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ABSTRACT. - In this paper, we consider a Z-random walk on

nearest neighbours with dynamical quasiperiodic transition probabilities
in a random scenery (a), a E Z, a family of i.i.d. random variables,
independent of the random walk. We prove, at first, that (Sn)nEN verifies
a local limit theorem and is recurrent on its moving average.
Then, we show, explicitly, that Zn = ~n o ~ (Si ) satisfies a law of large

numbers. @ 2000 Editions scientifiques et médicales Elsevier SAS

Key words: Random walk, Random scenery, Continued fractions, Denjoy-Koksma’s
inequality, Low discrepancy sequences

RESUME. - Dans ce papier, nous considérons une marche aléatoire
(Sn)nEN sur Z se deplagant sur ses plus proches voisins avec des

probabilités de transition dynamiques et quasi-périodiques ainsi qu’une
scene aléatoire 03BE(03B1), 03B1 E Z, une famille de variables aléatoires i.i.d.,
indépendante de la marche aléatoire. En premier lieu, nous prouvons que
(Sn)nEN verifie un theoreme limite local et est recurrente sur sa moyenne
mobile. Puis, nous montrons explicitement que Zn = satisfait
une loi des grands nombres. © 2000 Editions scientifiques et médicales
Elsevier SAS

* Work partially supported by EU grant CHRX-CT93-0411.
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1. INTRODUCTION AND RESULTS

Let Xi, i ~ 1, be a sequence of independent random variables with
values ±1, let f:Td~[0,1] be a function and ta the rotation on the
d-dimensional torus 1fd, associated with the d-dimensional vector a =
(a 1, ... , ad), defined by x H x + a mod 1. For every i , the law of the
random variable Xi is given by

We write

for the random walk generated by the family It is worth remark-

ing that is a non-homogeneous Markov chain. Furthermore, let
(a), a E Z, be a family of i.i.d. R-valued random variables which are
independent of the family with zero mean and finite positive
variance a2. These random variables play the role of random scenery.
We shall prove that (Sn)nEN is recurrent on its moving average and that

satisfies a weak law of large numbers.
When (Sn)n~N is a standard Zd-random walk with i.i.d. increments then

is a stationary sequence, the strong law of large numbers is
evident by Birkhoff’s theorem. In d = 1, Kesten and Spitzer [6] proved
that when X and ~ belong to the domains of attraction of different
stable laws of indices 1  a  2 and 0  ~8 ~ 2, respectively, then
there exists a 8 &#x3E; ! such that converges weakly as n - oo to
a self-similar process with stationary increments, 8 being related to a
and ~8 by 8 = 1 - + The case 0  a  1 and ~B arbitrary is
easier; they showed then that converges weakly, as n - oo,
to a stable process with index fJ. Bolthausen [2] gave a method to solve
the more difficult case a = 1 and fJ = 2 and especially, he proved that
when (Sn)nEN is a recurrent Z2-random walk, satisfies
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a functional central limit theorem. For arbitrary transient random walk,
is asymptotically normal (see [17, p. 53]).

Lin et al. [12] developed a more abstract theory about the random
walks with dynamical random transitions. They considered a conserv-
ative and ergodic non-singular transformation 0 of a dynamic environ-
ment (~2, (the environment space), /~ a (random) probability on
a locally compact second countable group G (the state space). They gave
conditions for the convergence vt) * (/ 2014 ~ ~ f ) ~~ 1 = 0 for a.e.
OJ and every f ’ E L 1 (G) and t E G given, in the case where G is abelian
and is given by

This means that, having chosen ~, the inhomogeneous Markov chain
does not distinguish the initial absolutely continuous distribution in the
long run.

Besides their mathematical interest, the walks we consider here are of
some relevance in the statistical mechanics of quasiperiodic systems in
the presence of external spatial disorder (see [5] and [8]).
Our main results are summarised in the following theorems. We use

the notation an - bn for an, bn &#x3E; 0 if limn~~ an /bn = 1. Let a be an
irrational. We denote an the nth partial quotient of a, i.e.

This continued fraction expansion will be denoted a = [a] + [a 1, ... ,
an, ...].

DEFINITION 1.1. - A Markov chain is said to be recurrent on

its moving average if for all E &#x3E; 0,

Remark. - This definition is not trivial when the process is not

a stationary sequence.

THEOREM 1.2. - Let 1 
- [0, 1 ] be a function of bounded

variation such that a = fo 4 f (t) ( 1 - f (t)) dt &#x3E; 0.

( 1 ) For every x E [0, 1 [ and for every irrational a, the inhomogeneous
Markov chain is recurrent on its moving average.
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(2) Assume that f~ f (t) dt = !. Then, for every x E [0, 1 [ and for
every irrational a such that the inequality

is satisfied for any m large enough, with £ &#x3E; 0,

Remark. - The previous theorem is formulated in a weak form.

Actually, it can be shown that is recurrent on 0 for all irrationals
a such that am  eventually for all m, with £ &#x3E; 0, but the proof of
this statement needs some technical details that will be developed only
on part II of this paper.

THEOREM 1.3. - Under the same hypothesis as for item (2) of the
previous theorem,

Example 1.4. - The function defined by f (x) = cos2 (2~c x ) , x E 1f1,
verifies the conditions of Theorems 1.2 and 1.3. For this particular
function, the results are valid for all a E M B Q (see Example 5.13).

Remarks. -

( 1 ) The case a = 0 which corresponds to the situation where f = 0
or 1 almost everywhere is not considered and must be treated by
another way.

(2) The set of irrationals whose partial quotients satisfy condition
am  m 1 +£ for any m large enough, with £ &#x3E; 0, is of full measure
(see [7, Theorem 30]).

( 3 ) It is worth remarking that IE(Xi) = 2/(r~) - 1 and var ( X i ) =
4/(r~)(l - /(r~)). The vector a being irrational, the transla-
tion ta is uniquely ergodic, so

and
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The above one-dimensional results can be generalised in d &#x3E; 1

under some additional hypotheses on the mutual irrationality of the
components of a = (a 1 , ..., ad) . To formulate precisely these results,
some definitions are needed. In order to facilitate the exposition, these
definitions are postponed until section 5. Here, we give the main result,
valid in d &#x3E; 1,

THEOREM 1.5. - Let f ~d ~ [0, 1 ] be a function of bounded
variation in the sense of Hardy and Krause such that a = Td 4 f (t) ( 1 -
f(t)) dt &#x3E; 0.

( 1 ) For every x E ~d and for every irrational vector a = (a 1, ..., ad),
the inhomogeneous Markov chain (Sn)nEN is recurrent on its

moving average.
(2) Assume that Td f(t) dt = 2. Then, for every x E Td and for every

irrational vector a = (al, ..., ad) of type r~ such that 1 ~ r~ 

1 + d , we have
(a) = 0) rv 
(b) Zn/n ~ 0 in P-probability.

In the case where a is a rational vector, which is easier and will be

treated in the sixth section, we obtain the following

THEOREM 1.6. - Let f : ~d ~ [0, 1] and a = (a 1, ..., ad), ai =

pi /qi, q = s. c. m. (ql , ..., qd). Let x be a point of We denote

p = ~ Then, if ~k-14 f (tax)(1 - &#x3E; 0, we have

the following results:
(1) when p = 2, is recurrent, otherwise is transient.

(2) Zn / n ~ 0.
All the previous results are obtained pointwise for some fixed initial

value x for the dynamics. It is also possible to consider a smeared
initialisation of the dynamics" and examine the evolution of the process
on the product space x ZN x For every x E we denote Px the

product measure on the cartesian product of the set of sceneries and the
set of dynamics paths x F), where ~’ is the a -field generated by
the cylinder sets. Now, for A E B([0, 1 ]d ) , for F E J’, let

P is a probability measure on the space x ZN x Q9 

The smearing of the initialisation greatly simplifies the problem since by
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a straightforward calculation we can prove that is a stationary
sequence. Hence by the ergodic theorem, we have

PROPOSITION 1.7. - With probability one,

2. PRELIMINARY RESULTS

Let a be an irrational. We call a rational q with p, q relatively prime
such that

a rational approximation of a . When a has the continued fraction

expansion a = M + [a 1, ... , an, ...], the n th principal convergent of a
is Pn where, 2,

the recurrence is given by defining the values of po, pl and qo, ql.
DEFINITION 2.1. - A partition P of [0, 1 ] is defined by a sequence of

points xo, ..., xn with 0 = xn = 1. For a function f on
[0, 1 ], we set

where the supremum is extended over all partitions P of [0, 1 ]. If V ( f )
is finite, then f is said to be with bounded variation.

THEOREM 2.2 (Denjoy-Koksma’s inequality). - Let f : R - [0, 1] ]
be a function with bounded variation V ( f) and y a rational approxima-
tion of 03B1. Then, for every x E 1f1,

(See [11] where the theorem is given in a more general case.)
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PROPOSITION 2.3. - Let f be a I -periodic function with bounded
variation V ( f ). For every irrational a such that the inequality am 
m ~+F, where s &#x3E; 0, is satisfied eventually for all m and for every x E R,

Proof - The sequence of integers being strictly increasing, for
a given n &#x3E; 1, there exists m = 0 such that

By Euclidean division, we have n = bmqm + n’ with 0 x n’  qm. We can

use the usual relations

We obtain that (am+1 + &#x3E; qm+1 &#x3E; n and so am+1. If m &#x3E; 0,
we may write n’ = + n" with 0 ~ n"  Again, we find

bm (n’ ) ~ Continuing in this manner, we arrive at a representation
for n of the form

with 0 # bi # ai+1 for 0 ~ i  m and 1. The non-null terms in

this representation of n are those which come from the sub-sequence m.
Using the Denjoy-Koksma’s inequality, we get

By hypothesis, there exists mo &#x3E; 1 such that,

Let n be such that m &#x3E; m o . Thus,
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We need to know the asymptotic behaviour of m = men). When a
is the golden ratio, an = 1, 1 and the relation ( 1 ) implies that
qn 2014 Let a’ be another irrational; its partial quotients an satisfy
necessarily 1. Using the relation ( 1 ), we see that qn, 1.

Therefore, m (n ) = O(logn) and the proposition is proved. D

Remark. - Consider ~ a homeomorphism of the torus ’]f1 
1 and 1r the

projection from R onto T1. We choose (0) such that 03C0(0) = 03C6(0)
and we can gradually define a continuous map ~ : R such that

7r~ == The function $ is called a lifting of ~; and ~ preserves
the orientation of ’]f1 if its liftings are nondecreasing functions. Then,

(~(~(~) 2014 1 converges uniformly to a number a (~) when n goes
to infinity. The fractional part does not depend on the lifting
and is called the rotation number of the homeomorphism 03C6. Let  be
a ~-invariant probability measure. Using the Denjoy-Koksma’s theorem
(see [9]), we may generalise the work made in this section to the case
where the law of the random variable 1, is given by

where ~ is an orientation preserving homeomorphism with irrational
rotation number a, f and a being defined as in Theorem 1.2. It will

be easy to verify that Theorems 1.2 and 1.3 remain valid with these new
hypotheses.

3. PROOF OF THEOREM 1.2

Introduce the characteristic function ~(~), ~ E [2014vr, Jr) for the r.v. S2n

reading in the present case

The probability of return to the origin is expressed by the standard
inversion formula
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The integrand in (3) is n-periodic and we can perform the change of
variable = u, so that

We decompose this integral into a dominant part and three correction
terms II, 12 and 13,

The correction terms are given by

LEMMA 3.1. - Under the conditions of Theorem 1.2, we have

Proof. - Using (2), we get
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The absolute value of the integrand is bounded by using the following
trick. Let F (t) = etz, t E R,z E C. Then

and

Using this inequality, we can write, for n &#x3E; 1,

with

Then, we use expansions into entire series of the functions log (1 - x) and
arctan(x) for x such that Ixl  1 using the fact that log n and we get
the majorization

where
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The three series in the expression A (n ) are all convergent with factors
getting to zero as n goes to infinity. Moreover, using Proposition 2.3,
both other terms tend to 0 as n goes to infinity, so goes to 0 as
n D

LEMMA 3.2. - Under the same conditions as the previous lemma, the
correction terms I2 (n ) and 13 (n ) tend to zero as n - 00.

Proof - The assertion is evident for I2 (n ) . To prove the lemma for
I3 (n ) , we write

We have seen that

Using the fact that log(l - x) ~ -x, 1 &#x3E; ~ ~ 0 and 0  x ~
2 , we get 

where R (n ) = ~E~i(4/(r~)(l - f ( ta x ) ) ) - a. The parameter a
being strictly positive, the lemma follows. 0

Let us define the random variable

In order to prove the recurrence of the Markov chain on its

moving average, it is enough to prove that the event



138 N. GUILLOTIN / Ann. Inst. Henri Poincaré 36 (2000) 127-151 l

has probability one. Let

Then, A~ B A, c - oo and A, Ac, A~, A~ are in the tail algebra 9 =
n 9n, where 9n = a (Xn, Xn+1, ...). Let us show that = = 1

for each c &#x3E; 0. Because of the Kolmogorov’s zero-one law, since A~ E 9
and A~ E ~, it is sufficient to show only that &#x3E; 0 and &#x3E; 0.

The events

being respectively included into A~ and A~ , we obtain that

and

Now, the Lyapunov condition being satisfied, we obtain that for every
x ~ [0,1] and x = IR B Q,

Therefore,

and

Thus, IP(Ac) = 1, Vc &#x3E; 0 and

From the definition of the event A, we obtain that for every x E [0,1] and
a E R B Q, Vs &#x3E; 0,

so, the recurrence of (Sn)n~N on its moving average is proved.
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4. PROOF OF THEOREM 1.3

We define

LEMMA 4.1. -

Proof - Obviously, = 0. Then

Let A be the a-field generated by the r.v. X1, X2, .... We have

Consequently,

LEMMA 4.2. -

Proof. -

(Sn)nEN being homogeneous in space, for every j &#x3E; 0,

Let us denote [x ] the integer part of x. Therefore,
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We are only interested in the asymptotic behaviour of the first double
sum in the above expression, the second one can be treated in the
same way. Let ~~k~ the characteristic function of 523~, where is
defined in the same way as the Markov chain but with transition

probabilities given by

Using the results of Section 3, we can write

where Ri (k, j ), i = 1, 2, 3, are given by

First we have the following equivalence

So Lemma 4.2 will be proved if we show that for i = 1, 2, 3,
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Applying the method developed in the proof of Lemma 3.1, we have

where

We can use again Proposition 2.3. There exists no ) 1 and a positive
constant M such that
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Then,

Proposition 2.3 says that there exists no ) 1 and a positive constant M
such that

The Tchebychev’s inequality and Lemmata 4.1 and 4.2 imply Theorem
1.3.

5. GENERALISATION IN DIMENSION d

We recall some definitions and well known results from the method
of low discrepancy sequences in dimension d &#x3E; 1 (see, for example, [9]
or [ 13]).

Suppose we are given a function f (x ) = f (x ~ 1 ~ , ..., with d &#x3E;
1. By a partition P of [0,1]~, we mean a set of d finite sequences
~o~&#x3E; ~ ~l~&#x3E; ~ ... , ( j - 1 ... , d), with 0 = ~o~) ~ ~1~) ~ ... x - 1

for j - 1, ... , d . In connection with such a partition, we define, for
j = 1, ... , d an operator by

for 0  i  m j. We denote the operator ~1 ... Ad .
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DEFINITION 5.1. -

(1) For a function f on [0, we set

where the supremum is extended over all partitions P of [0, 
If is finite, then f is said to be of bounded variation on
[0, in the sense of vitali.

(2) For 1 ~ p  d and 1 ~ i 1  i2  ...  i p  d, we denote by
V ~p~ ( f ; i 1, ..., i p) the p-dimensional variation in the sense of
Vitali of the restriction of f to

= ~ (tl , ..., td) E [0, t~ = 1 whenever

j is none of the i r , 1 ~ r  p ~ .
If all the variations V ~p~ ( f ; i 1, ..., i p ) are finite, the function f is
said to be of bounded variation on [0, in the sense of Hardy
and Krause.

Let x 1, ..., xn be a finite sequence of points in [0, with xl =

(xl,1, ..., xl,d) for 1 l n. We introduce the function

for (tl , ... , td ) E [0, where A (tl , ... , td x 1, ..., xn ) denotes the

number of elements xl, 1 l n, for which xl,i  ti for 1 i d.

DEFINITION 5.2. - The discrepancy Dn of the sequence x1, ..., xn in
[0, is defined to be

For a real number t, let ~ ~ t ~ ~ denote its distance to the nearest integer,
namely,

where {t { is the fractional part of t. 
’

DEFINITION 5.3. - A vector a = (al, ..., ad), ai E R, is said irra-

tional if 1, 03B11, a2 , ..., ad are linearly independent over Z.
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In the sense of the Lebesgue’s measure, almost every vector in Rd is
irrational.

DEFINITION 5.4. - For a real number r~, a d-tuple a = (al, ..., ad)
of irrationals is said to be of type r~ if r~ is the infimum of all numbers ~
for which there exists a positive constant c = c(03C3; 03B11, ..., ad) such that

holds for all 0 in Zd, where r(h) = 03A0di=1 max(I, ( h I) and .,.&#x3E;
denotes the standard inner product in 

Remark. - The type q of a is also equal to

We will always have r~ &#x3E; 1 (see [13]). We give now a result (see [9])
which gives us the asymptotic behaviour of the discrepancy of the
sequence w = (xi + l03B11, ..., xd + lad), I = 1, 2, ..., in function of the
mutual irrationality of the components of a .

PROPOSITION 5.5. - Let a = (aI, ..., ad) be an irrational vector.
Suppose there exists r~ &#x3E; 1 and c &#x3E; 0 such that

for all 0 in Then, for every x E [0, the discrepancy
of the sequence w = ( (x 1 + mod I , ..., (xd + lad) mod 1 ), l =

1, 2, ..., satisfies Dn ( w ) = 1 n ) for r~ = 1 and Dn ( w ) _
C~(n-1/((~-1)d+1 log n) , for q &#x3E; l.

The proof of this result is identical to this of Exercice 3.17 in [9] when
x = (0, ... , 0). The following result can be found in [ 13 ] .

THEOREM 5.6 (Hlawka, Zaremba). - Let f be of bounded variation
on [0, in the sense of Hardy and Krause, and let cv be a finite sequence
of points x 1, ..., xn in [0, Then, we have
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where is the discrepancy in of the sequence 
obtained by projecting c~ onto 

Proof of Theorem 1.5. - The first part of the theorem is proved by
the same method as this used in the unidimensional case (see end of
Section 3). Let us prove the item (2). Let r~’ be such that 1} ~ r~’  1 + ~.
There exists c &#x3E; 0 such that

holds for all h ~ 0 in Suppose we are given a p-tuple 
..., 1 ~ p  d, of a, then

holds for all h # 0 in 1 ~ p ~ d. Thus, every p-tuple, 1 ~ p ~ d, is
of type 8 such that 1  ~  r~ and ((Y~,..., ai p ) is an irrational vector. For
every p, 1 ~ p ~ d, we define wi1...ip by the projection of w on 
By Proposition 5.5, we have for every p, 1 ~ p ~ d, 

Therefore, using the Hlawka-Zaremba’s theorem, we obtain, for every
function f with bounded variation in the sense of Hardy and Krause,

The proof of item (2) of Theorem 1.5 is the same as this developed in the
unidimensional case but instead of using Proposition 2.3 we apply the
above result and Theorem 1.5 follows as soon as a is of type q such that

1~1+~. a

The class of functions with bounded variations in the sense of Hardy
and Krause (H&#x26;K) turns out to be rather technical to define and uneasy
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to handle, especially for large values of d. A more pleasant, and almost
identical class, is constructed by using bounded variations in the measure
sense (see [14]).
We would like to know whether a lot of irrational vectors are of type 1.

The following proposition permits us to answer this question.

PROPOSITION 5.7. - Almost every irrational vector is of type l.

In order to prove the proposition, we use the following lemma.

LEMMA 5.8. - Let h E (Z~)~ ~ e]0, ~[. The set of points x E [0, 1 [d
such of d -dimensional Lebesgue’s measure equal
to 2e.

Proof - We set À the Lebesgue’s measure on the interval [0, 1 [.
Suppose for example that hi 1 &#x3E; 0. If y E R, we have for the one-
dimensional Lebesgue’s measure,

So, for every (x2 , x3 , ... , xd ) E [0,1[~ ~ we obtain, denoting x =

(x 1 , X2, ... , Xd),

Now, we conclude with the Fubini’s theorem. D

Proof of the proposition. - We know that the type of an irrational vector
is always greater than 1. Let or be a real strictly greater than 1. So, we
must prove that almost every irrational vector a is of type  c~ . To do

this, it suffices to prove that for almost every a, for every h E (Z~)* except
perhaps for a finite family,

We denote Àd the Lebesgue’s measure on [0,1[~ and for every h E Z~,

From the previous lemma, we obtain
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Then,

_ 

a being strictly greater than 1.
Using the Borel-Cantelli’s lemma, we conclude that almost every

vector x E [0,1[~ is only in a finite number of sets Ah. This proves
inequality (4). D

Example 5.9. - W. Schmidt [ 15] has shown that a = (a 1, ..., ad)
with real algebraic numbers ai for which are linearly
independent over the rationals, is of type ~ = 1. Moreover, Baker [ 1 ] has
proved that a = (erl , ... , erd ), with distinct nonzero rationals rl , ..., rd,
is of type ~ = 1.

Example 5.10. - We can give an example of function for which the
theorem is verified. Let

After calculations, we obtain that for every x E 1rd, for every a =

(a 1, ... , ad) a d-dimensional vector of irrational numbers such that 1,
.ai and am be independent on Q, there exists two positive constants Ci
and C2 such that 0, ’v’ j ~ 1,

and

Consequently, our result is valid, for this particular function, for every a
defined as above.
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Remarks. -

( 1 ) We could have used the Fourier Series Method to estimate the
asymptotic behaviour of f(t)dt. Let f be
a function on 1-periodic in each variable and which can be
expanded into a multiple Fourier series f (t) = 
The function f belongs to the class ~, ~ &#x3E; 1 if there exists a

constant M such that Mr-S (h) for every h ~ 0. Then,
Theorem 8.1 of [13] says that if a is a d-tuple of irrationals of
type ~ with 1, 03B11,..., ad linearly independent over the rationals,
we have, for every x E 1[d,

for all f E £’1+).., where À &#x3E; 0 is arbitrary. Here, the majorizations
are better than in the first method, but the hypothesis on f are
stronger. But, in the case where a is of type q with ~  1 + 1 /d,
this method can be applied.

(2) The restrictive conditions on a are needed to obtain a sequence of
points (x + l a 1, ... , xd + lad), 1 = 1, 2,..., n, with an adequate
asymptotic behaviour of his discrepancy. But, (x + l a 1, ... , xd +
lad), 1 = 1, 2,..., n, with a and x correctly chosen, are not the
unique sequences for which the theory developed here is valid.
The sequences which generalise the Halton’s sequences (or Van
der Corput’s sequences in dimension one) are sequences with
low discrepancy (see [14] and [10] for the definitions). A way
to define them is to set a pseudo-addition on the p-adic rationals
from [0,1]. For every p ~ 2, if x, y E [0,1] n Qp (p-adic ratio-
nals), we = x (Bp y like in a classical addition, but
from the left to the right (see [14] and [10] for some improve-
ments). If pl , ... , pd are d integers ~ 2 which are relatively prime
to each other, y 1, ... , yd E and x 1, ... , xd E [0, 1 ] ,
all sequences defined by 03BEl = (xl ), ..., (xd) ), l =

1, ... , n have a discrepancy Dn (~ ) = (uniformly
in x = ... , xd) E [0,1]~) ([14]). Then, Theorem 1.5 is still

valid for these sequences with the same conditions on the func-

tion f.
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6. CASE OF a RATIONAL VECTOR

We prove Theorem 1.6. The function f being 1-periodic, the vectors
... , X(n+1)q~, n &#x3E; 0, have the same distribution. So, if we denote

Yj = "£[=1 = 0,..., n - 1, we can write that

where is a family of random variables independent, identically
distributed with E(Yo) = 1) = (2p - and var(Yo) =

 oo . Therefore, when p = 1 (respectively
)), is a recurrent (respectively transient) Z-random walk

embedded in the random walk which implies the recurrence
(respectively the transience) of the Markov chain 

For every i = 0,..., q - 1, is a sum of independent,
identically distributed random variables with mean (2p - and
finite variance. Therefore, for every i = 0, ... , q - 1, is
a stationary sequence and by the Birkhoff’s theorem,

Now, there exists two sequences of integers (mn)no, (rn)n ~o such that

Then,

Using (5), the second part of the theorem is proved. 0

Remark. - For example, we can take the function f(x) =
cos2(2n E1=1 E 1rd, with a such that Z.
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7. OPEN PROBLEMS AND FURTHER DEVELOPMENTS

( 1 ) The constants of normalisation in the theorems proved in [6]
and [2] are not standard and depend on the asymptotic behaviour
of the probability of return to the origin of the considered random
walks. In our case, using Kesten’s and Spitzer’s method, it is

possible to prove that converges weakly as n - oo to
a self-similar process with stationary increments (see [4]). The
central limit theorem proved by Bolthausen in dimension two can
be also verified for these random walks.

(2) We can also consider random walk in random environment in
the sense developed by Solomon (see [16]). In this situation, the
transition probabilities do not depend on the time, but on the site
visited by the random walk. These random walks are recurrent
under some conditions and it would be interesting to study them in
random sceneries.
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