A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 1, pp. 71-85.
@article{AIHPB_2000__36_1_71_0,
     author = {Hiai, Fumio and Petz, D\'enes},
     title = {A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {71--85},
     publisher = {Gauthier-Villars},
     volume = {36},
     number = {1},
     year = {2000},
     mrnumber = {1743092},
     zbl = {0954.60030},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_2000__36_1_71_0/}
}
TY  - JOUR
AU  - Hiai, Fumio
AU  - Petz, Dénes
TI  - A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 2000
SP  - 71
EP  - 85
VL  - 36
IS  - 1
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPB_2000__36_1_71_0/
LA  - en
ID  - AIHPB_2000__36_1_71_0
ER  - 
%0 Journal Article
%A Hiai, Fumio
%A Petz, Dénes
%T A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
%J Annales de l'I.H.P. Probabilités et statistiques
%D 2000
%P 71-85
%V 36
%N 1
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPB_2000__36_1_71_0/
%G en
%F AIHPB_2000__36_1_71_0
Hiai, Fumio; Petz, Dénes. A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices. Annales de l'I.H.P. Probabilités et statistiques, Tome 36 (2000) no. 1, pp. 71-85. http://www.numdam.org/item/AIHPB_2000__36_1_71_0/

[1] G. Ben Arous and A. Guionnet, Large deviation for Wigner's law and Voiculescu's non commutative entropy, Probab. Theory Related Fields 108 (1997) 517-542. | MR | Zbl

[2] C. Berg, J.P.R. Christensen and P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer, New York, 1984. | MR | Zbl

[3] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Jones and Bartlett, Boston, 1993. | MR | Zbl

[4] D.J. Gross and E. Witten, Possible third-order phase transition in the large-N lattice gauge theory, Phys. Rev. D21 (1980) 446-453.

[5] F. Hiai and D. Petz, Maximizing free entropy, Acta Math. Hungar. 80 (1998) 325-346. | MR | Zbl

[6] F. Hiai and D. Petz, The Semicircle Law, Free Random Variables and Entropy, to be published.

[7] F. Hiai and D. Petz, Properties of free entropy related to polar decomposition, Comm. Math. Phys. 202 (1999) 421-444. | MR | Zbl

[8] P. Koosis, Introduction to Hp Spaces, Cambridge Univ. Press, Cambridge, 1980. | MR | Zbl

[9] N.S. Landkof, Foundations of Modern Potential Theory, Springer, Berlin, 1972. (Translated from the Russian). | MR | Zbl

[10] M.L. Mehta, Random Matrices, Academic Press, Boston, 1991. | MR | Zbl

[11] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory, I, Comm. Math. Phys. 155 (1993) 71-92. | MR | Zbl

[12] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory, II, Invent. Math. 118 (1994) 411-440. | MR | Zbl

[13] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory III: The absence of Cartan subalgebras, Geom. Funct. Anal. 6 ( 1996) 172-199. | MR | Zbl

[14] D.V. Voiculescu, K.J. Dykema and A. Nica, Free Random Variables, CRM Monograph Ser., Vol. 1, Amer. Math. Soc., 1992. | MR | Zbl