@article{AIHPB_2001__37_2_245_0, author = {Eichelsbacher, Peter}, title = {Moderate deviations for functional $U$-processes}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {245--273}, publisher = {Elsevier}, volume = {37}, number = {2}, year = {2001}, zbl = {0987.60033}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2001__37_2_245_0/} }
Eichelsbacher, Peter. Moderate deviations for functional $U$-processes. Annales de l'I.H.P. Probabilités et statistiques, Tome 37 (2001) no. 2, pp. 245-273. http://www.numdam.org/item/AIHPB_2001__37_2_245_0/
[1] Limit theorems for U-processes, Ann. Probab. 21 (1993) 1494-1542. | MR | Zbl
, ,[2] U-processes indexed by Vapnik-Červonenkis classes of functions with applications to asymptotics and bootstrap of U-statistics with estimated parameters, Stochastic Process. Appl. 52 (1994) 17-38. | MR | Zbl
, ,[3] On the law of the iterated logarithm for canonical U-statistics and processes, Stochastic Process. Appl. 58 (1995) 217-245. | MR | Zbl
, ,[4] Large deviations and stochastic homogenization, Ann. Mat. Pura Appl. 151 (1988) 161-177. | MR | Zbl
,[5] Probabilities of large deviations in topological spaces I, Siberian Math. J. 19 (1978) 697-709. | MR | Zbl
, ,[6] Probabilities of large deviations in topological spaces II, Siberian Math. J. 21 (1980) 653-664. | MR | Zbl
, ,[7] U-Statistics in Banach Spaces, VSP, Utrecht, 1996. | MR | Zbl
,[8] Uniform large and moderate deviations for functional empirical processes, Stochastic Process. Appl. 67 (1997) 195-211. | MR | Zbl
, ,[9] Large Deviations Techniques and Applications, Springer, New York, 1998. | MR | Zbl
, ,[10] A course on empirical processes, in: , (Eds.), École d'Eté de Probabilités de Saint-Flour XII, Lecture Notes in Math., 1097, Springer, New York, 1984, pp. 1-142. | MR | Zbl
,[11] Large deviations for products of empirical probability measures in the τ-topology, J. Theoret. Probab. 10 (4) (1997) 903-920. | Zbl
,[12] Large deviations for partial sums U-processes, Theory Probab. Appl. 43 (1998) 97-115. | MR | Zbl
, ,[13] Exponential approximations in completely regular topological spaces and extensions of Sanov's theorem, Stochastic Process. Appl. 77 (2) (1998) 233-251. | MR | Zbl
, ,[14] Large and rank-dependent moderate deviations for U-empirical measures in strong topologies, preprint, 1998. | MR
, ,[15] Decoupling: From Dependence to Independence, Springer-Verlag, 1999. | MR | Zbl
, ,[16] On integrability in the LIL for degenerate U-statistics, J. Theoret. Probab. 9 (2) (1996) 385-412. | MR | Zbl
, ,[17] On the invariance principle for U-statistics, Stochastic Process. Appl. 9 (1979) 163-174. | MR | Zbl
,[18] Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963) 13-30. | MR | Zbl
,[19] Probability in Banach Spaces, Springer-Verlag, Berlin, 1991. | MR | Zbl
, ,[20] Invariance principle for symmetric statistics, Ann. Statist. 12 (1984) 483-496. | MR | Zbl
, ,[21] Weak convergence of U-statistics and von Mises differentiable, Ann. Math. Statist. 43 (1972) 31-41. | MR | Zbl
, ,[22] Large deviations for trajectories of multidimensional random walks, Theory Probab. Appl. 21 (1976) 300-315. | MR | Zbl
,[23] Comparison of sums of independent identically distributed random vectors, Probab. Math. Statist. 14 (2) (1994) 281-285. | MR | Zbl
,[24] Decoupling inequalities for the tail probabilities of multivariate U-statistics, Ann. Probab. 23 (2) (1995) 806-816. | MR | Zbl
, ,[25] Convergence of Stochastic Processes, Springer, New York, 1984. | MR | Zbl
,[26] Sharper bounds for gaussian and empirical processes, Ann. Probab. 22 (1) (1994) 28-76. | MR | Zbl
,[27] Large deviations, moderate deviations and LIL for empirical processes, Ann. Probab. 22 (1) (1994) 17-27. | MR | Zbl
,[28] Exponential inequalities for sums of random vectors, J. Mult. Anal. 6 (4) (1976) 473-499. | MR | Zbl
,[29] Sums and Gaussian Vectors, Lecture Notes in Mathematics, 1617, Springer-Verlag, Berlin, 1995. | MR | Zbl
,