@article{AIHPB_2000__36_3_395_0, author = {Peres, Yuval}, title = {Percolation on nonamenable products at the uniqueness threshold}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {395--406}, publisher = {Gauthier-Villars}, volume = {36}, number = {3}, year = {2000}, mrnumber = {1770624}, zbl = {0965.60094}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2000__36_3_395_0/} }
TY - JOUR AU - Peres, Yuval TI - Percolation on nonamenable products at the uniqueness threshold JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 395 EP - 406 VL - 36 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_2000__36_3_395_0/ LA - en ID - AIHPB_2000__36_3_395_0 ER -
Peres, Yuval. Percolation on nonamenable products at the uniqueness threshold. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 3, pp. 395-406. http://www.numdam.org/item/AIHPB_2000__36_3_395_0/
[1] Amenability, Kazhdan's property and percolation for trees, groups and equivalence relations, Israel J. Math. 75 (1991) 341-370. | MR | Zbl
, ,[2] Group-invariant percolation on graphs, Geom. Funct. Anal. 9 (1999) 29-66. | MR | Zbl
, , , ,[3] Benjamini I., Critical percolation on any nonamenable group has no infinite clusters, Ann. Probab. (1999), to appear. | MR | Zbl
, , ,[4] Benjamini I., Percolation beyond Zd, many questions and a few answers, Electronic Commun. Probab. 1 (8) (1996) 71-82. | MR | Zbl
,[5] Density and uniqueness in percolation, Comm. Math. Phys. 121 (1989) 501-505. | MR | Zbl
, ,[6] Uniqueness of the infinite component in a random graph with applications to percolation and spin glasses, Probab. Theory Related Fields 92 (1992) 511-527. | MR | Zbl
, , ,[7] Percolation in oo + 1 dimensions, in: Grimmett G.R., Welsh D.J.A. (Eds.), Disorder in Physical Systems, Clarendon Press, Oxford, 1990, pp. 167-190. | MR | Zbl
, ,[8] Infinite clusters in dependent automorphism invariant percolation on trees, Ann. Probab. 25 (1997) 1423-1436. | MR | Zbl
,[9] Monotonicity of uniqueness for percolation on Cayley graphs: all infinite clusters are born simultaneously, Probab. Theory Related Fields 113 (1999) 273-285. | MR | Zbl
, ,[10] Percolation on transitive graphs as a coalescent process: relentless merging followed by simultaneous uniqueness, in: Bramson M., Durrett R. (Eds.), Perplexing Probability Problems: Papers in Honor of Harry Kesten, Birkhäuser, 1999, pp. 69-90. | MR | Zbl
, , ,[11] Percolation on Fuchsian groups, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998) 151-177. | Numdam | MR | Zbl
,[12] Multiple transition points for the contact process on the binary tree, Ann. Probab. 24 (1996) 1675-1710. | MR | Zbl
,[13] Indistinguishability of percolation clusters, Ann. Probab. (1999), to appear. | MR | Zbl
, ,[14] Amenability, American Mathematical Soc., Providence, 1988. | MR | Zbl
,[15] The contact process on trees, Ann. Probab. 20 (1992) 2089-2116. | MR | Zbl
,[16] Nonamenable products are not treeable, Preprint, 1999, Israel J. Math., to appear. | MR | Zbl
, ,[17] On the norms of group-invariant transition operators on graphs, J. Theor. Probab. 5 (1992) 563-576. | MR | Zbl
,[18] A new proof that for the contact process on homogeneous trees local survival implies complete convergence, Ann. Probab. 26 (1998) 1251-1258. | MR | Zbl
, ,[19] Stability of infinite clusters in supercritical percolation, Probab. Theory Related Fields 113 (1999) 287-300. | MR | Zbl
,[20] Percolation in ∞ + 1 dimensions at the uniqueness threshold, in: Bramson M., Durrett R. (Eds.), Perplexing Probability Problems: Papers in Honor of H. Kesten, Birkhäuser, 1999, pp. 53-67. | MR | Zbl
,[21] The complete convergence theorem of the contact process on trees, Ann. Probab. 24 (1996) 1408-1443. | MR | Zbl
,