@article{AIHPB_2000__36_3_367_0, author = {Asselah, Amine and Dai Pra, Paolo}, title = {First occurrence time of a large density fluctuation for a system of independent random walks}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {367--393}, publisher = {Gauthier-Villars}, volume = {36}, number = {3}, year = {2000}, mrnumber = {1770623}, zbl = {0982.60036}, language = {en}, url = {http://www.numdam.org/item/AIHPB_2000__36_3_367_0/} }
TY - JOUR AU - Asselah, Amine AU - Dai Pra, Paolo TI - First occurrence time of a large density fluctuation for a system of independent random walks JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2000 SP - 367 EP - 393 VL - 36 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_2000__36_3_367_0/ LA - en ID - AIHPB_2000__36_3_367_0 ER -
%0 Journal Article %A Asselah, Amine %A Dai Pra, Paolo %T First occurrence time of a large density fluctuation for a system of independent random walks %J Annales de l'I.H.P. Probabilités et statistiques %D 2000 %P 367-393 %V 36 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_2000__36_3_367_0/ %G en %F AIHPB_2000__36_3_367_0
Asselah, Amine; Dai Pra, Paolo. First occurrence time of a large density fluctuation for a system of independent random walks. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 3, pp. 367-393. http://www.numdam.org/item/AIHPB_2000__36_3_367_0/
[1] 98.
, Preprint[2] Occurrence of rare events in ergodic interacting spin systems, Ann. Inst. H. Poincaré Probab. Statist. 33 (6) (1997) 727-751. | Numdam | MR | Zbl
, ,[3] Sharp estimates for occurrence time of rare events for simple symmetric exclusion, Stochastic Process. Appl. 71 (2) (1997) 259-273. | MR | Zbl
, ,[4] On modified Logarithmic Sobolev inequality for Bernoulli and Poisson measures, J. Functional Analysis 156 (1998) 347-365. | MR | Zbl
, ,[5] Asymptotic behavior of densities for two-particle annihilating random walks, J. Stat. Phys. 62 (1-2) (1991) 297-372. | MR | Zbl
, ,[6] Point Processes and Queues, Springer, Berlin, 1981. | MR | Zbl
,[7] Metastable behavior of stochastic dynamics: a pathwise approach, J. Stat. Phys. 35 (1984) 603-633. | MR | Zbl
, , , ,[8] On the distribution of first passage and return times for small sets, Ann. Probab. 13 (1985) 1219-1223. | MR | Zbl
,[9] Nucleation for a long range magnetic model, Ann. I.H. Poincaré 23 (1987) 135-178. | Numdam | MR | Zbl
,[10] Mathematical Methods for Hydrodynamic Limits, Lecture Notes in Math., Vol. 1501, Springer, Berlin, 1991. | MR | Zbl
, ,[11] Exponential waiting time for a big gap in a one-dimensional zero-range process, Ann. Probab. 22 (1) (1994) 284-288. | MR | Zbl
, , ,[12] Exponential waiting time for filling a large interval in the symmetric simple exclusion process, Ann. Inst. H. Poincaré Probab. Statist. 31 (1) (1995) 155-175. | EuDML | Numdam | MR | Zbl
, , ,[13] Existence of quasi-stationary distributions. A renewal dynamical approach, Ann. Probab. 23 (2) (1995) 501-521. | MR | Zbl
, , , ,[14] First passage and recurrence distribution, Trans. Amer. Math. Soc. 73 (1952)471-486. | MR | Zbl
,[15] Markov Chains Models-Rarity and Exponentiality, Springer, New York, 1979. | MR | Zbl
,[16] Entry times into asymptotically receding domains for ergodic Markov chains, Theory Probab. Appl. 19 (1984) 432-442. | Zbl
, ,[17] Entry times into asymptotically receding regions for processes with semi-Markov switchings, Theory Probab. Appl. 19 (1984) 558-563. | Zbl
, ,[18] On the asymtotics of occurrence times of rare events for stochastic spin systems, J. Stat. Phys. 48 (3/4) (1987) 727-751. | MR | Zbl
, ,[19] Metastability and exponential approach to equilibrium for low temperature stochastic Ising models, J. Stat. Phys. 61 (1990) 1105. | MR | Zbl
, , ,[20] Critical droplets and metastability for a Glauber dynamics at very low temperatures, Comm. Math. Phys. 137 (1991) 209-230. | MR | Zbl
, ,[21] Behavior of droplets for a class of Glauber dynamics at very low temperatures, Probab. Theory Related Fields 91 (1992) 331. | MR | Zbl
, ,[22] Filling the hypercube in the supercritical contact process in equilibrium, Markov Proc. Related Fields 1 (1998) 113-130. | MR | Zbl
,[23] Regularity of self-diffusion coefficient, in: The Dynkin Festschrift, Progr. Probab., 34, Birkhäuser, Boston, 1994, pp. 387-397. | MR | Zbl
,