1. Construction of ρ�
n and main result

ForJn � j0 andθ ∈%, define

dn(θ)=
∑

k: IJnk⊂I

{
ĉJnk − cJnk

(
σ 2

0 (·, θ)
)}2
,

where

cJnk
(
σ 2

0 (·, θ)
)= 2Jn/2

∫
IJnk

σ 2
0 (x, θ) dx.
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By Assumption B2, there existsC = C(µ,MI,µ) such that

|dn(θ1)− dn(θ2)|� C‖θ1− θ2‖µ for θ1, θ2 ∈%.
This, together with Assumption B1, ensures the existence of,θ!n ∈%, measurable w.r.t.
Gn-measurable and solution to

dn(θ
!
n)= inf

θ∈%dn(θ).

For technical reasons, we need to compensate the variance ofdn as follows. Let

CJnk =
2

3n22 2
Jnk

n∑
i=1

(
&ni X

)4
φ2
Jn,k
(X(i−1)/n)

and

d̂n(θ
!
n)= dn(θ!n)−

∑
k: IJnk⊂I

CJnk.

The estimated̂n(θ!n) will determine the following decision rule. Forαn > 0, let Jn =
�2

5 log n√
logα−1

n

∨ j0� and

ϕn,αn =
(√

logα−1
n

n

)2/5

.

Note that 2−Jn andϕn,αn coincide up to a constant. Define now the threshold

λ=A(10, c, ν)−1/4,

whereA(t, c, ν) is specified in (4.17), see the proof of Lemma 3. (The choice ofλ will
become transparent in the proof of Theorem 1 in Section 4 below when Lemma 3 is
used.) The decision rule then takes the form

ρ!n = ϕn,αn1{d̂n(θ!n)�λ2ϕ2
n,αn } + n

−1/31{d̂n(θ!n)>λ2ϕ2
n,αn }

and

T̄n(x)=
∑

k: IJnk⊂I
cJnk

(
σ 2

0 (·, θ!n)
)
φJnk(x).

Finally, our estimator ofσ 2(x) is

T !!n (x)= T̄n(x)1{ρ!n=ϕn,αn } + T !n (x)1{ρ!n=n−1/3},

whereT !n is the nonparametric estimator of Section 2.2 specified withjn = �1
3 logn∨j0�.

THEOREM 1. – Grant Assumption B. Assume thatn−a � αn < 2−4 for some arbitrary
a > 0. Thenρ!n is an optimal random normalizing factor w.r.t.(�0,�) and T !!n is
α-adaptive.
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Remark1. – In particular, we see that if our parametric assumption is correct, with
prescribed confidence 1− αn, we are able to improve (asymptotically) the accuracy
of estimation, i.e., the size of the confidence band we construct, by a factorϕn,αn =
(
√

logα−1
n /n)

2/5.

Remark2. – The improvement of the random confidence band is of a polynomial
order, but is lowered down by the size ofαn. However, the restrictionαn � n−a ensures
that it is a least of order(

√
logn/n)2/5.

Remark3. – For practical purposes, it seems more clever to replaceν in the definition
of λ by infk: IJnk⊂I 2Jnk . For technical reasons, we are unable however to prove Theorem 1
in this setting. Note also that the practical implementation ofρ!n is easy: the computation
of ĉJnk is reasonably fast and the cardinality (ink) of such ĉJnk is of order logn.
Likewise for theCJnk . Eventually, the minimization problem arg minθ dn(θ) has the
same complexity as the computation of a standard parametric estimator. Onceρ!n is
computed, one readily computes eitherT̄n (which is no more difficult to obtain than
T !n ) or T !n itself, the standard Nadaraya–Watson estimator.

3.2. Discussion

3.2.1. Links to adaptive estimation
We show in this paragraph how a simple modification ofT !!n provides us with an

adaptive estimator – in the usual sense of (1.8) – without loosing the optimality in
terms of r.n.f. Assumption A is in force here. We consider the estimatorT (0)n = σ 2

0 (·, θ̂n)
introduced in Section 1.2, wherêθn solves (1.6). Note thatT (0)n is well defined thanks to
Assumption A. Let

T (a)n (x)= T (0)n (x)1{d̂n(θ̂n)�λ2ϕ2
n,αn } + T

!
n (x)1{d̂n(θ̂n)>λ2ϕ2

n,αn }.

Define the random normalizing factorρ(a)n accordingly

ρ(a)n = ϕn,αn1{d̂n(θ̂n)�λ2ϕ2
n,αn } + n−1/31{d̂n(θ̂n)>λ2ϕ2

n,αn }.

THEOREM 2. – Grant Assumption A. We have
(i) The estimatorT (a)n is α-adaptive w.r.t.(�0,�).

(ii) If moreoverαn =O(n−1), the estimatorT (a)n is adaptive in the usual sense w.r.t.
(�0,�):

lim sup
n→∞

Rn

(
T (a)n ,�,ψn(·))<∞,

whereψn(σ 2) denotes the adaptive rate defined by(1.7).

The proof of (i) is delayed until Section 4. The proof of (ii) is a direct consequence of
(i) and Proposition 2 in [11].

Remark1. – The decision rule 1{d̂n(θ̂n)�λ2ϕ2
n,αn } answers to our original question: given

a parametric procedureT (0)n versus a nonparametric oneT !n , which one shall we use in
practice? The answer 1 to our test yields the choiceT (0)n , whereas the answer 0 yields
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T !n . The precise mathematical consequences of this choice are described by the r.n.f.
ρ(a)n . Moreover, this choice is optimal in the sense of Definition 2.

Remark2. – Again – see Remark 3 in Section 3.1 – we can see that the practical
implementation ofT (a)n is fast and has complexity no worse than that ofT !n .

3.2.2. Links to testing
We explore in this section another virtue ofρ!n, namely the possibility to build a test

for the hypothesisσ 2 ∈ �0 against a family of local alternatives. More precisely, given
h > 0 and 0< α < 1, define

Wn(h, I,α)= {f ∈�c(L): inf
θ∈%

∥∥f − σ 2
0 (·, θ)

∥∥
I
� h · ϕn,α}.

THEOREM 3. –Grant Assumption A. For any0 < α,β < 1, we have, for large
enoughn

(i) supσ2∈�0(I )
P
n,ν

σ2 (ρ
!
n = n−1/3)� α.

(ii) There existsh(β) > 0 such that

sup
σ2∈Wn(h(β),I,α)

P
n,ν

σ2

(
ρ!n = ϕn,α

)
� β.

In words, the hypothesis:σ 2 ∈ �0(I ) can be tested against the family of local
alternatives:σ 2 ∈Wn (h(β), I, α) with prescribed first and second type error probability.
The proof of (i) readily follows from (4.27) in the proof of Theorem 1 below. The proof
of (ii) follows from Theorem 1 together with Proposition 3 in [11].

4. Proofs

The proof of Proposition 2 can be read independently from the that of Theorems 1
and 2. The reader is however invited to first scan thenotation and preliminariessection.

4.1. Notation and preliminaries

For θ ∈%, we abbreviatePσ2
0 (·,θ) by Pθ when no confusion is possible. Forσ 2 ∈ �,

let P̃σ2 denote the law of the processY such thatdYt = σ (Yt) dWt , Y0= x0. DefineP̃ n,ν
σ2

accordingly. We denote byC a generic constant, possibly varying from line to line and
which may depend onI . Any other dependence will be explicitly mentioned.

4.1.1. Preliminary decompositions
(a) Forσ 2 ∈�, define

ank
(
σ 2)= 23Jn/2

n2Jnk

n∑
i=1

1X(i−1)/n∈IJnk
∫
IJnk

τ ni (x,X)dx,

bnk
(
σ 2)= 2Jn/2

n2Jnk

n∑
i=1

1X(i−1)/n∈IJnkε
n
i ,
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where

τni (x,X)= σ 2(x)− n
i/n∫

(i−1)/n

σ 2(Xs) ds. (4.12)

Define the random variable

&n
(
σ 2)= ∑

k: IJnk⊂I

{
cJnk

(
σ 2

0 (·, θ!n)− σ 2)− ank (σ 2)}2
, (4.13)

where – recall Section 2 – we denotecjk(σ 2)= 2j/2
∫
Ijk
σ 2(x) dx. Using that(&ni X)

2=
n
∫ i/n
(i−1)/n σ

2(Xs) ds + εni underP̃σ2 we have

ĉJnk − cJnk = ank
(
σ 2)+ bnk (σ 2).

We thus obtain the following decomposition

d̂n(θ
!
n)=&n

(
σ 2)+Mn

(
σ 2)+Nn(σ 2),

having

Mn

(
σ 2)= 2

∑
k: IJnk⊂I

[
cJnk

(
σ 2− σ 2

0 (·, θ!n)− ank
(
σ 2))]bnk (σ 2),

Nn
(
σ 2)= ∑

k: IJnk⊂I

[(
bnk
)2−CJnk].

(b) Defineψ(x) = 1[0,1/2)(x) − 1[1/2,1)(x). If djk
(
σ 2
) = ∫

σ 2(x)ψjk(x) dx is the
wavelet coefficient ofσ 2 in the Haar basis, from the multiscale decomposition ofσ 2,
we have by Parseval’s identity∥∥T̄n − σ 2∥∥2

I
= ∑
k: IJnk⊂I

c2
Jnk

(
σ 2− σ 2

0 (·, θ!n)
)+ εJn(σ 2)

� 2&n
(
σ 2)+ 2

∑
k: IJnk⊂I

(
ank
(
σ 2))2+ εJn(σ 2),

where the remainder termεJn(σ
2)=∑j�Jn

∑
k: Ijk⊂I d

2
jk(σ

2) satisfies

εJn
(
σ 2)�C(c,L)2−2Jn = C ′(c,L)ϕ2

n,αn

sinceσ 2 ∈�. Note that

∣∣τni (x,X)∣∣1X(i−1)/n∈IJnk � L

(
2−Jn + n

i/n∫
(i−1)/n

|Xs −X(i−1)/n|ds
)
, (4.14)

therefore |τni (x,X)|1X(i−1)/n∈IJnk � L(2−J−n + n−1/2rni (σ
2)), and since we have

supσ2∈� Ẽ
n,ν

σ2 (|rni (σ 2)|p)� Cp for all p� 1 by the Burkholder–Davis–Gundy inequality
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– further abbreviated by BDG – it follows that

∣∣ank (σ 2)∣∣� L
(
2−3Jn/2+ 2−Jn/2n−1/2rni

)
and finally

Ẽ
n,ν

σ2

{∑
k

(
ank
(
σ 2))2}�C(c,L)2−2Jn = C ′(c,L)ϕ2

n,αn
. (4.15)

(c) The random functionσ 2
0 (·, θ!n) − σ 2 belongs to�2c(L). Moreover, since

supx |τni (x,X)|� 2c, we always have|ank (σ 2)|� 2−Jn/2+1c. Therefore|&n(σ 2)|� 8c2.
(d) We further decomposeNn =N(1)

n +N(2)
n , having

N(1)
n = ∑

k: IJnk⊂I

1

n222
Jnk

n∑
i=1

[(
εni
)2− 2

3

(
&ni X

)2]
φ2
Jnk
(X(i−1)/n)

N(2)
n = ∑

k: IJnk⊂I

1

n222
Jnk

∑
1�i<j�n

εni ε
n
j φJnk(X(i−1)/n)φJnk(X(j−1)/n).

4.1.2. Technical lemmas
LEMMA 1. – Letx > 0. For all t � 2, we have

P̃
n,ν

σ2

{
N(1)
n � x

}
� C(t, c,L, ν)n−3t/22Jntx−t .

Proof. –It is easily seen that(εni )
2− 2

3(&
n
i X)

2=Un
i + V ni , with

Un
i = σ 4(X(i−1)/n)

[((
&ni W

)2− 1
)2− 2

3

(
&ni W

)4]
and where the remainder termV ni satisfies (apply the BDG inequality)

sup
σ2∈�

Ẽ
n,ν

σ2

{∣∣V ni ∣∣p}� C(p, c, ν)n−p/2, for all p > 0.

Since underP̃ n,ν
σ2 , we have infk 22

Jnk
� ν2 and noting that

∑
k φ

2
Jnk
(X(i−1)/n) � 2Jn , it

suffices then to bound

P̃
n,ν

σ2

{∣∣∣∣∣ 1

n2

n∑
i=1

Zni

∣∣∣∣� 1

2
2−Jnxν

}
, Zni =Un

i ,V
n
i .

By Chebyshev’s inequality, we readily see that the term involvingZni = V ni has the right
order. Likewise, using thatEn,ν

σ2 {| 1√
n

∑n
i=1U

n
i |p} � C(p, c, ν) since theUn

i are zero-
mean and have bounded moments of any order, we obtain the desired result.✷

LEMMA 2 (Fuk and Nagaev [5]). –LetSn =∑n
i=1Mi be aFn-martingale. Forx > 0

and t � 2, we have

P(|Sn|� x)� C1(t)At,nx
−t + exp

{
C2(t)

x2

B2
n

}
,
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where At,n = ∑n
i=1E(|Mi|t ), B2

n =
∑n
i=1E(M

2
i ) and C1(t) = (1 + 2/t)t , C2(t) =

2/(t + 2)2e−t .

LEMMA 3. – Letx > 0. For all t � 2, we have

P̃
n,ν

σ2

{
N(2)
n � x

}
� C(t, c,L, ν)n1−3t/22Jnt x−t + exp

{−A(t, c, ν)x2n22−Jn
}
,

whereA(t, c, ν) is specified in(4.17)below.

Proof. –Define, forj = 2, . . . , n

χnj = 2−Jn
∑

k: IJnk⊂I
εnj φJnk(X(j−1)/n)

j−1∑
i=1

εni φJnk(X(i−1)/n).

(a) Since under̃Pn,ν
σ2 , we have infk 22

Jnk
� ν2, it suffices to bound

P̃
n,ν

σ2

{∣∣∣∣∣
n∑
j=1

χnj

∣∣∣∣∣� n22−Jnν2x

}
.

By Lemma 2, this last quantity is less than

C1(t)

n∑
j=1

Ẽ
n,ν

σ2

{∣∣χnj ∣∣t}+ exp
{
−C2(t)ν

2x2n22−Jn
n22−Jn

B2
n

}
, (4.16)

whereB2
n =

∑n
j=1 Ẽ

n,ν

σ2 {(χnj )2}. We readily have

Ẽ
n,ν

σ2

{∣∣χnj ∣∣t}� 2−JntEn,ν
σ2

{∣∣εnj ∣∣t sup
k

φtJnk(X(j−1)/n)

∣∣∣∣
j−1∑
i=1

εni

∑
k

φJnk(X(i−1)/n)

∣∣∣∣∣
t}

�C(c,L, ν)2−Jnt/2
(
E
n,ν

σ2

{∣∣∣∣∣
j−1∑
i=1

εni

∑
k

φJnk(X(i−1)/n)

∣∣∣∣∣
2t})1/2

,

where we used Cauchy–Schwarz inequality and supk φJnk(X(j−1)/n) � 2Jn/2. Using∑
k φJnk(X(i−1)/n) � 2Jn/2 and a martingale argument, the last quantity is less than

C(t, c,L, ν)j t/2. Using
∑n
j=1 j

t/2 � Cnt/2+1, we obtain the desired bound for the first
term.

(b) It remains to boundB2
n . The processvnk,j = 1√

n

∑j−1
i=1 ε

n
i φJnk(X(i−1)/n) indexed by

j is a martingale, therefore

B2
n = n2−2Jn

n∑
j=1

Ẽ
n,ν

σ2

{( ∑
k: IJnk⊂I

φJnk(X(j−1)/n)v
n
k,j

)2}
.

Now ∣∣∣∣ ∑
k: IJnk⊂I

φJnk(X(j−1)/n)v
n
k,j

∣∣∣∣� 2Jn/2
∣∣vnk(X(j−1)/n),j

∣∣,
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wherek(X(j−1)/n)= inf{k: X(j−1)/n � (k+ 1)2−Jn}. Using

(
vnk(X(j−1)/n),j

)2 �
∑
k

sup
1�l�n

(
vnk,l
)2

1{k(X(j−1)/n)=k}

and{k(X(j−1)/n)= k} = {X(j−1)/n ∈ IJnk}, we successively have

B2
n � n2−Jn

n∑
j=1

Ẽ
n,ν

σ2

{(
vnk,j

)2}

� n2−Jn
∑
k

Ẽ
n,ν

σ2

{(
sup
l

vnk,l
)4}1/2

Ẽ
n,ν

σ2

{(
n∑
j=1

1X(j−1)/n∈IJnk

)2}1/2

by Cauchy–Schwarz inequality. Using Doob’s inequality, we get

Ẽ
n,ν

σ2

{(
sup
l

vnk,l
)4}� C(c, ν).

Likewise, we have

Ẽ
n,ν

σ2

{(
2Jn

n

n∑
j=1

1X(j−1)/n∈IJnk

)2}
� Ẽn,ν

σ2

{(
sup
x

Lxn(Xn)
)2}� C(c,L, ν)

by approximation of the local time (see, e.g., [9]). ThereforeB2
n � C(c, ν)n22−Jn .

A more detailed examination ofB2
n shows that

B2
n � n22−JnZ(c) := n22−Jn2c2 inf

q
C(2p)K(c, q),

whereC(2p) is the optimal constant in Rosenthal’s inequality, and 1/p+ 1/q = 1. The
constantK(c, q) is defined by

K(c, q)�E
{(

sup
x
Lx
c2

)2}[
E
{(

sup
x
Lx
c2

)q}]1/q
,

whereLxt is the Brownian local time. (The proof is rather technical so we omit it.) Back
to (4.16), we see that the choice

A(t, c, ν) := C2(t)ν
2/Z(c) (4.17)

yields the desired bound.✷
4.2. Proof of Proposition 2: upper bound

(a) Note that onIjnk , T
!
n (x) is identically equal to

2jn
n

∑n
i=1(&

n
i X)

21X(i−1)/n∈Ijnk
2jn
n

∑n
i=1 1X(i−1)/n∈Ijnk

.
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Therefore, from the definition ofLxn given in (1.2) and the choice ofjn = �1
3 logn∨ j0�,

we have under̃Pn,ν
σ2 :

Ẽ
ν,n

σ2

∫
Ijnk

(
σ 2(x)− T !n (x)

)2
dx � ν−1

∫
Ijnk

Ẽ
ν,n

σ2

(
2jn

n

n∑
i=1

1X(i−1)/n∈Ijnk
[
σ 2(x)− (&ni X)2]

)2

.

Recall from Section 2.2 and Eq. (2.11) that underP̃ n,ν
σ2 , we have the following

decomposition:(&ni X)
2 = n

∫ i/n
(i−1)/n σ

2(Xs) ds + εni , where the martingale term is

defined byεni = 2n
∫ i/n
(i−1)/n(Xs −X(i−1)/n)σ (Xs) dWs . Recall from (4.12) and (4.14) that

for x ∈ Ijnk :

∣∣τni (x,X)∣∣1X(i−1)/n∈Ijnk �L
(

2−jn + n
i/n∫

(i−1)/n

|Xs −X(i−1)/n|ds
)
,

whereτni (x,X) is defined in (4.12). It follows that

Ẽ
ν,n

σ2

{∫
I

(
σ 2(x)− T !n (x)

)2
dx

}
� C(L, ν)

(
An1 +An2+An3

)
,

where

An1=
∑

k: Ijnk⊂I

∫
Ijnk

Ẽ
n,ν

σ2

{(
1

n

n∑
i=1

1X(i−1)/n∈Ijnk

)2}
dx,

An2=
∑

k: Ijnk⊂I

∫
Ijnk

22jnẼ
n,ν

σ2

{(
n∑
i=1

i/n∫
(i−1)/n

|Xs −X(i−1)/n|1X(i−1)/n∈Ijnk

)2}
dx,

An3=
∑

k: Ijnk⊂I

∫
Ijnk

Ẽ
n,ν

σ2

{(
1

n

n∑
i=1

εni 1X(i−1)/n∈Ijnk

)2}
dx.

(b) Let 2� i < j � n. The random variableX(i−1)/n has a densitypσ(i−1)/n(x) w.r.t.

the Lebesgue measure underP̃σ2 which satisfiespσ(i−1)/n(x) � C(L, c)
√
n/(i − 1).

(See (4.21) in Section 4.3.2. below for an explicit form ofpσt .) Thus, by use of the
Markov property, we have

P̃
n,ν

σ2 {X(i−1)/n ∈ Ijnk, X(j−1)/n ∈ Ijnk}� C(c,L, ν)2−2jn n√
ij
.

Expanding the sum within the expectation, it follows thatAn1 is less than

|I |n−1+C(c,L, ν)2−2jn
∑

2�i<j�n

[
n/(i − 1)(j − 1)

]1/2 � C(c,L, ν)n−2/3
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from the choice ofjn, thusAn1 has the right order. (One easily checks that expanding the
sum from 2 ton instead of 1 ton does not alter the order of magnitude ofAn1.)

(c) Let 2� i < j � n and(u, s) ∈ [ i−1
n
, i
n
] × [ j−1

n
,
j

n
]. By repeated use of the Markov

property, using the same argument on the density ofX(i−1)/n as in (b) and the BDG
inequality, we obtain

Ẽ
n,ν

σ2

{|Xs −X(i−1)/n|1X(i−1)/n∈Ijnk |Xu −X(j−1)/n|1X(j−1)/n∈Ijnk
}

� C(c,L, ν)
2−2jn

√
(i − 1)(j − 1)

.

Thus, by expanding the sum within the expectation inAn2, we readily getAn2 �
C(c,L, ν)n−1 which is asymptotically negligible.

(d) Finally, we haveẼn,ν
σ2 {(εni )2} � C(c,L) from the BDG inequality; using that

the εni are martingale increments, it is easily seen thatAn3 � C(c,L, ν)2jnn−1 �
C(c,L, ν)n−2/3 from the choice ofjn. The proof of the upper bound is complete.

4.3. Proof of Proposition 2: lower bound

For technical convenience and with no loss of generality, we prove the lower bound
for the new parametrizationσ 2 �→ 1/σ 2. Indeed, for any normalizing factorzn → 0,
the infimum in infTn Rn(Tn,�, zn) is clearly attained among the estimatorsTn such that
Tn ∈�. Thus:

∀x ∈R:
∣∣Tn(x)− σ 2(x)

∣∣� 1

c2

∣∣T −1
n (x)− σ (x)−2∣∣

and

inf
Tn

Rn(Tn,�, zn)� c−4 inf
Tn

sup
σ2∈�

E
n,ν

σ2

{
z−2
n

∥∥∥∥Tn − 1

σ 2

∥∥∥∥
2

I

}
. (4.18)

Therefore, it is sufficient to prove a lower bound for the RHS of (4.18). We further
assume for simplicity thatI = [0,1]. Letψ : R→ R be of classC4, with supx |ψ ′(x)|�
L/c2 and bounded derivative up to order 4, with support in[0,1]. Forjn andγn > 0, we
consider the following parametric subfamily:

Cjn,γn =
{
σ 2 ∈�c(L): 1

σ 2(x)
= 2

c
+ γn

2jn∑
k=0

vkψjnk(x), vk =±1

}

so thatJ Cjn,γn = 22jn and the functionsψjnk andψjnk′ have disjoint support fork != k′.
We impose thatτ = supx |ψ(x)| is such that 2c − τ � c and 2

c
+ τ � c−1. We take

jn = �1
3 log2n� andγn = n−1/2. These conditions imply

Cjn,γn ⊂�c(L).
4.3.1. First reduction

Forσ 2 ∈ Cjn,γn , denote byQσ2 the law of

dXt = 1

2
σσ ′(Xt) dt + σ (Xt) dWt (4.19)
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and defineQn,ν

σ2 analogously. We will also use the notationQn
σ2 for the law ofXn =

(Xi/n, i = 1, . . . , n) on Rn whereX solves (4.25). Fork = 1, . . . ,2jn , denote byσ 2
k,+

andσ 2
k,− any pair of functions inCjn,γn such thatσ−2

k,+(x)− σ−2
k,−(x)= 2γnψjnk(x). Set

λ
(
σ 2
k,+, σ

2
k,−,X

(n)
)= dQn

σ2
k,+

dQn

σ2
k,−

.

LEMMA 4. –Under the assumptions of Proposition2, the following condition implies
the lower bound of Proposition2:

lim sup
n→∞

sup
k

EQ
σ2
k,−

(∣∣ logλ
(
σ 2
k,+, σ

2
k,−,X

(n)
)∣∣)<∞. (4.20)

Proof. –We abbreviateλ(σ 2
k,+, σ 2

k,−,X(n)) by λ and setu= Pσ2
k,−
(infx∈I Lxn � ν). Let

t > 0. Clearly

P
n,ν

σ2
k,−

(
λ� e−t

)
� Pσ2

k,−

(
λ� e−t

)+ u− 1� u− 1

t
EQ

σ2
k,−

(∣∣ logλ
(
σ 2
k,+, σ

2
k,−,X

(n)
)∣∣),

where we used Chebyshev’s inequality. By takingt large enough, (4.20) implies for large
enoughn

P
n,ν

σ2
k,−

(
λ� e−t

)
� s > 0,

wheres does not depend onn. This implies the lower bound 2jn/2γn = n−1/3 for the risk
Rn, as follows from [10, Chapter 2]. ✷
4.3.2. Proof of (4.20)

Preliminary decomposition. Let Sσ (x) = ∫ x0 du
σ(u)

. If σ 2 ∈ Cjn,γn , we have by Ito’s
formula

Xt = S−1
σ

(
Sσ (x0)+Wt

)
,

therefore, the transition density ofXt underQσ2 reads fort > 0

pσt (x, y)=
1√

2πσ(y)t
exp− 1

2t

[
Sσ (y)− Sσ (x)]2. (4.21)

Elementary computations yield, underQσ2
k,−

logλ=−
n∑
i=1

{
log

σk,−
σk,+

(Xi/n)+ n
2

[(
δni Sσk,+(X)

)2− (δni Sσk,−(X))2]
}
,

where we denoteδni f (X) = f (Xi/n) − f (X(i−1)/n). For a genericσ 2 in Cjn,γn , define
Hjnk by the formula

1

σ 2(x)
= 2

c
+ γnvkψjnk(x)+ γnHjnk(x).
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We thus have 1
σ2
k,+(x)

− 1
σ2
k,−(x)

= 2γnψjnk(x) and

1

σ 2
k,+(x)

+ 1

σ 2
k,−(x)

= 4

c
+ γnHjnk(x).

It follows that(
δni Sσk,+(X)

)2− (δni Sσk,−(X))2

= 8γn
c

(
δni X

) Xi/n∫
X(i−1)/n

ψjnk(u) du+ 2γ 2
n

Xi/n∫
X(i−1)/n

ψjnk(u) du

Xi/n∫
X(i−1)/n

Hjnk(u) du.

(4.22)

By Taylor’s formula, summing inn, we have from the decomposition of logλ:

n

2

n∑
i=1

8γn
c

(
δni X

) Xi/n∫
X(i−1)/n

ψjnk(u) du

= 4
√
n

4∑
p=1

2(p−
1
2 )jn

(p+ 1)!
n∑
i=1

ψ(p−1)(2jnX(i−1)/n − k)(δni X)p+1

+
√
n

30
29jn/2

n∑
i=1

ψ(4)
(
2jnξX(i−1)/n,Xi/n − k

)(
δni X

)6
, (4.23)

whereξX(i−1)/n,Xi/n ∈ [X(i−1)/n,Xi/n].
Remainder terms. Let us first show that the terms of order 2 and more in (4.23)

have finite moments, uniformly inn andk. Up to a drift translation, we may assume that
X is a local martingale with diffusion coefficientσk,−. (This only amounts to a change
of probability – further denoted bỹPσk,− – which is sensitive to constants only.)

(a) We first study the term corresponding top = 2. By a standard martingale argument
its variance is less thanC(c,L)23jnnsupx |ψ ′(x)|×

∑n
i=1 Ẽσk,−{(δni X)6}. Using the BDG

inequality the properties ofψ and the fact thatσ 2 ∈ �c(L), we see that the term within
the expectation is of ordern−3. This, together with the choice ofjn shows that the above
variance is less thanC(c,L).

(b) Let us denote byAn the term corrresponding top = 3 in (4.23). We have

Ẽσk,−
{|An| |Fn

i

}
� C(c,L)n

n∑
i=1

2jn |ψ ′′ |(2jnX(i−1)/n − k)Ẽσk,−{(δni X)4 |Fn
i

}
.

Applying again the BDG inequality, the term within the conditional expectation is of
ordern−2. Therefore

Ẽσ2
k,−
(|An|)� C(c,L)n−1

n∑
i=1

2jn P̃σk,−{X(i−1)/n ∈ Ijnk}.
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Next, we remark that ifx(Ijnk) denotes the midpoint ofIjnk, then the above term is equal

toC(c,L)Ẽσk,−(L
x(Ijnk)
n ), which is uniformly bounded (see, e.g., [8]).

(c) In the same line as in (a), the variance of the term corresponding top = 4 is less
thanC(c,L)27jnn

∑n
i=1 Ẽσ2

k,−
{(δni X)10} and is asymptotically negligible from the choice

of jn.
(d) The remainder term has a first moment bounded byC(c,L)

√
n29jn/2

∑n
i=1

Ẽσ2
k,−
{(δni X)6}, which has the right order.

(e) We now bound the second term in the decomposition (4.22), that is, after summing
in n,

Qn =
n∑
i=1

Xi/n∫
X(i−1)/n

ψjnk(u) du

Xi/n∫
X(i−1)/n

Hjnk(u) du.

By Taylor’s formula, we successively have

Xi/n∫
X(i−1)/n

ψjnk(u) du=ψjnk(X(i−1)/n)δ
n
i X+

1

2
23jn/2(ψ)′

(
2jnξX(i−1)/n,Xi/n − k

)(
δni X

)2

and

Xi/n∫
X(i−1)/n

Hjnk(u) du=Hjnk(X(i−1)/n)δ
n
i X+

1

2
(Hjnk)

′(ζX(i−1)/n,Xi/n)
(
δni X

)2

with ξX(i−1)/n,Xi/n andζX(i−1)/n,Xi/n in [X(i−1)/n,Xi/n], therefore, sinceψjnk andHjnk have
disjoint support, it suffices to bound the cross-terms in the product of the two above
expansions. We first need an auxiliary result.

LEMMA 5. – Let g be a Borel function with compact support in[0,1]. For
ξX(i−1)/n,Xi/n ∈ [X(i−1)/n,Xi/n], we have

∣∣g(2jnξX(i−1)/n,Xi/n − k
)∣∣� sup

x
|g(x)|(1{X(i−1)/n∈Ijnk} + 1{X(i−1)/n∈Ijnk} + 1κn),

whereP̃σk,−(κn)�Ck(c,L)n−k/6 for all k � 0.

Proof. –Clearly

(ξX(i−1)/n,Xi/n ∈ Ijnk)⊂ (X(i−1)/n ∈ Ijnk)∪ (Xi/n ∈ Ijnk)∪
(∣∣δni X∣∣� 2−jn

)
.

Thus we have the announced inequality withκn = (|δni X| � 2−jn). By Chebyshev’s
inequality, forr � 0

P̃σk,−(τn)� 2jnkẼσk,−
(∣∣δni X∣∣k)�C(k, c,L)nk( 1

3− 1
2 ),

where we used the BDG inequality.✷
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(e1) We first bound

n∑
i=1

Hjnk(Xi−1/n)2
3jn/2ψ ′

(
2jnξX(i−1)/n,Xi/n − k

)(
δni X

)3
.

Applying Lemma 5 withg =ψ ′, by takingk large enough, it suffices to bound

23jn/2
n∑
i=1

(
δni X

)3
1X(l/n)∈Ijnk , l = i − 1, i.

By combining Hölder and BDG inequalities, the expectation of the last term is less than

C(β, c,L)n
1
6−12−jn/β

n∑
i=2

(n/ l)1/2β

for β > 1, where we used that̃Pσk,−(Xl/n ∈ Ijnk)�
√

n
l
2−jn . Forβ < 2, this last quantity

is asymptotically negligible.
(e2) The two other terms

n∑
i=1

(Hjnk)
′(ζX(i−1)/n,Xi/n)ψjnk(X(i−1)/n)

(
δni X

)3

and
∑n
i=1(Hjnk)

′(ζX(i−1)/n,Xi/n)2
3jn/2ψ ′(2jnξX(i−1)/n,Xi/n − k)(δni X)4 can be bounded in the

same line as in (e1) so we omit them.

Completion of proof. It remains to bound the main term, namely

n∑
i=1

{
log

σk,−
σk,+

(Xi/n)+ nγnψjnk(X(i−1)/n)(δ
n
i X)

2
}
.

Clearly, the order of magnitude is not altered if we replace logσk,−
σk,+ (Xi/n) by

log σk,−
σk,+ (X(i−1)/n), as we shall do for technical convenience.

LEMMA 6. –The following expansion holds

log
σk,−(x)− 2

c
+ 1

σk,+(x)− 2
c
+ 1

=−2γn
ψjnk(x)

1+ γnHjnk(x)
− 2

3

γ 3
n ψ

3
jnk
(ζx)

[1+ γnHjnk(ζx)]3

for someζx ∈ [0,1].
Proof. –Elementary by a Taylor’s expansion.✷
For technical convenience, we further assume thatc = 2, with no loss of generality.

The general case is obtained by a modification of the constants. We thus need a bound
for
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n∑
i=1

{
−2γn

ψjnk(X(i−1)/n)

1+ γnHjnk(X(i−1)/n)
+ 2nγnψjnk(X(i−1)/n)

(
&ni X

)2}

− 2γ 3
n

3

n∑
i=1

ψ3
jnk
(ζX(i−1)/n)

[1+ γnHjnk(ζX(i−1)/n)]3
. (4.24)

Clearly, the second term has its first order moment bounded thanks to the choice ofjn
andγn.

Up to a change of probability, we may again assume thatX is a local martingale with
diffusion coefficientσ 2

k,−. Therefore, by a Taylor’s expansion, the first term in (4.24)
splits into four terms:

An1=−4γn
n∑
i=1

ψjnk(X(i−1)/n)n

i/n∫
(i−1)/n

(Xs −X(i−1)/n)σk,−(Xs) dWs,

An2=−2γ 2
n

n∑
i=1

ψjnk(X(i−1)/n)

[
Hjnk(X(i−1)/n)− n

i/n∫
(i−1)/n

Hjnk(Xs) ds

]
,

An3=−2γ 3
n

n∑
i=1

ψjnk(X(i−1)/n)O
(
sup
x
H 2
jnk
(x)
)
,

An4= γ 2
n

n∑
i=1

[
ψjnk(X(i−1)/n)− n

i/n∫
(i−1)/n

ψjnk(Xs) ds

]
.

The expectation of the four terms is bounded using the same techniques:An1 is bounded
by a martingale argument; forAn2, we use the fact thatψjnk andHjnk have disoint
supports;An3 andAn4 are bounded using the same straightforward arguments. The proof
of Proposition 2 is complete.

4.4. Proof of Theorem 1: upper bound

With no loss of generality, we prove the upper bound of Theorem 1 under the change
of probabilityPn,ν

σ2 → P̃
n,ν

σ2 under whichX is a local martingale. This only amounts to a
modification of the constants. Let

R(1)
n

(
σ 2)= Ẽn,ν

σ2

{
n2/3∥∥T !n − σ 2∥∥2

I
1ρ!n=n−1/3

}
,

R(2)
n

(
σ 2)= Ẽn,ν

σ2

{
ϕ−2
n,αn

∥∥T̄n − σ 2∥∥2
I

1ρ!n=ϕn,αn
}
.

By Proposition 2, sinceT !n is optimal w.r.t.�, we have

Rn(T
!!
n ,�,ρ

!
n)�C(c,L, ν)+ sup

σ2∈�
R(2)
n

(
σ 2).

Define

R(3)
n

(
σ 2)= Ẽn,ν

σ2

{
ϕ−2
n,αn
&n
(
σ 2)1{ρ!n=ϕn,αn }}.
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Using (a) and (b) of the preliminary decompositions, we have

sup
σ2∈�

R(2)
n

(
σ 2)� C(c,L, ν)+ 2 sup

σ2∈�
R(3)
n

(
σ 2).

Let q, δ > 0, 0< u < 1 andkn = �q logn
logu�. Put tnk = (

√
k logu
logαn

+ 1). We introduce the
following partition of�:

Sn0 =
{
(1− δ)&n(σ 2)� tn1

}
, Snkn =

{
(1− δ)&n(σ 2)� tnkn

}
,

Snk =
{
tnk � (1− δ)&n(σ 2)< tnk+1

}
, k = 1, . . . , kn − 1.

Let also

Dn = {∣∣Mn

(
σ 2)∣∣� δ&n(σ 2)}.

We thus obtain the decompositionR(3)
n (σ

2)=∑4
i=1 R(3,i)

n (σ 2), with

R(3,1)
n

(
σ 2)= Ẽn,ν

σ2

{
ϕ−2
n,αn
&n
(
σ 2)1{ρ!n=ϕn,αn ;Sn0}},

R(3,2)
n

(
σ 2)= kn−1∑

k=1

Ẽ
n,ν

σ2

{
ϕ−2
n,αn
&n
(
σ 2)1{ρ!n=ϕn,αn ;Snk ;Dn}},

R(3,3)
n

(
σ 2)= Ẽn,ν

σ2

{
ϕ−2
n,αn
&n
(
σ 2)1{ρ!n=ϕn,αn ;Snkn ;Dn}},

R(3,4)
n

(
σ 2)= Ẽn,ν

σ2

{
ϕ−2
n,αn
&n
(
σ 2)1{ρ!n=ϕn,αn ;⋃kn

k=1
Sn
k
;(Dn)c}

}
.

(a) Let us first studyR(3,1)
n (σ 2). Clearly R(3,1)

n (σ 2) � (
logu
logαn

)1/2 1
1−δ λ

2. Therefore,
letting δ→ 0, we obtain the bound

lim
n→∞ sup

σ2∈�
R(3,1)
n

(
σ 2)�

(
logu

logα

)1/2

λ2,

whereα = lim infn→∞ αn. (1/ log 0= 0.)
(b) We next turn toR(3,4)

n (σ 2). Since |&n(σ 2)| � 8c2, by (c) of the preliminary
decompositions and the definition ofDn, we have

R(3,4)
n

(
σ 2)� 8c2ϕ−2

n,αn
P̃
n,ν

σ2

{
&n
(
σ 2)+Mn

(
σ 2)+Nn(σ 2)� λ2ϕ2

n,αn
; (Sn0)c; (Dn)c}

�C(c,L, ν)ϕ−2
n,αn
P̃
n,ν

σ2

{∣∣Mn

(
σ 2)∣∣� δ&n(σ 2);&n(σ 2)� tn1

1− δ
}

�C(c,L, ν)ϕ−2
n,αn
P̃
n,ν

σ2

{∣∣Mn

(
σ 2)∣∣� δ&n(σ 2);&n(σ 2)� C(u)

1− δ λ
2ϕ2
n,αn

}
,

whereC(u)=
√

logu
logα . We now need the following fundamental technical result, proof of

which we delay until Appendix A.

LEMMA 7. – Let δ1,δ2> 0. We have

P̃
ν,n

σ2

{∣∣Mn

(
σ 2)∣∣� δ1&n

(
σ 2); &n(σ 2)� δ2ϕ

2
n,αn

}= o
(
ϕ2
n,αn

)
uniformly inσ 2 ∈� asn→∞.
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Applying Lemma 7 withδ1= δ, δ2= C(u)

1−δ λ
2, we obtain

lim
n→∞ sup

σ2∈�
R(3,4)
n

(
σ 2)= 0.

(c) We now studyR(3,3)
n (σ 2). Analogously

R(3,4)
n

(
σ 2)�C(c,L, ν)ϕ−2

n,αn
P̃
n,ν

σ2

{
d̂n(θ

!
n)� λ2ϕ2

n,αn
;Snkn;Dn

}
.

The following inclusion holds{
d̂n(θ

!
n)� λ2ϕ2

n,αn
;Snkn;Dn

}
= {&n(σ 2)+Mn

(
σ 2)+Nn(σ 2)� λ2ϕ2

n,αn

}∩ {(1− δ)&n(σ 2)� tnkn
}

∩ {∣∣Mn

(
σ 2)∣∣� δ&n(σ 2)}

⊆
{
Nn
(
σ 2)�

√
q logn

logαn
λ2ϕ2

n,αn

}
.

It remains to boundPn,ν
σ2 {|N(i)

n |� 1
2

√
q logn
logαn

λ2ϕ2
n,αn
}, i = 1,2.

We plan to use Lemma 1 to bound the first term. Fort � 2, we have

P̃
n,ν

σ2

{∣∣N(1)
n

∣∣� 1

2

√
q logn

logαn
λ2ϕ2

n,αn

}
� C(t, c,L, ν)n−3t/22Jntϕ−2t

n,αn
.

By taking t large enough, we see that this term is o(ϕ2
n,αn
), uniformly in σ 2 ∈ � as

n→∞ and is thus asymptotically negligible.
Likewise, we plan to use Lemma 3 for the second term. Fort � 2, we have

P̃
n,ν

σ2

{∣∣N(2)
n

∣∣� 1

2

√
q logn

logαn
λ2ϕ2

n,αn

}

� C(t, c,L, ν)n1−3t/22Jntϕ−2t
n,αn

+ exp
{
−A(t, c, ν)n22−Jnλ4ϕ4

n,αn
q

logn

logαn

}
.

Taking t = 10 and using the definition ofλ, the last quantity is less than

o
(
ϕ2
n,αn

)+ n−q
as n→∞, uniformly in σ 2 ∈ �. Sinceq is free, the above term is asymptotically
negligible and

lim
n→∞ sup

σ2∈�
R(3,3)
n

(
σ 2)= 0.

(d) We eventually turn toR(3,2)
n (σ 2). Let k ∈ {1, . . . , kn − 1}. The following inclusion

holds{
d̂n(θ

!
n)� λ2ϕ2

n,αn
;Snk ;Dn

}⊆ {Nn(σ 2)�−tnk + λ2ϕ2
n,αn
; (1− δ)&n(σ 2)� tnk+1

}
=
{
Nn
(
σ 2)�−λ2ϕ2

n,αn

√
k logu

logαn
; (1− δ)&n(σ 2)� tnk+1

}
.
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It follows that

R(3,2)
n

(
σ 2)

� ϕ−2
n,αn

kn−1∑
k=1

tnk+1

1− δ P̃
n,ν

σ2

{
Nn
(
σ 2)�−λ2ϕ2

n,αn

√
k logu

logαn
; (1− δ)&n(σ 2)� tnk+1

}
.

Again, we splitNn(σ 2) into N(1)
n + N(2)

n and we successively apply Lemmas 1 and 3.
The calculation is done in the same way as for the term in (c) so we omit it. Eventually

R(3,2)
n

(
σ 2)� λ2

1− δ
kn−1∑
k=1

[
1+

(
(k + 1) logu

logαn

)1/2]
uk + rn(σ 2),

wherern(σ 2) = o(1) uniformly in σ 2 ∈ � asn→∞. Letting δ→ 0, we obtain the
bound

lim
n→∞ sup

σ2∈�
R(3,2)
n

(
σ 2)� λ2√logu√

logα

∞∑
k=1

(k + 1)1/2uk.

The proof of Theorem 1, upper bound, is complete.

4.5. Proof of Theorem 1: lower bound

4.5.1. Preliminaries
The same preliminary remark as for the proof of Proposition 2, lower bound, can

be applied and we consider the parametrizationσ 2 �→ 1/σ 2 with no loss of generality.
We then follow the arguments developed by Lepski in [11]. For simplicity, we prove
the lower bound under the additional restriction thatI = [0,1] and σ 2

0 (θ0, x) ≡ 1 in
Assumption B4. Take an infinitely many times differentiable functionψ : R→ R with
support in[0,1] and such that supx |ψ ′(x)| � L/c2 and

∫
ψ2(x) dx = 1. Consider the

parametric subfamily

CJn =
{
σ 2 ∈�c(L): 1

σ 2(x)
= 1+ 2−3Jn/2

2Jn∑
k=0

vkψJnk(x), vk =±1

}

indexed byv = (v1, . . . , v2Jn ), so thatJ Cjn = 22Jn and the functionsψJnk andψJnk′
have disjoint support fork != k′. These conditions imply under assumption B4 that for
sufficiently largen, we have

CJn ⊂�c(L).
Recall that forσ 2 ∈ CJn , we denote byQ2

σ the law of

dXt = 1

2
σσ ′(Xt) dt + σ (Xt) dWt (4.25)

and that we defineQn,ν

σ2 analogously. Likewise, we also use the notationQn
σ2 for the

law of Xn = (Xi/n, i = 1, . . . , n) on Rn whereX solves (4.25). In the following, we
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abbreviateQσ2
0 (·,θ0) byQ0 andQσ2 byQv for a genericσ 2= σ 2(v) ∈ CJn parametrized

by v. If Vn = {v = (v1, . . . , v2Jn ): vk = ±1}, we will use the following sets, fork =
1, . . . ,2Jn

V (±1)
n,k = {v ∈ Vn: vk =±1}, V (0)n,k = {vk′ = ±1, k′ != k andvk = 0}.

Define further forv ∈ Vn the vectorτk(v)= (v1, . . . , vk−1,0, vk+1, . . . , v2Jn ) and

Z
(±1)
n,k =

dQn,ν
v

dQ
n,ν
τk(v)

, Tkn =
1

2Jn−1

∑
v∈V (0)

n,k

dQn,ν
v

dQ
n,ν
0
, k = 1, . . . ,2Jn .

The lower bound essentially relies on the following lemma.

LEMMA 8. – (i) There existsδ0 > 0 such that for0< δ � δ0 and j = 1, . . . ,2Jn , we
have

Qn,ν
v

({
Z
(+1)
n,j < 1− δ}∩ {Z(−1)

n,j < 1− δ})� δ.

(ii) We havelim supn→∞ sup1�k�2Jn α
1/2
n Q

n,ν
0 {(Tkn)2} � 1, where the notationQn,ν

σ2 is
also used to denote expectation.

The proof closely follows the techniques developed for the lower bound of Proposi-
tion 2, based on expansions of likelihood ratiosdQn,ν

v /dQ
n,ν
τk(v)

underQn
v anddQn

v/dQ
n
0

underQn
0. To simplify the exposition, we omit the proof of Lemma 8 and refer the reader

to Proposition 2, lower bounds in Appendix A.

4.5.2. Completion of proof
Let ρn be an arbitrary r.n.f. in�n such thatχn(ρn)/χn(ρ!n)→ 0 asn→∞. Let Tn be

an arbitrary estimator of 1/σ 2 and define

Bn = {ρn = χn(ρn)}.
We have

sup
σ2∈�

E
n,ν

σ2

{
ρ−2
n

∥∥∥∥Tn − 1

σ 2

∥∥∥∥
I

}

� sup
σ2∈�

Q
n,ν

σ2

{
ρ−2
n

∥∥∥∥Tn − 1

σ 2

∥∥∥∥
2

I

1Bn

}

� sup
σ2(v),v∈Vn

Q
n,ν

σ2

{
χn(ρn)

−2
∥∥∥∥Tn − 1

σ 2

∥∥∥∥
2

I

1Bn

}

� 1

22Jn

∑
v∈Vn

Qn,ν
v

{
χn(ρn)

−2
∥∥∥∥Tn − 1

σ 2

∥∥∥∥
2

I

1Bn

}

� χn(ρn)
−2

22Jn

∑
k

∑
v∈Vn

Qn,ν
v

{∫
IJnk

(
Tn(x)− 1

σ 2
v (x)

)2

1Bn dx
}
.



366 M. HOFFMANN / Ann. I. H. Poincaré – PR 37 (2001) 339–372

SettingDn,k = {Z(+1)
n,j < 1− δ} ∩ {Z(−1)

n,j < 1− δ}, the last quantity is greater than

χn(ρn)
−2

22Jn

∑
k

∑
v∈Vn

Q
n,ν
τk(v)

{
1Bn

(
Z+1
n,k

∫
IJnk

(
Tn(x)− 2−3Jn/2ψJnk(x)

)2
dx

+Z−1
n,k

∫
IJnk

(
Tn(x)+ 2−3Jn/2ψJnk(x)

)2
dx

)}

� (1− δ)χn(ρn)−2

22Jn−1

∑
k

∑
v∈V (0)

n,k

Qn,ν
v {Bn ∩Dn,k}

∫
IJnk

2−3Jnψ2
Jnk
(x) dx

� 2−3Jn (1− δ)χn(ρn)−2

22Jn−1

∑
k

∑
v∈V (0)

n,k

(
Qv{Bn} −Qv

{
(Dn,k)

c
})
.

We claim that there existst > 0 such that

Pn,k = 1

22Jn−1

∑
v∈Vn,k

Qn,ν
v {Bn}� t, k = 1, . . . ,2Jn . (4.26)

Let us temporarily admit (4.26). Then, takingδ < t/2, by (i) of Lemma 8, we obtain
Qn,ν
v {(Dn,k)c}< t/2 for all k andv ∈ V (0)n,k . From the choice ofJn, it follows that

Rn(Tn,�,ρn)�
t (1− δ)

2
χn(ρn)

−22−2Jn �Cχn(ρn)−2ϕ2
n,αn
.

Showing thatχn(ρn)/ϕn,αn → 0 asn→∞ will complete the proof. For this, it is enough
to show thatχn(ρ!n)� ϕn,αn , or, as follows from Definition 1,

lim sup
n→∞

α−1
n sup

θ∈%
P
n,ν
θ {ρ!n = ϕn,αn}� 1. (4.27)

Let us prove (4.27). We have

P
n,ν
θ {ρ!n = ϕn,αn} = Pn,νθ

{
inf
θ∈%dn(θ)−

∑
k

CJnk � λ2ϕn,αn

}
� Pn,νθ

{
d̂n(θ)� λ2ϕn,αn

}
.

Let &n(σ 2, θ) =∑k: IJnk⊂I c
2
Jnk
(σ 2

0 (·, θ)− σ 2)− ank (σ 2). In the same line as (a) of the

preliminary decompositions, we haved̂n(θ)=&n(σ 2, θ)+Mn(σ
2
0 (·, θ))+Nn(σ 2

0 (·, θ)).
First,&n(σ 2, θ)= 0 underPθ . Next, givenq > 0, it suffices then to bound

P
n,ν
θ

{
Mn

(
σ 2

0 (·, θ)
)
� qλ2ϕn,αn

}+Pn,νθ

{
Nn
(
σ 2

0 (·, θ)
)
� (1− q)λ2ϕn,αn

}
.

By Lemma 7, the first term is asymptotically negligible. Applying Lemma 3 to the
second term and lettingq→ 0, one easily checks that the choice ofλ yields (4.27).

It remains to prove (4.26). Sinceρn ∈ �n, taking n large enough, we have
α−1
n Q

n,ν
0 {(Bn)c}� 1+ δ. Therefore

Pn,k �Qn,ν
0

{
Tkn1Bn

}
�Q

n,ν
0

{
Tkn1Bn + cα−1

n 1(Bn)c
}− c(1+ δ)



M. HOFFMANN / Ann. I. H. Poincaré – PR 37 (2001) 339–372 367

for a givenc > 0. Since infA(Tkn1A + cα−1
n 1(A)c ) = Tkn1{Tkn<cα−1

n } + cα−1
n 1{Tkn�cα−1

n }, it
follows that

Pn,k �Qn,ν
0

{
Tkn1{Tkn<cα−1

n }
}− c(1+ δ)

= 1− c(1+ δ)− 1

22Jn−1

∑
v∈V (0)

n,k

Qn,ν
v

{
Tkn � cα−1

n

}

� 1− c(1+ δ)− αn

c22Jn−1

∑
v∈V (0)

n,k

Qn,ν
v

{
Tkn
}

= 1− c(1+ δ)− c−1αnQ
n,ν
0

{(
Tkn
)2}
.

Applying (ii) of Lemma 8, takingc= α1/4
n /(1+δ)1/2 and using the assumptionαn < 2−4,

we see that forδ small enough the last term in the above inequality is bounded below,
uniformly in n andk. Inequality (4.26) follows and the proof of Theorem 1 is complete.

4.6. Proof of Theorem 2

Define

&̃n
(
σ 2)= ∑

k: IJnk⊂I

{
cJnk

(
σ 2

0 (·, θ̂n)− σ 2)− ank (σ 2)}2

which is defined like&n(σ 2) of (4.13) in (a) of the preliminary decompositions in the
proof of Theorem 1, replacingθ!n by θ̂n. Next, in the same way as (b) of the preliminary
decompositions, we have

∥∥T (0)n − σ 2∥∥2
I
= ∑
k: IJnk⊂I

c2
Jnk

(
σ 2− σ 2

0 (·, θ̂n)
)+ ε̃Jn(σ 2),

where

ε̃Jn(σ
2)= ∑

j�Jn

∑
k: Ijk⊂I

d2
jk

(
σ 2

0 (·, θ̂n)− σ 2)� C(c,L)2−2Jn

sinceσ 2− σ 2
0 (·, θ̂n) ∈ �2c(L). The proof of the upper bound then readily follows from

that of Theorem 1, replacing&n(σ 2) by &̃n(σ 2). In view of the proof of Theorem 1, the
lower bound will follow from

χn
(
ρ(a)n

)
� ϕn,αn . (4.28)

We first need an approximation result.

LEMMA 9. – We have, underPθ

d̂n(θ̂n)= d̂n(θ)+ vn(θ), (4.29)

wherelimn→∞ α−1
n ϕ

−2
n,αn

supθ∈%E
n,ν
θ {|vn(θ)|} = 0.

Proof. –Straightforward computations yield (4.29) underPθ , having

vn(θ)=
∑
k

c2
Jnk

(
σ 2

0 (·, θ̂n)− σ 2
0 (·, θ)

)+ 2
∑
k

cJnk
(
σ 2

0 (·, θ̂n)− σ 2
0 (·, θ)

)
ank
(
σ 2

0 (·, θ)
)
.
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Clearly

∑
k

c2
Jnk

(
σ 2

0 (·, θ̂n)− σ 2
0 (·, θ)

)
�
∥∥σ 2

0 (·, θ̂n)− σ 2
0 (·, θ)

∥∥2
I
�M2|θ − θ̂n|2

by Assumption A2. Integrating w.r.t.Pn,νθ and recalling thatθ̂n is optimal w.r.t.%,
this term is of ordern−1/2 = o(αnϕn,αn). By Cauchy–Schwarz, the same argument
together with (4.15) show that after integration w.r.t.P

n,ν
θ , the second term is less than

C(c,L, ν)n−1/22−Jn and thus has the right order.✷
We are ready to complete the proof. Letq > 0. We have

P
n,ν
θ

{
d̂n(θ̂n)� λ2ϕ2

n,αn

}
� Pn,νθ

{
d̂n(θ)� (1− q)λ2ϕ2

n,αn

}+Pn,νθ

{
vn(θ)� qλ2ϕ2

n,αn

}
.

The second term is asymptotically negligible by Lemma 9. Lettingq→ 0, we are back
to (4.27) of the lower bound of Theorem 1 and (4.28) follows. The proof of Theorem 2
is complete.

Appendix A. Proof of Lemma 7

We need some notation. Forθ ∈% andσ 2 ∈�, let

ξ
(
σ 2, θ

)= 2Jn
∑

k: IJnk⊂I

[
cJnk

(
σ 2− σ 2

0 (θ, ·)
)+ ank (σ 2)]ank (σ 2).

Note that since supx |τni (x,X)|� 2c and supx |σ 2−σ 2
0 (θ, ·)|� 2c, we have|ξ(σ 2, θ)|�

4c2. Forξ ∈ [−4c2,4c2], define

&n
(
σ 2, θ, ξ

)= ∑
k: IJnk⊂I

c2
Jnk

(
σ 2− σ 2

0 (θ, ·)
)+ 2−Jnξ.

We thus have the following representation

&n
(
σ 2)=&n(σ 2, θ!n, ξ

(
σ 2, θ!n

))
. (A.1)

By Assumption B, the set% is bounded, i.e.,%⊆ [−P,P ]s for someP > 0. LetQ=
max(P,4c2). Fix someb > 0. We approximate%× [−4c2,4c2] by an-net constructed
as follows.

For i = 0,±1, . . . ,±Kn,Kn = �Qnb�, putpi = in−b and let

Sn = {pi, i = i =±1, . . . ,±Kn}, Ss+1
n = Sn × · · · × Sn (s + 1 times.)

Finally, define

Nn =%× [−Q,Q] ∩ Sn.
Clearly, J Nn � (2Qnb)s+1. For x ∈ [−Q,Q], let u(x) be the unique element in
Sn such thatu(x) < x � u(x) + n−b. Finally, if θ = (θ1, . . . , θs) denotes a generic
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element of% andξ ∈ [−Q,Q], defineu(s+1)(θ, ξ)= (u(θ1), . . . , u(θs), u(ξ)). Clearly,
u(s+1)(θ, ξ) ∈Nn and

∥∥us+1(θ, ξ)− (θ, ξ)∥∥� nb
√
s + 1.

Now, let (θ̄n, ξ̄n) = u(s+1)(θ!n, ξ(σ
2, θ!n)). We will first prove Lemma 4 replacing

(θ!n, ξ(σ
2, θ!n)) by (θ̄n, ξ̄n) and then show that the approximation has the right order.

(a) More precisely, we claim that fort � 2

P̃
ν,n

σ2

{∣∣Mn

(
σ 2, θ̄n, ξ̄n

)∣∣� δ1

2
&n
(
σ 2, θ̄n, ξ̄n

); &n(σ 2, θ̄n, ξ̄n
)
� δ2

2
ϕ2
n,αn

}
�C(t, c,L, ν)n−at

for somea > 0, uniformly inσ 2 ∈�. Indeed, let

N+
n

(
σ 2)= {(θ, ξ) ∈Nn: &n

(
σ 2, θ, ξ

)
� 1

2
ϕn,αn

}
.

We have

P̃
ν,n

σ2

{∣∣Mn

(
σ 2, θ̄n

)∣∣� δ1

2
&n
(
σ 2, θ̄n, ξ̄n

); &n(σ 2, θ̄n, ξ̄n
)
� δ2

2
ϕ2
n,αn

}

= ∑
(θ,ξ)∈N+

n (σ
2)

P̃
ν,n

σ2

{∣∣Mn

(
σ 2, θ

)∣∣� δ1

2
&n(σ

2, θ, ξ); (θ̄n, ξ̄n)= (θ, ξ)
}

�
∑

(θ,ξ)∈N+
n (σ

2)

P̃
ν,n

σ2

{∣∣Mn

(
σ 2, θ

)∣∣� δ1δ2

4

√
&n
(
σ 2, θ, ξ

)
ϕn,αn

}
.

(b) Next, we need deviation bounds forMn(σ
2, θ). Using (a) of the preliminary

decompositions, we writeMn(σ
2, θ)= 1√

n
M̃n(σ

2, θ)+∑k a
n
k b
n
k , where

M̃n

(
σ 2, θ

)= 2Jn/2√
n

n∑
i=1

[∑
k

cJnk
(
σ 2− σ 2

0 (θ, ·)
)
1X(i−1)/n∈IJnk

]
εni .

Clearly,M̃n(σ
2, θ) is a sum of martingale increments, with variance less than

C(c,L, ν)
2Jn

n

n∑
i=1

(
Ẽ
ν,n

σ2

{[∑
k

cJnk
(
σ 2− σ 2

0 (θ, ·)
)
1X(i−1)/n∈IJnk

]4})1/2

where we used Cauchy–Schwarz inequality and the fact thatE
ν,n

σ2

{
(εni )

4
}

� C(c,L, ν)

thanks to the BDG inequality.
Let i � 2. SinceX(i−1)/n has a densitypσ(i−1)/n(x) w.r.t. the Lebesgue measure under

P̃σ2, which satisfiespσ(i−1)/n(x)� C(c,L)( n
i−1)

1/2 we successively have

Ẽ
ν,n

σ2

{[∑
k

cJnk
(
σ 2− σ 2

0 (θ, ·)
)
1X(i−1)/n∈IJnk

]4}
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� C(c,L)

√
n

(i − 1)

∫
R

[∑
k

cJnk
(
σ 2− σ 2

0 (θ, ·)
)
1x∈IJnk

]4

dx

= C(c,L)
√

n

(i − 1)

∑
k1,...,k4

cJnk1 · · ·cJnk4

∫
R

1x∈IJnk1 · · ·1x∈IJnk4 dx.

It is easily seen that restricting the sum to the 4-uplets(k1, . . . , k4) ∈ In defined by
In = {(k1, . . . , k4): 1 � ki � 2Jn, k1 < · · · < k4} does not alter the order (inn) of the
above sum. Moreover, for(k1, . . . , k4) ∈ In, we have

∫
R 1x∈IJnk1 · · ·1x∈IJnk4 dx = 2−4Jn.

Therefore, using the last bound and factorizing again, we have that the last term in the
above inequality is of order

√
n/(i − 1)2−4Jn

[∑
k

∣∣cJnk(σ 2− σ 2
0 (θ, ·)

)∣∣]4

�C(c,L)
√
n/(i − 1)2−2Jn&2

n(σ
2, θ, ξ)

for large enoughn, where we used the decomposition (A.1) and Jensen’s inequality. We
finally obtain

Ẽ
ν,n

σ2

{
M̃n(σ

2, θ)2
}

�C(c,L, ν)1
n

n∑
i=1

(n/i)1/4&n
(
σ 2, θn, ξ

)
�C(c,L, ν)&n

(
σ 2, θn, ξ

)
.

Let t � 2. By Chebyshev inequality, it follows that

P̃
ν,n

σ2

{∣∣∣∣ 1√
n
M̃n(σ

2, θ)

∣∣∣∣� 1

2

√
nϕn,αn

√
&n
(
σ 2, θ, ξ

)}
� C(t, c,L, ν)n−t/2ϕ−tn,αn.

From the choice ofϕn,αn and sincet is free, this term is arbitrarily small in power ofn.
We now turn toMn(σ

2, θ, ξ)− 1√
n
M̃n(σ

2, θ, ξ). By repeated use of Cauchy–Schwarz,
we have

Ẽ
ν,n

σ2

{∣∣∣∣ 1√
n
Mn

(
σ 2, θ, ξ

)− M̃n

(
σ 2, θ, ξ

)∣∣∣∣
t}

�
(
Ẽ
ν,n

σ2

{∣∣∣∣∑
k

(
ank
(
σ 2))2∣∣∣∣

t})1/2(
Ẽ
ν,n

σ2

{∣∣∣∣∑
k

(
bnk
(
σ 2))2∣∣∣∣

t})1/2

.

The first term is of order 2−Jnt �Cϕn,αn , uniformly in σ 2 ∈�, by (b) of the preliminary
decompositions. Using the same technique as forM̃n, the second term is less than
C(c,L, ν)n−at

√
&n(σ 2, θ, ξ) for somea > 0. By Chebyshev inequality, we obtain

P̃
ν,n

σ2

{∣∣∣∣Mn

(
σ 2, θ, ξ

)− 1√
n
M̃n

(
σ 2, θ

)∣∣∣∣� 1

2

√
nϕn,αn

√
&n
(
σ 2, θ, ξ

)}

� C(t, c,L, ν)n−at .

(c) Putting together (a) and the deviation bounds of (b), we readily obtain, fort � 2
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P̃
ν,n

σ2

{∣∣Mn

(
σ 2, θ̄n, ξ̄n

)∣∣� δ1

2
&n
(
σ 2, θ̄n, ξ̄n

); &n(σ 2, θ̄n, ξ̄n
)
� δ2

4
ϕ2
n,αn

}

� J N+
n

(
σ 2)C(t, c,L, ν)n−at � C(t, c,L, ν)nb(s+1)−at.

Since the choice oft is free, this term is arbitrarily small in power ofn and claim (a) is
proved.

(d) It remains to prove that Lemma 4 follows from claim (a). Indeed, it is easily
checked that

∣∣&n(σ 2, θ̄n, ξ̄n
)−&n(σ 2, θ!n, ξ

(
σ 2, θ!n

))∣∣�C(s, c,L)n−bµ,
whereµ is defined in Assumption B1. We further assume thatb � 2/µ. We thus obtain
the following inclusion, for large enoughn

{∣∣&n(σ 2)∣∣� δ2ϕ
2
n,αn

}⊆ {&n(σ 2, θ̄n, ξ̄n
)
� δ2

2
ϕ2
n,αn

}
. (A.2)

Likewise, fort � 2, we claim that

P̃
ν,n

σ2

{∣∣Mn

(
σ 2, θ!n

)−Mn

(
σ 2, θ̄n

)∣∣� n
}

�C(t, c,L, ν)n−at

for somea > 0. The proof is done using the same kind of arguments as for (b) so we
omit it.

This last inequality, together with (A.2) and (a) completes the proof of Lemma 4.
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