@article{AIHPB_2001__37_2_195_0, author = {Liu, Quansheng}, title = {Local dimensions of the branching measure on a {Galton-Watson} tree}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {195--222}, publisher = {Elsevier}, volume = {37}, number = {2}, year = {2001}, zbl = {0986.60080}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2001__37_2_195_0/} }
TY - JOUR AU - Liu, Quansheng TI - Local dimensions of the branching measure on a Galton-Watson tree JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2001 SP - 195 EP - 222 VL - 37 IS - 2 PB - Elsevier UR - http://www.numdam.org/item/AIHPB_2001__37_2_195_0/ LA - en ID - AIHPB_2001__37_2_195_0 ER -
Liu, Quansheng. Local dimensions of the branching measure on a Galton-Watson tree. Annales de l'I.H.P. Probabilités et statistiques, Tome 37 (2001) no. 2, pp. 195-222. http://www.numdam.org/item/AIHPB_2001__37_2_195_0/
[1] On the limit of a supercritical branching process, J. Appl. Prob. 25A (1988) 215-228. | MR | Zbl
,[2] Asymptotic properties of supercritical branching processes I: The Galton-Watson process, Adv. Appl. Prob. 6 (1974) 711-731. | MR | Zbl
, ,[3] Probability: Independence, Interchageability and Martingales, Springer-Verlag, New York, 1978. | MR | Zbl
, ,[4] Defining fractals in a probability space, Ill. J. Math. 38 (1994) 480-500. | MR | Zbl
, ,[5] On a theorem of Bingham and Doney, J. Appl. Prob. 19 (1982) 217-220. | MR | Zbl
,[6] The extinction time of the inhomogeneous branching Process, in: (Ed.), Branching Processes: Proc. First World Congress, Lecture Notes in Statistics, 99, Springer, Berlin, 1995, pp. 106-117. | MR | Zbl
,[7] Branching Processes, Springer-Verlag, 1963. | MR | Zbl
,[8] A lower Lipschitz condition for the stable subordinator, Z. Wahr. verw. Geb. 17 (1971) 23-32. | MR | Zbl
,[9] Trees generated by a simple branching process, J. London Math. Soc. 24 (1981) 373-384. | MR | Zbl
,[10] The multifractal structure of stable occupation measure, Stoch. Proc. Appl. 66 (1997) 283-299. | MR | Zbl
, ,[11] Remarks on the structure of trees with applications to supercritical Galton-Watson processes, in: , (Eds.), Advances in Prob., 5, Dekker, New-York, 1978, pp. 263-268. | MR | Zbl
,[12] Théorie de l'Addition des Variables Aléatoires, Gautier-Villars, Paris, 1954. | JFM
,[13] The exact Hausdorff dimension of a branching set, Prob. Theory Related Fieds 104 (1996) 515-538. | MR | Zbl
,[14] The growth of an entire characteristic function and the tail probabilities of the limit of a tree martingale, Trees, in: , , (Eds.), Trees, Progress in Probability, 40, Birkhäuser, Basel, 1996, pp. 51-80. | MR | Zbl
,[15] Exact packing measure of the boundary of a Galton-Watson tree, Stoch. Proc. Appl. 85 (2000) 19-28. | MR | Zbl
,[16] On two measures defined on the boundary of a branching tree, in: , (Eds.), Classical and Modern Branching Processes, IMA Volumes in Mathematics and its Applications, 84, Springer-Verlag, 1996, pp. 187-202. | MR | Zbl
, ,[17] A uniform limit law for the branching measure on a Galton-Watson tree, Asian J. Math. 3 (1999) 381-386. | MR | Zbl
, ,[18] Ergodic theory on Galton-Watson trees, Speed of random walk and dimension of harmonic measure, Ergodic Theory Dynamical Systems 15 (1995) 593-619. | MR | Zbl
, , ,[19] Arbre et processus de Galton-Watson, Ann. Inst. Henri Poincaré 22 (1986) 199-207. | Numdam | MR | Zbl
,[20] A limit theorem for sample maxima and heavy branches in Galton-Watson trees, J. Appl. Prob. 17 (1980) 539-545. | MR | Zbl
,[21] On the order and the type of entire characteristic functions, Ann. Stat. 33 (1962) 1238-1255. | MR | Zbl
,[22] Logarithmic multifractal spectrum of stable occupation measure, Stoch. Proc. Appl. 75 (1998) 249-261. | MR | Zbl
, ,[23] Multifractal spectra of branching measure on a Galton-Watson tree, Preprint, 1999. | MR
, ,