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ABSTRACT. – We start by studying the connection between the full Martin boundary associated
with a space time version of a random walk which is killed on entering the negative half-line,
and that associated with the bivariate renewal process of weak increasing ladder heights and
times in the random walk. We show that although the corresponding spatial boundaries are
isomorphic, the space time boundaries are not. The rest of the paper is devoted to determining
these boundaries explicitly in the special case that the moment generating function of the step
distribution exists in a non-empty interval. 2001 Éditions scientifiques et médicales Elsevier
SAS

AMS classification:60K05; 60J15

RÉSUMÉ. – Dans un premier temps, nous étudions la correspondance entre la frontière
espace-temps de Martin totale associée à une marche aléatoire à valeurs réelles tuée lorsqu’elle
franchit la demi-droite réelle négative, et celle associée au processus de renouvellement bivarié
formé par les échelles et les temps de croissance. Nous montrons que les frontières spatiales
correspondantes sont isomorphes, alors que les frontières espace-temps ne le sont pas. Le reste
du travail est consacré à déterminer explicitement ces frontières dans le cas particulier où la
fonction génératrice correspondant à la distribution des pas existe dans un intervalle non vide.
 2001 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let S = (Sn, n� 0) be an aperiodic random walk on the integers, with mass function
p(·); thusSn = S0 + ∑n

1Xi for n � 1, where theX’s are independent and identically
distributed withP(Xi = x) = p(x) for x ∈ Z and i = 1,2, . . . . Writing τ = inf{n >
0, Sn < 0} we define the Markov chainS∗ asS killed at timeτ ; thusS∗ has state space
Z∗ = {0,1, . . .} and substochastic transition function

p(x, y) = p(y − x), x, y ∈Z∗. (1.1)
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In this paper we investigate the Martin boundaries of two bivariate Markov chains
associated withS. The first is{(S∗

n, n), n � 0}, a space time version ofS∗, which we
denote byS∗. This has state spaceE = Z∗ ×Z∗ and substochastic transition function

p∗(x, y)= p(y − x)δ(l + 1,m), (1.2)

whereδ(i, j) is the Kronecker delta function,x = (x, l), andy = (y,m). (We will adopt
the convention thatx = (x, l), y = (y,m) andz = (z, n) without further notice in the
sequel.) The second is{(H+

n , T
+
n ), n � 0}, the bivariate process of weak increasing

ladder heights and times inS, which we denote byL+ = (L+
n , n � 0). This is another

(possibly substochastic) transient Markov chain onE , with transition function

q+(x, y)= P
(
H+

1 = y − x, T +
1 =m− l

)
. (1.3)

Our original aim was to exhibit the minimal Martin boundaryM∗
0 of S∗, or

equivalently to find the totality of minimal regular functions forS∗. However, this lead
us inevitably to studyM+

0 , the corresponding object forL+, and alsoM∗ andM+, the
respectivefull Martin boundaries. (Recall that this is equivalent to finding all possible
limits of the appropriate relativised Green’s functions,k∗ andk+.) The point is that there
is an important relationship between the Green’s functionsg∗ andg+ of S∗ andL+ (see
Lemma 2.1) which enables us to define a linear mapping� such that the relativised
Green’s functionsk∗ andk+ satisfy

k∗(·, y)=�
(
k+(·, y)). (1.4)

Now in [5], the corresponding relation between the relativised Green’s functions of
the univariate processesS∗ andH+ = (H+

n , n � 0) was studied. In that situation it
was shown that the analogue of (1.4) is preservedin the limit, and hence that both the
minimal and full Martin boundaries ofS∗ andH are isomorphic to each other. In our
bivariate situation things are not so simple, and although�(h+) is regular (respectively
super-regular) forS∗ wheneverh+ is regular (super-regular) forL+, we arenot able to
show that every such functionh∗ is of the form�(h+). In fact we exhibit examples of
sequencesy(r) such that bothh∗(·)= limr→∞ k∗(·, y(r)) andh+(·) = limr→∞ k+(·, y(r))
exist andh∗ �= �(h+). Thus in generalM∗ is not isomorphic toM+, so we have no
guarantee thatM∗

0 is isomorphic toM+
0 . This means that our only way of findingM∗

0
is to find the full Martin boundaryM∗, and then identify the points corresponding to
minimal regular functions. To do this in full generality is clearly an impossible task (the
full Martin boundary ofS∗ is not yet known in all cases), but we are able to achieve it
in some important cases. In these cases it does in fact turn out thatM∗

0 is isomorphic to
M+

0 .

To describe these situations, we need to introduce some notation for the exponential
family associated toP. WriteM(s) = E(sX1), and put

α = inf{s > 0, M(s) <∞}, β = sup{s > 0, M(s) <∞}.
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The functionµ(s) = sM ′(s)/M(s) is a continuous and increasing function on(α,β),
and its inverse will be denoted bys(·). Write

µ− = µ(α)� −∞, µ+ = µ(β)� +∞,

and I for the interval(µ−,µ+) together withµ− if M(α) is finite andµ+ if M(β)

is finite. The exponential familyP(µ) is defined forµ ∈ I through its probability mass
function

p(µ)(x)= s(µ)xp(x)/M
(
s(µ)

)
,

and it is easily checked thatE
(µ)(X1) = µ. ThusP ≡ P

(µ0), whereµ0 = ∑
xp(x), and

s(µ0)= 1.
Recall that in [7], the minimal Martin boundaryM0 of the unrestricted space-time

processS = {(Sn, n), n � 0} was shown to contain a pointµ with a corresponding
regular function

h(µ)(x)= s(µ)x t (µ)l wheret (µ)= 1/M
(
s(µ)

)
(1.5)

for eachµ ∈ I ; alsoP
(µ) is the harmonic transform ofP by h(µ), andh(µ) is the limit of

the relativised Green’s function asy(r) → ∞ with θ(r) := y(r)/m(r) → µ. Moreover if
b <∞, where

b := max{x: p(x) > 0} (1.6)

we haveµ+ = b, but M(β) = ∞, so µ+ /∈ I. However, there is a pointµ+ in M0

corresponding to a regular function which is semi-degenerate, i.e. it is supported by a
straight line. The harmonic transform ofP by this function corresponds to a degenerate
random walk with step lengthb.

These results suggest that bothM∗
0 andM+

0 should be isomorphic toI+ := I ∩ [0,∞)

whenb = ∞, and toI+ ∪ {b} whenb <∞. In Theorem 3.1 we show that this is correct
for M+

0 , but we cannot rule out the possibility thatM∗
0 contains additional points.

We then restrict our selves to the case that

E(X1)= 0, Var(X1)= σ 2
0 <∞, and 0<µ+ <∞.

Furthermore, we assumeeither that

b <∞, so thatI+ = [0, b),
which we call Case A, or that

b = ∞, M(µ+) <∞, E
(µ+)(X1 −µ+)2 = σ̂ 2 <∞,

and

p+(r) := p(µ+)(r) is regularly varying at∞ with index− κ, 3< κ <∞.

We refer to this latter situation as Case B; of course in this caseI+ = [0,µ+].
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In Cases A and B we are able (see Theorems 6.1 and 6.2) to find all possible values
of limr→∞ k∗(·, y(r)) and limr→∞ k+(·, y(r)) as y(r) → ∞ in any manner through the
reduced state spaceE0, which consists of all states inE which are accessible from 0. The
obvious cases are when

θ(r) := y(r)/m(r) → µ ∈ int I+,

but we also have to consider the cases when the limit is 0,µ+,µ ∈ (µ+,∞), or
∞. The caseθ(r) → 0 is particularly delicate, and several subcases have to be
considered, depending at what rate the convergence takes place. Thus for example,
limr→∞ k+(·, y(r)) is different if θ(r) → 0 with y(r) fixed than it is ifθ(r) → 0 with both
m(r) → ∞ andy(r) → ∞. A similar phenomenon occurs in the caseθ(r) → ∞, which
can occur withm(r) fixed or withm(r) → ∞.

The key to all these results is to obtain good estimates for the Green’s functionsg+
andg∗. We find that we have to adopt different methods in different cases. In some cases
we can analyseg∗ directly by adapting the method used in [2], which incidentally is the
paper which stimulated the present work. In other casesg∗ is analysed indirectly by first
studyingg+, and then using the relation (1.4). Finding good estimates ofg+, without
making superfluous assumptions, is quite tricky (see, for example, Theorem 3.7 of [9]),
and we rely heavily on a recently discovered identity from [1].

These results specify the full Martin boundariesM+ andM∗ in Cases A and B, and
then we can read offM+

0 andM∗
0 . We are not able to say much aboutM∗

0 whenµ+ < 0
or µ+ = 0. In the first of these casesM+

0 is empty, and in the second it has one point,
corresponding to the identity function. The obvious conjecture is thatM∗

0 is isomorphic
to M+

0 , but we have not been able to establish this, except in some very special cases.
The possibility of describingM∗ seems even more remote.

The paper is organised as follows. In Section 2 we study the mapping�. In Section 3
M+

0 is determined in all cases. Section 4 is devoted to some asymptotic estimates for
P(Sm = y), which are applied to give results for the Green’s functions in Section 5, and
in Section 6 we determine the Martin boundaries in Cases A and B.

2. The mapping from M+ to M∗

To avoid trivial cases we will assume henceforth that

∃ x1 > 0, x2 < 0 with p(x1) > 0,p(x2) > 0. (2.1)

Our only other assumption in this section is thatS is aperiodic. Note first that the Green’s
functiong∗(x, y) = ∑∞

n=0p
∗
n(x, y), wherep∗

n denotes then-step transition function for
S∗, can be written as

g∗(x, y)= Px(Sm−l = y, τ > m− l), (2.2)

wherePx(·) stands forP(· | S0 = x). Since this is finite,S∗ is of course transient, and
following [7] we will take 0= (0,0) as a reference state and treatS∗ as a substochastic
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Markov chain on the reduced state space

E0 = {
y ∈Z∗ ×Z∗: g∗(0, y) > 0

}
.

This is permissible, because all states that can be reached from states inE0 are inE0.
Then forx, y ∈ E0 we define the relativised Green’s function

k∗(x, y)= g∗(x, y)/g∗(0, y).

By definition a functionf :E0 → R
+ is regular (super-regular) forS∗ if and only if

P ∗f = (�)f onE0, (2.3)

where

(P ∗f )(x)= ∑
y∈E0

p∗(x, y)f (y). (2.4)

For each fixedy, the functionk∗(·, y) is super-regular, and the full Martin boundaryM∗
of S∗ is in 1:1 correspondence with the set of all possible distinct limits ofk∗(·, y), as
y → ∞ in any manner such thaty ∈ E0. The minimal Martin boundaryM∗

0 consists of
the subset ofM∗ which corresponds to functions which are regular and minimal. We
recall that a non-negative regular function is minimal if, wheneverh̃ is non-negative
regular function withh̃� h, thenh̃ = ch for some positive constantc. (Throughout this
paper,c will denote a generic positive constant, whose value may change from line to
line.)

Next, we introduce some notation for the ladder processes associated withS. First,
the ladder time processes are defined byT +

0 = T −
0 = 0, and

T +
k+1 = inf

{
r > T +

k : Sr � ST +
k

}
, k = 0,1, . . . ,

T −
k+1 = inf

{
r > T −

k : Sr < ST −
k

}
, k = 0,1, . . . ,

where inf{∅} = ∞. (Note thatT −
1 coincides withτ .) Then the ladder processesL± =

{L±
n , n� 0} are defined by

L±
n = (

H±
n , T

±
n

)
onn: T ±

n <∞,

where the ladder heights are given byH±
n = ±S(T ±

n ). Thus L± are (possibly
substochastic) transient Markov chains onE with transition functions

q±(x, y)= P
(
H±

1 = y − x, T ±
1 =m− l

) = q±(y − x, m− l)

and Green’s functions

g±(x, y)=
∞∑
r=0

q±(r)(x, y).
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Because of spatial and temporal homogeneity, we can also writeg+(x, y) = v(y − x)

andg−(x, y)= u(y − x), where

v(x)=
∞∑
r=0

P
(
L+
r = x

)
and u(x)=

∞∑
r=0

P
(
L−
r = x

)
.

In treating the Martin boundary ofL+ we again take 0as a reference state and note that
the set of states which can be reached byL+ starting from 0coincides withE0. (This
is an application of the duality lemma, see [8, p. 395].) So forx, y ∈ E0 we define the
relativised Green’s function

k+(x, y)= g+(x, y)/g+(0, y),

and writeM+, M+
0 respectively for the full and the minimal Martin boundaries ofL+.

Of course regular, super-regular and minimal functions forL+ are defined as forS∗, with
P ∗ replaced byQ+, defined by

(Q+f )(x)= ∑
y∈E0

q+(x, y)f (y).

The key to our analysis is the following bivariate extension of a result due to Spitzer
(see [12, p. 209]) which expresses the Green’s function ofS∗ in terms of the Green’s
functions ofL+ andL−.

LEMMA 2.1. –For x, y ∈ E0 we have

g∗(x, y)= ∑
z∈E0

u(x − z, n− l)g+(z, y), (2.5)

where we note that the sum extends overz such that0� z� x ∧ y and l � n�m.

Proof. –Sinceg∗(x, y) = g∗((x,0), (y,m − l)) it is enough to prove (2.5) forl = 0,
and in this case we haveg∗((x,0), (y,m)) = Px(1) where

1 = {Sm = y, τ >m}.
We decompose1 according toJm, the minimum value attained byS by timem, andσm
the time at whichJm is first attained. This gives

Px(1)=
x∧y∑
z=0

m∑
n=0

Px(Jm = z, σm = n, Sm = y, τ > m)

=
x∧y∑
z=0

m∑
n=0

P0(Jn = z− x, σn = n)P0(Sm−n = y − z, τ > m− n)

=
x∧y∑
z=0

m∑
n=0

u(x − z, n)v(y − z, m− n),
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where we have used the Markov property, temporal and spatial homogeneity, and duality.
This is the same as (2.5) withl = 0. ✷

COROLLARY 2.2. –The relativised Green’s functions are also connected by

k∗(x, y)= ∑
z∈E0

u(x − z, n− l)k+(z, y). (2.6)

Proof. –Just note that puttingx = 0 in (2.5) gives

g∗(0, y)=
m∑
0

u(0, n)g+((0, n), y) = g+(0, y),

becauseu(0, n)= δ(0, n). Then dividing both sides of (2.5) byg+(0, y) gives (2.6). ✷
We can restate this result as saying that, for fixedy, k∗(·, y) is the image under� of

k+(·, y); where� maps a real-valued functionh(x), x ∈ E0 into another such function
h∗ defined by

h∗(x)= ∑
z∈E0

u(x − z, n− l)h(z). (2.7)

Note that in (2.7), in general the summation is not finite, as it is in the special case of
(2.5), but extends over 0� z� x,n� l. This is technically the main difference between
our situation and the spatial case discussed in [5].

To analyse the mapping�, we need the following elementary result.

LEMMA 2.3. – (i)For r � 0, y � 1 we have

u(y, r + 1)=
∞∑
w=0

p(w − y)u(ω, r). (2.8)

(ii) For r � 0, y � 0 we have

q+(y, r + 1) =
∞∑
w=0

u(ω, r)p(w + y). (2.9)

Proof. –(i) Sinceu(w,0) = δ(w,0) for r = 0 the right hand side of (2.8) reduces to
p(−y) and so does the left hand side. Forr > 0 note thatu(0, r) = 0 and decompose
according to the value ofS1.

(ii) For r = 0, Eq. (2.9) reduces to

P0(S1 = y) =
∞∑
0

u(w,0)p(w + y) = p(y),

and forr � 1 the right hand side of (2.9) coincides with
∑∞

1 u(w, r)p(w + y). But in
this case the duality lemma gives
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q+(y, r + 1)= P0(St < 0, 1� t � r, Sr+1 = y)

=
∞∑
1

P0(St < 0, 1 � t � r − 1, Sr = −w)p(w+ y)

=
∞∑
1

P0(St >−w, 1 � t � r − 1, Sr = −w)p(w+ y)

=
∞∑
1

u(w, r)p(w + y),

which ends the proof. ✷
We can now formulate the main result of this section.

PROPOSITION 2.4. –If a functionh is non-negative and super-regular(regular) for
L+ thenh∗ =�(h) is non-negative and super-regular(regular) for S∗.

Proof. –If h is non-negative andh∗ = �(h) it is clear thath∗ is non-negative and we
have

(P ∗h∗)(x)= ∑
y�0

p(y − x)h∗((y, l + 1)
)

= ∑
y�0

p(y − x)

y∑
z=0

∞∑
n=l+1

u(y − z, n− l − 1)h(z)

= ∑
n�l+1

( ∑
0�z�x

+∑
z>x

)∑
y�z

p(y − x)u(y − z, n− l − 1)h(z)

= ∑
n�l+1

( ∑
0�z�x

u(x − z, n− l)h(z)+ ∑
z>x

q+(z− x, n− l)h(z)

)

= h∗(x)− h(x)+ ∑
n�l

∑
z�x

q+(n− l, z− x)h(z)

= h∗(x)− h(x)+ (
Q+h

)
(x),

where we have used the results of Lemma 2. The result now follows.✷
3. The minimal boundaries

Our aim now is to specify the minimal regular functions forL+, so that we can read off
the corresponding functions forS∗ from Proposition 2.4. In [7] it is shown that for any
2-dimensional random walk, every minimal regular function is either non-degenerate,
in the sense that it is strictly positive on the whole of the reduced state space, or semi-
degenerate in the sense that its support is a straight line. Furthermore in the second case
the reduced state space lies completely on one side of the line, and in both cases the
function is a multiple of a function of exponential form. Thus a non-degenerate minimal
regular function forL+ with h(0)= 1 has the formh(x)= sxt l , where necessarily

(Q+h)(0)= ∑∑
sxt lq+(x, l)= E0

[
sH

+
1 tT

+
1
] = h(0)= 1. (3.1)
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Hence the identity function is a minimal regular function if and only ifT +
1 is a proper

random variable, and this is known to be the case whenS either drifts to infinity
or oscillates underP. In particular, ifµ0 = E[X1] exists, this happens if and only if
µ0 � 0. To elucidate what other solutions (3.1) can have, recall that the Wiener–Hopf
factorization can be written as

1− tM(s) = {
1− E

[
sH

+
1 tT

+
1
]}{

1 − E
[
s−H−

1 tT
−
1
]}
, (3.2)

whenever either side is finite. So any root of (3.1) has to be of the formt = 1/M(s)

for some 0< s < ∞ with M(s) finite, and this can happen withs �= 1 only when the
exponential family associated toP is non-trivial. Recall the notation for this family given
in the introduction, and note that forµ ∈ I

P
(µ)

(
T +

1 <∞) = ∑∑
P
(µ)

(
H+

1 = x, T +
1 = l

)

= ∑∑
s(µ)xM

(
s(µ)

)−l
P
(
H+

1 = x, T +
1 = l

)
= E

[
s(µ)H

+
1 t (µ)T

+
1
]
,

where we have putt (µ)= 1/M(s(µ)). Thus (3.1) holds withs = s(µ), t = t (µ), if and
only if T +

1 is proper underP(µ), or equivalently if and only ifµ � 0. So we conclude
that the only non-degenerate minimal regular functions forL+ are given by

hµ(x)= s(µ)x t (µ)l for µ ∈ I+ ≡ I ∩ [0,∞). (3.3)

In particular, there are no non-degenerate minimal regular functions if
µ+ < 0; for example ifµ0 < 0 andα = β = 1.

As for semi-degenerate minimal functions, the only case whenE0 is bounded above
by a line is whenb = sup{x: p(x) > 0} is finite, and then the bounding line isl+ = {x;
x = lb, l � 0}. Moreover it is easy to see thatq+(lb, l)= p(b)δ(1, l), and that

ĥb(x)=
{
p(b)−l , x = lb, l = 0,1, . . . ,
0, otherwise

defines a minimal regular function whose support isl+.
Of courseE0 is bounded below by the linel− = {x, x = 0, l � 0} so that the function

taking valuest l at (0, l) and zero offl− would also be a minimal regular function if∑
t lq+(0, l)= 1. Now

q+(0, l)= P{S1 < 0, S2 < 0, . . . , Sl−1 < 0, Sl = 0},
and it is known (see [8, p. 424]) that

1−
∞∑
1

t lq+((0, l)) = exp−
∞∑
1

tn

n
P(Sn = 0).

Since the lefthandside is a strictly decreasing function oft , if there is a t for
which it vanishes, it must be equal to the radius of convergence of the power series
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∑∞
1 tnn−1

P(Sn = 0). However it follows from Theorem 5 of [10] that this coincides
with 1/M(ŝ), whereα � ŝ � β,

M(ŝ)= inf
α�s�β

M(s),

andŝ > 0. Thusŝ = s(µ̂) for someµ̂, and

∞∑
1

t̂ lq
(
(0, l)

) = P
µ̂(T1 <∞, H1 = 0),

which is clearly less than one, in view of the fact thatP
µ̂(S1 = x1) > 0.

Remark1. – In [10], Kesten assumes that the random walk is strongly aperiodic, rather
than just aperiodic. But a perusal of the proof of his Theorem 5 shows that to get the
result we require, which is that

lim
n→∞

(
P(Sn = 0)

)1/n =M(ŝ),

the assumption thatS is aperiodic and condition (2.1) suffices. Note also that the above
result implies that̂s = s(µ−) wheneverµ− > 0, so that in all casesI+ contains its left-
hand endpoint, 0∨µ−. Of courseI+ is not always closed on the right.

We have thus established

THEOREM 3.1. –If b = ∞ the minimal regular functions forL+ are precisely those
given in(3.3). If b <∞ there is the additional minimal regular function̂hb.

By computing the images under� of these functions, we deduce the following result,
most of which is contained in [2];

THEOREM 3.2. –Let U(µ)(x) = ∑x
0 u

(µ)(y) be the renewal function in the strict
decreasing ladder heights process underP (µ), so thatu(µ)(x) = ∑

r�0 P
(µ)(H−

r = x).
Then

h∗
µ(x)= s(µ)xM

(
s(µ)

)−l
U (µ)(x), µ ∈ I+, (3.4)

are minimal regular functions forS∗. If b < ∞ there is, in addition, a semi-degenerate
minimal regular function

ĥb(x)=
{
p(b)−l , x = lb, l = 0,1, . . . ,
0, otherwise.

Proof. –Remembering thatH−
r = −S(T −

r ) we have, in the obvious notation

u(µ)(y)=
∞∑
0

P
(µ)

(
H−
r = y, T −

r =m
)

=
∞∑
0

P
(µ)(Sm = −y, Su >−y, for u <m)
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=
∞∑
0

s(µ)−y t (µ)mP
(
H−
r = y, T −

r =m
)

= s(µ)−y t (µ)mu(y).

Thus

�(hµ)(x)=∑
n�l

x∑
z=0

u(x − z, n− l)s(µ)zt (µ)n

= s(µ)x t (µ)l
∑
m�0

x∑
y=0

u(y,m)s(µ)−y t (µ)m

= s(µ)x t (µ)lU(µ)(x)= h∗
µ(x).

As for ĥb(x), note that since the linel+ boundsE0 above, ifz ∈ E0\l+ thenz < bn. Thus
in

�(ĥb)(x)= ∑
n�l

∑
nb�x

u(x − nb, n− l)p(b)n

we see that the sum is 0 unlessx ∈ l+, and then it reduces tou(0,0)p(b)−l = p(b)−l. ✷
Remark2. – This result has a clear probabilistic significance. Theh∗

µ-transform ofS∗
corresponds to a conditioning which makesS∗

n/n → µ a.s., and (3.4) shows that we
can think of this as a 2-stage process. First we make the exponential transform to get a
version ofS with meanµ, and then weh-transform a killed version of this, using the
unique minimal regular functionU(µ)(·). Indeed it has been shown in [2] that, whenI+
is a non-degenerate interval andµ ∈ int(I+), the law ofS conditional uponτ > n and
eitherSn �µn or Sn � µn, depending on whetherµ� µ0 orµ>µ0 , converges (in the
sense of finite-dimensional distributions) toP

(µ,+), the harmonic transform ofP(µ).

4. Some local and ratio limit results

In this section we give a collection of estimates forP(Sm = y), which are valid as
y → ∞, with y ∈ E0, in different ways. From now on we will assume thatS is aperiodic,
and that

E(X1)= 0, Var(X1)= σ 2
0 <∞, and 0<µ+ <∞. (4.1)

Furthermore, we assume either that

b <∞, so thatI+ = [0, b), (4.2)

which we call Case A, or that, writingP+, E
+, andp+ for P

(µ+) ,E(µ+), andp(µ+)

b = ∞, M(µ+) <∞, E
(µ+)(X1 −µ+)2 = σ̂ 2 <∞, (4.3)

and

p+ is regularly varying at∞ with index − κ, 3< κ <∞. (4.4)
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We refer to this latter situation as Case B; of course in this caseI+ = [0,µ+].
Next, we putb0 = µ+ in Case B, and fixb0 ∈ (0, b) in Case A. Then define

H(µ)= log t (µ)+µ logs(µ), 0� µ� b0, (4.5)

where we recall thatt (µ)= 1/M(s(µ)). We then see, from the definition ofs(µ), that

H ′(µ)= s′(µ)
s(µ)

{
µ− s(µ)M ′(s(µ))

M(s(µ))

}
+ logs(µ) = logs(µ). (4.6)

Furthermore one can check that

H ′́′(µ) = s′(µ)
s(µ)

= 1

s(µ)E(µ){(X1 −µ)2} . (4.7)

It follows thatH is a twice differentiable function, that bothH andH ′ are monotone
increasing, and thatH(0+) = H ′(0+) = 0. Moreover if we putθ = y/m then for
0� θ � b0 we have

P(Sm = y) = {
M

(
s(θ)

)}m
s(θ)−yP(θ)(Sm = y) = e−mH(θ)

P
(θ)(Sm = y). (4.8)

Thus we will get a good estimate forP(Sm = y) by approximatingH(θ) by a Taylor
expansion, if we can estimateP(θ)(Sm = y). It is clear that, in Case A and Case B,
σ 2
µ := E

(µ)(X1 − µ)2 is a continuous function, bounded away from 0 and∞, for
0 � µ � b0. Furthermore, the same holds forν(µ) := E

(µ)|X1 − µ|3 on [δ, b0 − δ] for
eachδ > 0, but not on[0, b0], unless we assume additionally thatν(0) andν(b0) are
finite. We will not make this additional assumption, but still claim;

LEMMA 4.1. –In Case A and Case B it holds that, uniformly forθ = y/m ∈ [0, b0],

P
(θ)(Sm = y) = 1√

2πmσθ
+ o

(
1√
m

)
asm→ ∞. (4.9)

Proof. –If θ is bounded away from 0 andb0 this follows from Theorem 6 of [11], and
we only give the proof for the caseθ → 0, as the caseθ → b0 is similar. If y/

√
m is

bounded, then (4.9) follows from the classical local limit theorem. To see this, note that
σθ → σ0 asθ → 0, and, using a Taylor expansion and the remarks following (4.7)

mH(θ)=m

{
H(0)+ θH ′(θ)+ 1

2
θ2H ′′(θ)+ o(θ2)

}
= mθ2

2σ 2
0

+ o(1),

and sincemθ2 is bounded

σθ
√

2πmP
(θ)(Sm = y)= σθe

mH(θ)
√

2πmP(Sm = y)

= σθe
mH(θ)

{
e

− y2

2mσ2
0

σ0
+ o(1)

}
→ 1.
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In the case thatθ → 0 andy/
√
m → ∞ we use a Berry–Esseen type local limit

theorem from [4]. Specifically, if we apply Lemma 3 therefrom withW1 having theP(θ)

distribution ofX1, (4.9) will follow provided that, asm→ ∞,

ν(θ)√
m

→ 0 and
√
m

π∫
c/ν(θ)

e−m(1−|ψ(t)|) dt → 0 (4.10)

whereψ(t) = E
(θ)(eitX1). SinceM(s) exists for somes > 1, we know thatE{(X+

1 )
3} <

∞, and so

ν(θ)√
m

=
∑∞

r=1 r
3s(θ)−rp(−r)√
mM(s(θ))

+ o(1)� 1√
m

∞∑
r=1

r2p(−r) · r
(

1+ θ

σ 2
0

)−r

� σ 2
0√
mθ

∞∑
r=1

r2p(−r)� c
√
m

y
.

This establishes the first condition in (4.10), and the second follows from the first and
the easily checked fact that 1− |ψ(t)| � ct2 for all sufficiently smallt andθ. ✷

The following consequence of estimate (4.9) will be important;

COROLLARY 4.2. – Suppose (λm,m� 1) is a sequence of positive integers such that
λm = o(

√
m) asm→ ∞. Then withθ = y/m

P
(θ)(Sm−n = y + z)

P(θ)(Sm = y)
→ 1 asm→ ∞,

uniformly for

0 � θ � b0, 0� z� λm, and 0� n� λm.

Proof. –Suppose first that̂θ := y+z
m−n � b0, and takem large enough thatλm <m. Then

using (4.6) twice we get

P
(θ)(Sm−n = y + z)= t (θ)m−ns(θ)y+z

P(Sm−n = y + z) (4.11)

=
{
t (θ)

t (θ̂ )

}m−n{
s(θ)

s(θ̂)

}y+z
P
(θ̂)(Sm−n = y + z),

where we recall thatt (θ)= 1/M(s(θ)). Now

0� θ̂ − θ = zm+ ny

m(m− n)
� z+ nb0

m
� (1+ b0)λm → 0, (4.12)

andσ (·) is uniformly continuous on[0, b0], so it follows from (4.9) that

P
(θ̂)(Sm−n = y + z)/P(θ)(Sm = y)→ 1 uniformly asm→ ∞.

Also puttingy + z = (m− n)θ̂ we get, after some manipulation involving (4.6),

{
t (θ)

t (θ̂ )

}m−n{
s(θ)

s(θ̂ )

}y+z
= exp−(m− n)

{
H(θ̂)−H(θ)− (θ̂ − θ)H ′(θ)

}
. (4.13)
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Now it follows from (4.7) thatH ′′ is bounded on[0, b0], so we see, using the bound
(4.12), that

(m− n)
∣∣H(θ̂)−H(θ)− (θ̂ − θ)s(θ)

∣∣ � cm(λm)
2,

and the result follows. If̂θ > b0, a similar argument shows that

P
(θ)(Sm−n = y + z)

P(b0)(Sm−n = y + z)
→ 1 and

P
(θ)(Sm = y)

P(b0)(Sm = y)
→ 1 uniformly asm→ ∞.

Since the classical local limit theorem shows that

P
(b0)(Sm−n = y + z)

P(b0)(Sm = y)
→ 1 uniformly asm→ ∞,

the result follows. ✷
In Case B, we also have to consider the situation thaty ∈ E0 and θ > µ+. If

y ∈ (mµ+,mµ+ + =
√
m), where= is fixed, the classical local limit theorem gives a

good estimate forP(µ+)(Sm = y), but to deal with other cases we need to exploit the
assumption (4.4). Specifically, recalling thatP

+, p+, and σ+ stand forP(µ+), p(µ+),
andσµ+ and writingφ for the standard Normal density function, the following is an
immediate consequence of Theorem 2 of [6];

PROPOSITION 4.3. –In Case B we have, uniformly iny such thatz := y−mµ+√
m

→ ∞,

P
+(Sm = y) = 1√

mσ+
φ

(
z

σ+

)
{1+ o(1)} +mp+([y −mµ+]){1+ o(1)} asm→ ∞.

(4.14)

The final piece of information we need aboutP(Sm = y) is a ratio limit theorem in
Case A, which may have other applications.

PROPOSITION 4.4. –Let S be any integer-valued, aperiodic random walk which for
someb > 0 hasp(b) > 0,p(x) = 0 for all x > b. Write l+ = {(mb,m),m� 0} for the
upper boundary ofE0. Then for fixedx = (x, l) ∈ E0 the convergence

P(Sm−l = y − x)

P(Sm = y)
→ ĥb(x)=

{
p(b)−l if x ∈ l+,
0 if x /∈ l+,

(4.15)

holds uniformly asy/m → b with y = (y,m) ∈ E0.

Proof. –We consider first the case thatx = (lb, l) ∈ l+, when with
S̃r = br − Sr, r � 0, we can rewrite (4.15) as

P(S̃m−l = ỹ)

P(S̃m = ỹ)
→ p(b)−l , (4.16)

whereỹ = mb − y. Note thatp̃(r) := P(S̃1 = r) = p(b − r) = 0 if r < 0. Sincey ∈ E0

we haveP(S̃m = ỹ) > 0, and sincẽy/m → 0 it follows that, whenm is large enough,
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each ofP(S̃m−j = ỹ), j = 1,2, . . . , l, is also positive. (Just removej zero steps of̃S,
i.e.,j steps of sizeb of S, from a path withP(S̃m = ỹ) > 0.) So it suffices to prove (4.16)
with l = 1. Let π denote a generic partition ofỹ as a sum ofpositiveintegers,α(s) the
multiplicity of s in π andβ(π) = ∑

s�1α(s) the ‘length’ ofπ. Observe thatβ(π) � ỹ

for all π. Then

P(S̃m = ỹ)= ∑
π

p̃(0)m−β(π) m!∏s�1 p̃(s)
α(s)

(m− β(π))!∏s�1α(s)!

= p̃(0)
∑
π

m

m− β(π)
p̃(0)m−1−β(π) (m− 1)!∏s�1 p̃(s)

α(s)

(m− 1− β(π))!∏s�1α(s)!
.

Comparing this with the corresponding expression forP(S̃m−1 = ỹ) we see that

1

p̃(0)
� P(S̃m−1 = ỹ)

P(S̃m = ỹ)
� m− ỹ

mp̃(0)
,

and hence (4.16) follows.
If x = (x, l) ∈ E0 andx /∈ l+ thenP(Sl = x) > 0 andx < lb. Then it is easy to see that

∃ x∗ = (x∗, l∗) ∈ E0 such thatx − x∗ = (l − l∗)b� 0 and no partitition ofx∗ of lengthl∗
into integers withp(·) > 0 contains anyb’s. Then what we have already proved shows
that

P(Sm−l∗ = y − x∗)
P(Sm−l = y − x)

→ p(b)l
∗−l ,

so it suffices to prove (4.15) in the case thatx = x∗. Then it reduces to

P(S̃m−l = ỹ − x̃)

P(S̃m = ỹ)
→ 0, (4.17)

wherex̃ = lb − x > 0, P(S̃l = x̃) > 0, andP(any of X̃1, X̃2, . . . , X̃l = 0 | S̃l = x̃) = 0.
Thus there exists a partitioñπ of x̃ into positive integers with mutiplicities̃α(s) with
p̃(s) > 0 for eachs such that̃α(s) > 0, and with lengthβ(π̃)= l. Then to each partition
π of ỹ − x̃ into positive integers there corresponds a partitionπ∗ of ỹ into positive
integers which is formed by adjoining the members ofπ̃ andπ. It follows that

P(S̃m = ỹ)�
∑
π∗

p̃(0)m−l−β(π) m!∏s�1 p̃(s)
α(s)+α̃(s)

(m− l − β(π))!∏s�1(α(s)+ α̃(s))!

� (m− l)lP(S̃m−l = ỹ − x̃)

{ỹp̃(0)}l ,

and (4.17) follows. ✷
Remark3. – In [7], it is shown thatĥb(·) is a minimal regular function for the

unrestricted space time random walkS, and Proposition 4.4 confirms that it is indeed
the limit of relativised Green’s functions forS.
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5. Estimates for the Green’s functions

Turning now to the Green’s functions ofS∗ andL+, we show first that, for fixedx, the
asymptotic behaviour ofg∗(x, y) whenθ := y/m ∈ [δ, b0] with δ > 0 can be determined
by a variation of the argument used in [2]. We writeτ andσ for T −

1 andT +
1 respectively,

and recall that

g∗(x, y)= Px(Sm−l = y, τ > m− l). (5.1)

PROPOSITION 5.1. –For fixedx � 0 andδ > 0 we have, uniformly forθ ∈ [δ, b0],
P
(θ)
x (Sm = y, τ > m)

P
(θ)
x (Sm = y)

− P
(θ)
x (τ = ∞)→ 0 asm→ ∞. (5.2)

Proof. –Recalling thatH− = −Sτ , we writeP
(θ)
x (Sm = y, τ �m) asP1 + P2, where

P1 = P
(θ)
x (Sm = y, τ �m1/3, H− �m1/3), and show that

(P1 + P2)

P
(θ)
x (Sm = y)

− P
(θ)
x (τ <∞)→ 0 asm→ ∞.

We start by noting that Corollary 4.2 gives, uniformly forθ ∈ [δ, b0],
P1

P
(θ)
x (Sm = y)

− P
(θ)
x

(
τ �m1/3, H− �m1/3)

= ∑
1�z�m1/3

1�i�m1/3

P
(θ)
x (τ = i, Si = −z)

{
P
(θ)(Sm−i = y + z)

P
(θ)
x (Sm = y)

− 1
}

→ 0 as m→ ∞.

Using Lemma 4.1 and noting that

P2 � P
(θ)
x

{(
m1/3 < τ <∞) ∪ (

m1/3 <H− <∞)}
,

we see that it suffices to show that, uniformly forθ ∈ [δ, b0],
√
mP

(θ)
x

{(
m1/3 < τ <∞) ∪ (

m1/3 <H− <∞)} → 0. (5.3)

However, sinces(·) is bounded on[δ, b0] and

M(θ)(w) := E
(θ)

(
wS1

) = M(ws(θ))

M(s(θ))
,

it is clear that we can choosew ∈ (0,1) such thatM(θ)(w) � a < 1 for all θ ∈ [δ, b0].
But if τ(−r)= inf{i: Si <−r} we have, forr � 0,

w−r
P
(θ)
r (τ <∞)=w−r

P
(θ)

(
τ(−r) <∞) =w−r

∞∑
i=1

P
(θ)

(
τ(−r) = i

)

�
∞∑
i=1

E
(θ)

(
wSi ; τ(−r)= i

)
�

∞∑
i=1

ai � (1− a)−1.
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So if we put[m1/3] = j , we have

P
(θ)
x

(
m1/3 < τ <∞)=

∞∑
r=0

P
(θ)
x (Sj = r, τ > j)P(θ)

r (τ <∞)

� (1− a)−1
∞∑
r=0

wr
P
(θ)
x (Sj = r)� (1− a)−1wxaj .

It is also straightforward to deduce, from the Wiener–Hopf factorisation (3.2) with
t = 1, thatE(θ)(w−H1) � 1 for all θ ∈ [δ, b0]. This easily leads to a uniform exponential
bound forP(θ)

x (m1/3 <H− <∞). Then (5.3) follows and this finishes the proof.✷
The same technique works for Case B wheny/m� µ+.

PROPOSITION 5.2. –In Case B we have, for fixedx and uniformly fory ∈ E0 such
that (y − x,m) ∈ E0 andy/m� µ+,

P
+
x (Sm = y, τ > m)

P+
x (Sm = y)

→ P
+
x (τ = ∞) asm→ ∞. (5.4)

Proof. –This follows the same lines as the previous proof, except that we work under
the fixed measureP+ = P

(µ+), and we rely on the estimate (4.14) rather than (4.9). The
details are omitted. ✷

In Case B it is also necessary to deal with the situation thatm is fixed, andy → ∞,
when of courseθ → ∞.

LEMMA 5.3. – In Case B whenm� 1 andx = (x, l) are fixed with0 � l �m− 1,

P
+
x (Sm−l = y, τ >m− l)� p+(y)

m−l−1∑
j=0

P
+
x (τ > j). (5.5)

Proof. –Recall from (4.4) thatp+(y) is regularly varying of index−κ at infinity,
with κ > 3, and note that sinceP+(X1 = −y) is exponentially small,P+(| X1 |> y) is
regularly varying of index 1− κ at infinity. It follows that we can chooseε ∈ (0,1) so
that ifK =K(y) = [yε] then

{
P

+(|X1|>K)
}2 = o

(
p+(y)

)
asy → ∞. (5.6)

A standard property of regularly varying functions gives

p+(z)� p+(y) asy → ∞, uniformly for y −K � z� y +K. (5.7)

Writing m− l = k, it follows from (5.6) that, asy → ∞,

P
+
x (Sk = y, τ > k)= P

+
x

{
(Sk = y, τ > k)∩A

} + o
{
p+(y)

}

where

A= {
exactly one of|Xi |, 1� i � k, exceedsK

}
.
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Now write

A∩ (Sk = y)=
k⋃
1

B(j),

where

B(j) = {|Xi |�K, 1� i � k, i �= j, | Sj |>K, Sk = y
}
,

and note thatB(j) ∩ {τ > j − 1} = B(j) ∩ {τ > k}, providedy �Kk. Thus, using (5.7),

P
+
x

{
(Sk = y, τ > k)∩A

}

=
k∑

j=1

∑
|zi |�K,i �=j

P
+
x

{
Xi = zi, i �= j, τ > j − 1

}
p+

(
y − ∑

i �=j
zi

)

� p+(y)
k∑

j=1

P
+
x

{|Xi |�K, i < j, τ > j − 1
}
P

+{|Xi |�K,j < i � k
}
,

and sincek is fixed, (5.5) follows. ✷
Next we turn to the case thatθ → 0, when the approach used above is not effective,

sincePx(τ = ∞) = 0 for all x. In this situation it seems that the estimation ofg∗(x, y)
has to be approached indirectly, by first finding the asymptotic behaviour ofg+(z, y) and
then using the relation (2.5). It also seems to be necessary to give different arguments,
according asy/

√
m tends to zero or not. Recall thatg+(z, y) = v(y − z). Rather than

using the obvious identity

v(y)=
∞∑
r=0

P
(
H+
r = y, T +

r =m
)

it turns out to be much more effective to use a new representation, taken from
[1].(Actually the result given in [1] is for thestrict ladder process, but it is easy to adapt
the arguments to the weak case.) The result is

mv(y)= E{Ny; Sm = y}, m > 0, y � 0, (5.8)

where

Ny = sup
{
k: H+

k � y
}
.

The identity (5.8) can also be formulated as a renewal equation, and in [1] this was
used to establish the following result. This improves an earlier result in [9], and gives
us the required estimate in the first of these cases. (Note this result doesnot require the
existence ofP(θ) for θ > 0.)

PROPOSITION 5.4. –If S satisfies (4.1) then, uniformly in y � 0 such that
y/

√
m→ 0,

mv(y)� V (y)P(Sm = y)� V (y)

σ0

√
2πm

asm→ ∞, (5.9)

whereV (y) = E{Ny}.
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If we recall thatv(y)= g+(0, y)= g∗(0, y) we can putx = 0 in (5.2) and rewrite it as

mv(θ)(y)� y

θ
P
(θ)(τ = ∞)P(θ)(Sm = y) asm→ ∞. (5.10)

However forθ > 0 the Wiener–Hopf factorisation yields

P
(θ)(τ = ∞)= 1

E(θ)(σ )
,

and Wald’s identity gives

θ

E(θ)(σ )
= d(θ) := E

(θ)
(
H+

1

)
.

Of courseV (y)� y/d(θ) wheny → ∞, andd is continuous, so we see that, under our
assumptions, (5.9) and (5.10) can be combined in the form

mv(θ)(y)� y

d(θ)
P
(θ)(Sm = y)� 1

σ (θ)d(θ)
√

2πm
asm→ ∞, y → ∞ (5.11)

We will now show that (5.11) holds whenθ → 0,
√
mθ = y/

√
m� 0.

PROPOSITION 5.5. –For anyη > 0,∃ δ ∈ (0, b0) such that(5.11)holds uniformly for
y ∈ [√mη,mδ].

Proof. –Givenε > 0, we split theP(θ) version of (5.8) into three terms, by writing

y−1mv(θ)(y)=
∞∑
k=1

k

y
P
(θ){Ny = k, Sm = y} =G(1) +G(2) +G(3), (5.12)

where the summation inG(i) is overAi , with

A1 =
{

1� k <
(1− ε)y

d(θ)

}
, A2 =

{
(1− ε)y

d(θ)
� k � (1+ ε)y

d(θ)

}
,

and

A3 =
{
k >

(1+ ε)y

d(θ)

}
.

We also write

Pi = P
(θ){Ny ∈Ai, Sm = y}, i = 1,2,3.

Clearly

1− ε � d(θ)
G(2)

P2
� 1+ ε,

so (5.11) will follow if we can show that bothG(1) +G(3) andP1 + P3 are o{P(θ)(Sm =
y)}, uniformly for y ∈ [√mη,mδ]. Notice thatG(1) � P1, and
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P1 � P
(θ)

{
Ny <

(1− ε)y

d(θ)

}
= P

(θ)
(
H+
k(θ) � y

)

= P
(θ)

{
H+
k(θ) − k(θ)d(θ)� y − k(θ)d(θ)

}
,

where k(θ) = [ (1−ε)y
d(θ)

]. Note thaty − k(θ)d(θ) � εy asm → ∞, and E
(θ)(λH

+
1 ) →

E(λH
+
1 ) <∞ for 1� λ� s(b0). In particular,∃ δ > 0, λ0 > 1 such that

E
(θ)

(
λH

+
1
)
� c for λ ∈ [0, λ0] andθ ∈ [0, δ].

A standard exponential inequality then shows thatP1 is uniformly O(e−cy) and hence
o{P(θ)(Sm = y)} by Lemma 4.1.

A similar calculation shows thatP(θ)(Ny >
y

d(θ)
+ z) is uniformly O(e−cz) asz → ∞,

and this is enough to show that bothG(3) and P3 are o{P(θ)(Sm = y)}; the result
follows. ✷

6. The full Martin boundaries

Our aim now is to find, in Case A and Case B, all possible limits of the relativised
Green’s functionsk+(x, y) andk∗(x, y). We start with the easier case ofM+, and we
need to introduceW #, the renewal function in the process of increasing ladder times
(T +

k , k � 0) under the measureP+; thus

W #(n)=
n∑

r=0

∞∑
k=0

P
+(T +

k = r
)
, n� 0.

THEOREM 6.1. –Assume(4.1) and either(4.2) or (4.3) and (4.4). Then the only
possible limits of the relativised Green’s functionsk+(x, y(r)) asy(r) → ∞ throughE0

are
(i) the regular functionshµ(·) for 0 � µ < µ+ = b in Case A, and0 � µ � µ+ in

Case B;
(ii) the regular functionĥb(·) in Case A;

(iii) the super-regular functions defined in Case B, fory = 0,1,2, . . . , by

h̃y(x)=
{

V (y−x)
V (y)

for 0 � x � y, l = 0,1, . . . ,
0 otherwise;

(iv) the super-regular functions defined, form= 1,2, . . . , by

h#
m(x)=

{
W#(m−l−1)
W#(m−1) for 0 � l < m, x = 0,1, . . . ,

0 otherwise.
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Furthermore, ify(r)/m(r) → µ� ∞, then

k+(x, y(r)) →




h̃y(x) if µ= 0 andy(r) → y;
hµ∧µ+(x) if y(r) → ∞ andµ<µ+ = b in Case A;
ĥb(x) if µ= b in Case A;
h#
m(x) if µ= ∞ andm(r) →m in case B.

(6.1)

Proof. –Of course ify(r) → y, theny(r) = y for all sufficiently larger , and since
k+(x, y(r)) = v(y(r) − x)/v(y(r)), the first statement in (6.1) follows immediately from
Proposition 5.4. Ify(r) → ∞ andy(r)/m(r) →µ� b0 then Propositions 5.4, 5.2, and 5.1
show that (5.11) holds. Thus, putting̃θ = (y − x)/(m− l), so that|θ − θ̃ |� c/m for
largem, it follows from (5.11) and an argument similar to that in the proof of Corollary
4.2 that

v(y(r) − x)

v(y(r))
= s(θ)xt (θ)l

{
s(θ)

s(θ̃ )

}y−x{
t (θ)

t (θ̃ )

}m−l v(θ̃)(y(r) − x)

v(θ)(y(r))

→ s(θ)xt (θ)l = hµ(x).

If in Case By(r)/m(r) → µ>µ+ (or y(r)/m(r) → µ+ andy(r)/m(r) � µ+) we write

v(y(r) − x)

v(y(r))
= s(µ+)xt (µ+)l

P
+(Sm−l = y − x, τ > m− l)

P+(Sm = y, τ > m)

→ s(µ+)xt (µ+)l = hµ+(x),

where we have used Proposition 5.1 (withx = 0) and Proposition 5.2. In Case A when
y/m → b we will use again the fact thatv(y,m) = P(Sm = y, τ > m). If x = (lb, l)

we put ỹ = mb − y, m̃ = [ỹ/b] + l + 1, and note thatSk < 0 for any m̃ � k � m is
incompatible withSm = y, because it entails

Sm < 0+ (m− m̃)b < mb − ỹ = y.

Similarly Sk < 0 for anym̃� k �m− l is incompatible withSm−l = y − x = y − lb. So

v(y,m)=
m̃b∑
z=0

P(Sm̃ = z, τ > m̃)Pz(Sm−m̃ = y, τ > m− m̃)

=
m̃b∑
z=0

P(Sm̃ = z, τ > m̃)P(Sm−m̃ = y − z), (6.2)

and in the same way

v(y − x, m− l)=
m̃b∑
z=0

P(Sm̃ = z, τ > m̃)P(Sm−l−m̃ = y − lb − z).
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Since for 0� z � m̃b we have 0� y−z
m−m̃ → 0, we can use Proposition 4.4 to show that,

given arbitraryε > 0,

(1− ε)p(b)l � P(Sm−m̃ = y − z)

P(Sm−l−m̃ = y − lb − z)
� (1 + ε)p(b)l

for 0 � z � m̃b and all sufficiently largey. Thus k+(x, y) → ĥb(x). As for the case
x /∈ l+, sincex ∈ E0 we haveP(Sl = x) > 0. Thus

v(y,m)= P(Sm = y,m is a ladder epoch)

� P(Sl = lb)v(y − lb, m− l)+ P(Sl = x)v(y − x, m− l),

and it follows that

k+(x, y)P(Sl = x)� 1− p(b)lk+((lb, l), y) → 0.

Finally we consider the case thatm is fixed andy → ∞. (The case thatm→ ∞, y →
∞, andy/m → ∞ is also dealt with by using Proposition 5.2.) First we recall that, by
duality,

g(µ+)(y,m)= P
+(S1 � 0, S2 � 0, . . . , Sm−1 � 0, Sm = y) = P

+(τ > m, Sm = y),

so that Lemma 5.3 applies and gives, using duality again,

g(µ+)(y,m)∼ p+(y)
m∑
r=1

P
+(τ > r − 1)

= p+(y)
m∑
r=1

P
+(r − 1 is a weak inceasing ladder time)

= p+(y)W #(m− 1).

Since, forl < m,

k+(x, y)= s(µ+)xt (µ+)l
g(µ+)(y − x, m− l)

g(µ+)(y, m)

andp+(y − x)/p+(y) → 1, the result follows. ✷
The corresponding result forM∗ is

THEOREM 6.2. –Assume(4.1) and either(4.2) or (4.3) and (4.4). Then the only
possible limits of the relativised Green’s functionsk∗(x, y(r)) as y(r) → ∞ throughE0

are:
(i) the regular functionsh∗

µ(·) for 0 � µ < µ+ = b in Case A, and0 � µ � µ+ in
Case B;

(ii) the regular functionĥb(·) in Case A;



L. ALILI, R.A. DONEY / Ann. I. H. Poincaré – PR 37 (2001) 313–338 335

(iii) the super-regular functions defined, in Case B , form= 1,2, . . . , by

h$
m(x)=




∑m−l−1
j=0

P
+
x (τ>j)∑m−l−1

j=0
P+(τ>j)

for 0 � l < m, x = 0,1, . . . ,

0 otherwise.

Furthermore, ify(r)/m(r) →µ� ∞, then

k∗(x, y(r)) →


h∗
µ∧µ+(x) if m(r) → ∞ andµ<µ+ = b in Case A;

ĥb(x) if µ= b in Case A;

h$
m(x) if m(r) →m andy(r) → ∞ in Case B.

(6.3)

Proof. –We show first that ify is fixed andm→ ∞ then (6.3) holds withµ= 0.
(This argument does not require the existence of a non-trivial exponential family.) In
these circumstances we can apply Proposition 5.4 toS and Theorem 7 of [1] to−S to
see that, for fixedx, y, andz

σ
√

2πk3/2v(y − z, k)→ V (y − z) ask → ∞, (6.4)

and

σ
√

2πk3/2u(y − z, k)→U(x − z− 1) ask → ∞. (6.5)

Now we note that, in the identity

g∗(x, y)=
x∧y∑
z=0

m−l∑
k=0

u(x − z, k)v(y − z, m− l − k), (6.6)

which is (2.5) in a different notation, the inner sum is the convolution ofu(x − z, ·) with
v(y − z, ·) evaluated atm− l. A standard result (e.g., Lemma 1 in [3]) shows that (6.4)
and (6.5) together imply that

σ
√

2πm3/2g∗(x, y)→
x∧y∑
z=0

{
U(x − z− 1)v(y − z)+ u(x − z)V (y − z)

}
, (6.7)

and a few lines of calculations show that the right hand side of (6.7) can also be written as
U(x)V (y). Sinceg∗(0, y) = v(y) we deduce, using (6.4) again, thatk∗(x, y) → U(x),
and this is (6.3) withµ= 0.

Next, suppose thaty → ∞,m → ∞, andy/m → 0. Theny � x eventually, so we
see from (6.6) that it suffices to show that, for fixedx, z, andl

∑m−l
k=0 u(x − z, k)v(y − z,m− l − k)

v(y,m)
→

∞∑
k=0

u(x − z, k)= u(x − z) asm→ ∞.

(6.8)
Sincex − z is fixed, (6.5) shows thatk3/2 u(x − z, k) � c for all k � 1. Given any

0<K <∞ we writem0 =m0(y,m)= [(K/y)2/3m], so that, withθ = y/m,
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m−l∑
k=m0

u(x − z, k)v(y − z, m− l − k)

� c(m0)
−3/2

m−l∑
k=1

v(y − z,m− l − k)

= c(m0)
−3/2

m−l∑
k=1

M
(
s(θ)

)m−l−k
v(θ)(y − z, m− l − k)s(θ)z−y

� c(m0)
−3/2M(s(θ))m

s(θ)y
· s(θ)z

M(s(θ))l
P
(θ)(y − z is a ladder height)

� c(m0)
−3/2 s(θ)z

M(s(θ))l
e−mH(θ) � c

y

Km3/2
e−mH(θ)

� c
y

Km
P(Sm = y)� c

K
v(y,m). (6.9)

Here, of course, we have used the fact thats(θ) ↓ 1, Lemma 4.1, and (5.11). To deal with
the remaining terms, putj = k + l andθ̃ = y−z

m−j = θ + γ , so thatγ = jy−mz
m(m−j) . Next, we

use (5.11) twice to see that, uniformly fork <m0,

v(y − z,m− j)

v(y,m)
� P(Sm−j = y − z)

P(Sm = y)

= exp{−(m− j)H(θ̃)}
exp{−mH(θ)} · P(Sm−j = y − z)

P(Sm = y)

� exp{mH(θ)− (m− j)H(θ̃)} asm→ ∞.

Recall from (4.5) and (4.6) thatH ′ is increasing and

mH(θ)− (m− j)H(θ̃)= (m− j)

{
H(θ)−H(θ̃)+ j

m− j
H(θ)

}

� (m− j)

{
H(θ)−H(θ̃)+ jθ

m− j
H ′(θ)

}

= (m− j)
{
H(θ)−H(θ̃)+ γH ′(θ)

} + zH ′(θ). (6.10)

Now z is fixed andH ′(µ)→ 0 asµ→ 0, and from the mean value theorem we see that

∣∣H(θ)−H(θ̃)
∣∣ � |γ |H ′(θ),

so recalling the definition ofγ we see that the right hand side of (6.10) is bounded by
a constant for allk < m0 and sufficiently largem, and tends to zero asm → ∞ for
each fixedk. Hencev(y − z,m− l − k)/v(y,m) is bounded above by a constant for all
k < m0 and sufficiently largem, and tends to 1 asm → ∞ for each fixedk. We can
therefore apply dominated convergence to conclude that

∑m0
k=0u(x − z, k)v(y − z,m− l − k)

v(y,m)
→

∞∑
k=0

u(x − z, k)= u(x − z) asm→ ∞,
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and since we can chooseK arbitrarily large this, together with (6.9), establishes (6.8).
The case thatθ = y/m → µ > 0, (whereµ < b in Case A) is easily dealt with, in

virtue of Propositions 5.1 and 5.2. Indeed, it is immediate from (5.2) and (5.4) that, with
P

+ andµ+ replacingP
(θ) andθ whenθ � µ+,

g∗(x, y)
g∗(0, y)

= Px(Sm−l = y, τ > m− l)

P(Sm = y, τ > m)
= s(θ)x t (θ)l

P
(θ)
x (Sm−l = y, τ > m− l)

P(θ)(Sm = y, τ > m)

� s(µ)x t (µ)l
P
(θ)
x (τ = ∞)P(θ)(Sm−l = y − x)

P(θ)(τ = ∞)P(θ)(Sm = y)

→ s(µ)x t (µ)l
P
(µ)
x (τ = ∞)

P(µ)(τ = ∞)

= s(µ)x t (µ)lU(µ)(x)= hµ(x).

Note here that the identityU(µ)(x)= P
(µ)
x (τ = ∞)/P(µ)(τ = ∞) is valid becauseS drifts

to +∞ underP(µ) whenµ> 0.
Next, we deal with Case A wheny/m → b. Retaining the notation of the previous

proof, recall that Eq. (6.2) states that ifx = (lb, l), then

g∗(0, y)= v(y ,m)=
m̃b∑
z=0

P(Sm̃ = z, τ > m̃)P(Sm−m̃ = y − z).

But note now thatSr < x for any m̃� r �m− l is incompatible withSm−l = y − x,
so that

g∗(x, y)= Px(Sm−l = y, τ > m− l)

=
m̃b∑
z=0

Px(Sm̃ = x + z, τ > m̃)Px+z(Sm−l−m̃ = y, τ > m− l − m̃)

=
m̃b∑
z=0

Px(Sm̃ = x + z, τ > m̃)P(Sm−l−m̃ = y − x − z)

�
m̃b∑
z=0

P(Sm̃ = z, τ > m̃)P(Sm−l−m̃ = y − x − z).

We can then use Proposition 4.4 to deduce that, for anyε > 0,

lim inf k∗(x, y)� ĥb(x)− ε.

But plainly

g∗(0, y)� P(Sl = lb)Plb(Sm−l = y − lb, τ > m− l)= p(b)lg∗(x, y),

so thatk∗(x, y)� ĥb(x).

As for the casex /∈ l+, note thatx ∈ E0 impliesP(Sl = x, τ > l) > 0. So

g∗(0, y)� p(b)lg∗((lb, l), y) + P(Sl = x, τ > l)lg∗(x, y),
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and hence

k∗(x, y)�
1− p(b)lk∗((lb, l), y)

P(Sl = x, τ > l)
→ 0.

Finally, the result in the casem(r) → m, y(r) → ∞ follows immediately from
Lemma 5.3. ✷

Remark4. – The situation thaty(r) → y andm → ∞ gives the promised examples
with

lim
r→∞k∗(·, y(r)) �=�

(
lim
r→∞k+(·, y(r))).
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