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AB STRACT. - We consider a system consisting of two types of particles
called "water" and "ice" on d-dimensional periodic lattices. The water
particles perform excluded interacting random walks (stochastic lattice
gases), while the ice particles are immobile. When a water particle
touches an ice particle, it immediately dies. On the other hand, the ice
particle disappears after receiving the £th visit from water particles. This
interaction models the melting of a solid with latent heat. We derive the
nonlinear one-phase Stefan free boundary problem in a hydrodynamic
scaling limit. Derivation of two-phase Stefan problem is also discussed.
@ Elsevier, Paris

RESUME. - Nous considerons un systeme comportant deux types
de particules appeles "eau" et "glace" sur un reseau periodique en
dimension "d". Les particules d’eau suivent des marches aleatoires

interagissant avec exclusion (gaz stochastiques sur reseau), alors que les
particules de glace sont immobiles. Quand une particule d’ eau touche une
particule de glace, elle meurt immediatement. D’ autre part, une particule
de glace disparait quand elle a reçu une £I£me visite de particules d’ eau.
Cette interaction modelise la fusion d’un solide avec chaleur latente.

Nous obtenons le probleme des frontieres libres non lineaire de Stefan

1 E-mail: funaki@ms.u-tokyo.ac.jp.
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574 T. FUNAKI

a une phase dans la limite hydrodynamique. Nous discutons aussi la
derivation d’ un probleme de Stefan a deux phases. @ Elsevier, Paris

1. INTRODUCTION

In the context of hydrodynamic limits, various types of nonlinear

partial differential equations are derived from the underlying microscopic
particle models with stochastic dynamics via a suitably taken long- .

time and large-space scaling limit, see [16]. The equations obtained
in the limit describe the evolution law of local density of conserved
quantities at the macroscopic level. When a medium is accompanied by
a change of phases, the process of diffusion or heat conduction in it are
mathematically formulated as the Stefan problem, see, e.g., [2,5,13,14].
Typical example is a liquid-solid system. The sharp transition from one
phase to the other gives rise to idealized interfaces called free boundaries
whose locations are not a priori known. The aim of this article is to derive
the free boundary problem from certain microscopic particle systems.
Now we broadly mention the microscopic model which we shall ex-

plore. We consider a liquid-solid system, which is sometimes symboli-
cally called water-ice system. To model such system, two types of parti-
cles, called "water" and "ice" located on a square lattice, are introduced.
The dynamics of water particles are the exclusion processes with speed
change, in other words, the stochastic lattice gases. We shall discuss two
kinds of models. In the first model, we assume that ice particles never
move. Then, at a microscopic level, two large regions, respectively, con-
sisting of one of the two types of particles, are formed and separated by
transition regions which vaguely look surfaces. The interactions between
distinct types of particles occur only through such surfaces. We study the
system with melting of a solid; namely, when a water particle jumps onto
the site where an ice particle already occupies, the water particle disap-
pears at once, while the ice particle disappears and the site simultaneously
becomes vacant right after having the £th visit from water particles.

This kind of model was first investigated by Chayes and Swindle [3].
. In their case, the water particles perform a simple exclusion process

(i.e., Kawasaki dynamics) and accordingly the equation obtained in the
limit was a linear heat equation in the liquid region. They studied the
system of melting (with £ = 1 ) or freezing of solid in one-dimension
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575FREE BOUNDARY PROBLEM FROM LATTICE GAS

and derived the free boundary Stefan condition which characterizes the
motion of macroscopic phase separation point. In this paper, we shall
generalize their results for the exclusion processes with speed change
in case of melting of solid in higher dimensions taking the effect of
latent heat of fusion into account. We assume the gradient and the
detailed balance conditions for the jump rates of water particles (and
ice particles in the second model in which ice particles are also active).
The hydrodynamic limit for such stochastic dynamics for water particles
without the presence of ice particles was studied by [6]. A nonlinear
diffusion equation is derived in the limit and its diffusion coefficient is
expressed in terms of a thermodynamic function. Thus, one can easily
imagine that the hydrodynamic limit of our liquid-solid system might be
described by the Stefan problem in which the same nonlinear diffusion
equation as in [6] governs the evolution law of the density in the liquid
region. Since the particles are immobile in the solid region, the so-called
one-phase Stefan problem will be obtained.
The basic method widely known to be effective for establishing

the hydrodynamic behavior was exploited by Guo, Papanicolaou and
Varadhan [ 10] and uses several estimates based on entropy and entropy
production. Such method is, however, powerful only if the invariant

measures for the dynamics restricted on finite domains are mutually
absolutely continuous. In our case, the dynamics have two distinct types
of invariant measures; one is concentrated on liquid region and the other
on solid region. The invariant measures of different types have therefore
disjoint supports so that it seems hopeless to apply the method of [10]
for our system straightforwardly. The method for the proof requires some
modifications. The entropy arguments actually deduce the convergence
rate of the system to the equilibrium states; however, such precise
estimates are unnecessary since the system discussed in this paper is of

gradient type.
The paper is organized as follows. After the model is described, the

main result is stated in Section 2. The proof of the main result begins
in Section 3. To complete it, a local ergodic theorem is established in
Section 4 and arguments based on Young measures are developed in
Section 5. The local ergodic theorem enables us to replace the sample
mean of microscopic variables with their average under the equilibrium
(Gibbs) measure having a microscopically defined sample density as its
density-parameter. The arguments in Section 5 are required to replace
such microscopically defined sample density further with a macroscopic
one. If ice particles also move with jump rates or velocities different from

Vol. 35, n° 5-1999.
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water particles, one can derive two-phase Stefan problem. Section 6 is
devoted to the study of such model.
The Stefan problem was derived by [11] from one-dimensional

symmetric simple exclusion process added one particle which feels,
in contrast to the other particles, a constant external driving force.
[ 1 ] studied annihilating particles’ system, called "A + B ~ 0", consisting
of two types A and B. Another approach was taken in [8] to the motion
of interfaces starting from the microscopic models. We assume the
gradient condition. Without such condition, the hydrodynamic limit for
systems with single type of particles was proved by [7] assuming that
the reversible measures of dynamics are Bernoulli. Generalization of our
result to such non-gradient system looks rather hard at this moment.

2. MODEL AND MAIN RESULT

We consider a particle system on a d-dimensional periodic lattice
:= represented by {1,2,.... N}d. Since the lattice size N

changes and eventually goes to infinity, the jump rates of water particles
are defined on the whole lattice The configuration space of water
particles on lld is denoted by X+ := For $ = {~x; x E E

~B ~ = 0 or 1 indicate that the site x is vacant or occupied by a
water particle, respectively. We denote E x+ the configuration
obtained from ç by exchanging its states at two sites x and y E lld; i.e.,

= ~ = ~x and = ~z for z ~ x, y. Let tx, x E Zd,
be shift operators acting on X+ by = ~~, y e lld. They also act
on functions f on X+ by = We denote by D+ the class
of all local functions f on ~+, where f is called local if it depends only

:= {çx; x E ~1R }, 11R = {x E  R} for some nonnegative
integer R. The smallest number among such R’s is written by R ( f ) . The
jump rates of water particles are then specified by nonnegative functions

defined for ç E X+ and x, y E =1, which satisfy the
following conditions (a)-(f):

(a) c~(~)=c~(~). .
(b) (spatial homogeneity) cx, y = .

(c) (locality) D+.

(d) (positivity) &#x3E; o If ~x ~ çy.
(e) (detailed balance condition, uniform mixing property). There

exists a set function @ on lld, which is translation-invariant (i.e.,
~(A) = ~(A + x) for every A C Zd and x E Zd) and has a finite

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



577FREE BOUNDARY PROBLEM FROM LATTICE GAS

range R (i.e., ~ (A) = 0 if the diameter of A is larger than R), such
that for every ~ ~ 

Here, for a finite subset A of Zd, E~ (ç) denotes a function on x+
defined by

We assume that an extremal canonical Gibbs measure, denoted

by vp, corresponding to the Hamiltonian E~ with density p (i.e.,
= p) uniquely exists for every p E [0,1] and the law of

large numbers holds in L2(vp)-sense uniformly in p :

see (4.1 ) and (4.2) below for and ( f) (p) , respectively.
(f) (gradient condition). There exist hi , ... , hd E D+ such that the

currents have the forms:

where ei E ] = 1, stands for the unit vector to the direction i .
We assume that the equilibrium means P+(p) := p E

[0,1], are independent of i .
Throughout the paper, replacing h i (~ ) with h i (~ ) - P+ (0) if necessary,
we shall always normalize hi in such a way that

where R = maxlid R (hi ) . Note that P+ (o) = 0 under this normaliza-
tion, and also note that P + E C([0,1]) holds by the uniqueness of ex-
tremal canonical Gibbs measure for each p. An example of jump rates
satisfying all these conditions will be given at the end of this section.
See [6] for some explanations of these conditions. In particular, P+ (p) is
nondecreasing in p.
Now, let us describe the microscopic dynamics on TN corresponding

to the liquid-solid system consisting of two types of particles. In order

Vol. 35, n° 5-1999.
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to record the number of times hit by water particles, we label the ice
particles by 2014~ ..., -1 (.~ E N) and regard as different microscopic
states for ice. The ice particles melt and disappear after they are

hit l times by water particles. Thus the configuration space is JYN :=
{-l,..., For ~ = {~x ; x E E = 1 and 0 mean that the

site x is occupied by a water particle or vacant, respectively, and 17x = -i
(1 ~ ~ .~) means that the site x is occupied by an ice particle which was

times by water particles in the past. To determine the dynamics
of our particle system, let us consider the following Markov generator:

for functions f on where ~+ := r~ v 0, i.e., ~x = OJ, x E hN,
and it is identified with its periodic extension to ~~. The operator is

defined by

where the configuration is obtained from ~ after a water particle
jumps from the site x to y under the following rule: If another water
particle already occupies the site y, the jump is suppressed (by exclusion
rule). If there is no particle at y, or if there is an ice particle at y, the water
particle at x jumps to y and the site x becomes vacant. In the latter case,
the state of the ice particle increases by 1 counting the number of times
that it was hit by water particles. Namely, if qx = 1 and r~y = 0,

disregarding ice particles and thus the jump rate in the definition

of L N in (2.2) means that the water particles move around without feeling
the presence of the ice particles. We investigate the Markov process
1JN(t) = {r~N(t); x E FN), t ~ 0 on xN with an infinitesimal generator
N2 LN.
The goal is to study the asymptotic behavior as ~V 2014~ o0 of the

macroscopic empirical-mass distribution of r~N (t) defined by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



579FREE BOUNDARY PROBLEM FROM LATTICE GAS

where ~d is the d-dimensional torus identified with [0, 1 ) d and ~e stands
for the 3-measure at o . We assume that the random initial distribution ao
converges in probability to some nonrandom measure ao = a (o, 8 ) d o E
M(Td) which has a density as N - ~. Here denotes the set of

all signed measures a on 7~d satisfying -£ # a (A)  1 for every Borel
set A of ~d . The main result of this paper can now be stated.

THEOREM 2.1. - For every t &#x3E; 0, aN converges to a(t, o)de in

probability. The limit function a(t, o ) E [-.~, 1 ] is nonrandom and a

unique solution of the equation: 
’

for every J E where (a, J) = Td a (o) J (8) do. The function P
on [ -.~ , 1 ] is defined by pea) = P + (a ) for a E [0, 1 ] and pea) = 0 for
a E [-.~, 0].

Remark 2.1. - Eq. (2.6) is the weak or enthalpy formulation of the
following one-phase Stefan problem for the density p (t, 8 ) E [0, 1] of
water:

where n denotes the unit normal vector directed to L(t), V
is the velocity to the direction n and VP+(p) is the limit

of the gradient of P + ( p ) at 9 when approached from 
Indeed, if the interface E (t) separating the liquid region L(t) and the
solid region Set) := 1rd B U ~(t){ is sufficiently smooth, one can

easily derive (2.6) for the enthalpy function defined by aCt, 0) := p(t, 9 ) ,
e E ,C(t), and :_ -.~, () E Set), from these classical equations by means of
the integration by parts formula, see [2,13]. The speeds of loosing masses
of water and ice at ~ (t ) are given by n . V P + (p ) and - V, respectively.
Since the loosing speed for water is l times faster than that for ice,
we have the last condition, which is called the free boundary Stefan
condition, as a result of the balance between these two melting speeds.

Vol. 35, n° 5-1999.
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The thickness of the interface ~(~), which microscopically corresponds
to the states 2014~+l,...,2014l,is macroscopically negligible.
We finally give an example of jump rates which satisfy all conditions

listed above. The simple exclusion (i.e., cx, y == 1) is a trivial

example. See [6] for other examples in one-dimension.

Example 2.1. - For a &#x3E; -1 /2, set

Then the gradient condition (f) is satisfied with

The detailed balance condition (e) holds for ø == 0 and therefore the
canonical Gibbs measures are Bernoulli in this case. In particular, we
have P+(p) = p + 

3. RATE OF CHANGE OF EMPIRICAL MASS-DISTRIBUTION

To study the limit of (a N , J ) , we rewrite it by using Ito’s formula into

Here, the drift term has a form

where

and the last term MN (t) is a martingale having a quadratic variational
process given by

’ 

with

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The functions bN and y ~ on XN are explicitly computable as in the next
proposition. We shall denote

PROPOSITION 3.1. -

Proof of (3.3). - We prepare a lemma.

LEMMA 3.1. - For all Z ~ 0393N,

Proof - Since 03C0x;y~z ~ 0 implies x = z or y = z, recalling the

condition (a), we have .

However, one can readily see

and these identities complete the proof of the lemma. 0

Using this lemma and the gradient condition (f), one can rewrite bN (r~)
into

The equality (3.3) follows by the summation by parts.

Proof of (3. 4). - First let us compute We shall denote

Vol. 35, n° 5-1999.
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LEMMA 3.2. - (i) If Z1 = Z2 = Z,

(ii) 

Proof - The assertion (i) follows from the identities

To prove the assertion (ii), we first see that

where

In fact, this is obvious if 2. When z - = 1, the sum of
the first two terms in the right hand side of (3.9) counts several terms
duplicately so that we need the third term for correction. However, since

= using (3.6), we obtain that = -(q£ -
~+z2)2. This proves equality (3.8). 0

We can now complete the proof of (3.4). From Lemma 3.2, we have

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where

Since the first term in the right hand side of (3.10) coincides with

y N ( r~ ) is the sum of the second and the third terms and this
implies equality .(3.4). The proof of Proposition 3.1 is also complete. D

We conclude this section by showing the tightness of the measure-
valued processes and some properties of the limit. Let QNbe
the distribution of a N on the space D ( [0, T ] , 

PROPOSITION 3.2. - (i) tight.
(ii) Let Q be an arbitrary limit of Then we have

= a (t, e) d8 for some a (t, 8) E [-~, 1]~ = 1.

Proof - Since Proposition 3.1 shows (ry)1 ~ C and

we see

for every J E where 0t := u  s } . This proves the

tightness of {3~}, see [4]. Since the sizes of jumps of J) are

bounded by which tends to 0 as N ~ oo, we see that every

limit Q of is a measure on C([0, T ] , .J~t (~d ) ) . Moreover, since

Vol. 35, n° 5-1999.
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This implies the second assertion in (ii). D

4. LOCAL ERGODIC THEOREM

Let E P(XN) be the probability distribution of on xN and
let be the space-time average defined by

We sometimes regard E x := {-.~, ..., by periodically
extending the configurations. Here, the family of all probability measures
on the space ? is generally denoted by We also denote by D the
class of all local functions on x. For f E D, we set

recall AK = {x E lld; Ixl ~ I~ ~ and that vp is a unique extremal canonical
Gibbs measure with density p. We shall simply write 1]x,K for 
The following theorem formulates the local ergodic theorem in the liquid
region. Similar idea was employed by [ 12] or for the proof of Lemma 4
in [17].

THEOREM 4.1. - For every f E D, .

where ~+0,K = V 0 and {AK}K is a sequence of AK-measurable
subsets of X given by

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Proof. - Let L be an operator on D defined by

Then we have

for sufficiently large N; we occasionally denote by 
Integrate this equality in t E [0, T ] with f replaced by f o rx , and sum in
x ~ 7"v. Thus you have

However, since the absolute value of the left hand side is bounded by
2~f~~/(N2T), we see limN~~N(Lf) = 0. Noting that {N}N is tight
in P(X) , take an arbitrary limit  E as N ~ ~. Then = 0

holds for every f E D; in other words, ~ is an L-stationary measure.

Moreover, by definition, ,u is invariant under spatial translations.

At this point we need the following lemma.

LEMMA 4.1 (Characterization of translation-invariant L-stationary
measures). - The L-stationary measure ~u, E P(X) invariant under

spatial translations has the following decomposition

for some À E [0, 1 ~, ~} E ~( f -.~, ..., invariant under spatial
translations and 2 ~ P({0,1}Zd having the form

with some ~B E P([0, 1]). In particular, different types of configurations 1
and {-E, ..., -1} can not coexist in the support of p :

Vol. 35, n° 5-1999.
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Proof. - Let us first prove (4.5). In fact, the L-stationarity of and its
translation-invariance imply

and, by the positivity of cx,z, this shows

if Ix - zl = 1. Now assume that (4.5) does not hold. Then,

holds for some x, y E lld and hence,

for some E 3 satisfying xi - = 1 (1 ~ i 
n - 1 ) . Consider a process ~(t) = having the infinitesimal
generator L. Then, for this process, the probability that the configurations
at sites xi , ... , xn -2 does not change and those at Xn-l and Xn interchange
during a sufficiently small time interval [0, £] is positive. Therefore, by
the L-stationarity of p, we have

Repeating the same arguments, we finally get ,

but this contradicts with (4.6). Thus (4.5) is shown; in other words, sup-
port (~c,c) C {-~ ..., 0}~ U {0, Decompose by restricting it on
these two sets. Then, both measures are L-stationary and translation-
invariant. However, it is known that the translation-invariant L-stationary
measure on {0, is a superposition of canonical Gibbs measures,
see [9], Corollary (3.44), while all measures on {-~,..., are sta-

tionary for L since the ice particles are immobile. Thus we get (4.4). 0

We continue the proof of Theorem 4.1. By Lemma 4.1, we see

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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where sup* is taken over all /1 E with the form (4.4). Since
/11 = 0 for such /1, (4.7) is further bounded by

and this supremum converges to 0 as K - oo by the condition (e). D

’ 

5. YOUNG MEASURES

In this section, we shall prove that the sample density defined
microscopically can be replaced in the limit with the density function
aCt, 0) obtained by Proposition 3.2 in the liquid region, see Theorem 5.1
below. Then, combining with the results in Section 4, the proof of the
main theorem will be concluded. The basic idea for the approach of
this section comes from Varadhan [20] and uses Young measures. We
shall compute correlations of a(e [2014~, 1 ] ) and pea) under the Young
measures and deduce from such computations the triviality of the Young
measures in the limit, see Proposition 5.1 (iii).

For a function G = G (x / N ) on consider

where a = a (r~) := N-a .

LEMMA 5.1. - Assume G is symmetric, G (x 1 N) = G(-x/N). Then

where

Vol. 35, n° 5-1999.
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Proof. - Using Lemma 3.2,

where is defined in (3.11). By the symmetry of G, the first term in
the right hand side is

Then, using the gradient condition (f), this can be rewritten as G).
On the other hand, the sum of the second and third terms is rewritten as

and this coincides with (r~; G) , since

for symmetric G. D

Now we state the main result of this section. Remind that QN denotes
the distribution of the process and at (d9 ) = 3a(t, 9 ) d9 , Q-a.s. for an
arbitrary limit Q of { Q N } : Q = see Proposition 3.2. For
9 e set

where E lld stands for the integral part of NO taken component-
wisely.

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques .



589FREE BOUNDARY PROBLEM FROM LATTICE GAS

THEOREM 5.1. - For every g = g (a, u) E x and F =

F(t~ 0, p) E T] x 1rd x [0, PI&#x3E;1»

where a (t, ()) is the density function obtained by Proposition 3.2.

Proof - Let q N (x / N ) , r &#x3E; 0, x ~ 0393N be the fundamental solution of
the discrete heat equation on N-1 0393N(~ Td):

where ON := ¿1=1 0394Ni is the discrete Laplacian on N-1 0393N and 311 is

defined by 3f (x /N) = Nd (x = 0), = 0 (jc ~ 0). The function q N has
the following expression:

Here, n = (n 1, ... , n d ) E := {0,1,..., N - are multi-indices
and the sum is taken over all n E NN. To define ~,n and ~, first

for n E {0,1,... N - 1} and x E { l, 2, ... , ~V} = set hll =
4N2 sin2 n03C0/N and

where 03B2n = if n = 0 or if N is even and n = N/2, and 03B2n = 1 .

otherwise. Then, for n E and x = (xl, ..., xd) ~ 0393N,

Note that {2014~, are the eigenvalues and the corresponding
eigenfunctions of the operator A~ in one-dimension; moreover {~} is
Vol. 35, n° 5-1999.
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orthonormal, see [15], pp. 54-58. Accordingly, we see = 

A~~ = -~~~ and is orthonormal:

Now, let

and consider

Note that (a K , G * a K ~ = (a, GK * a) holds with

Then, taking G = (q N ) x in Lemma 5.1, we have

We shall integrate both sides over the interval [i/N2, 8] in r for T, 8 &#x3E; 0.

Then, for the second term, we have the following.

LEMMA 5.2. -

From the expression (5.4) of ~ and noting that !~ ~ 2d/2,
we see

Therefore,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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and the last term goes to 0 as r - oo uniformly in N. D

We rewrite and decompose the integrand of the first term in the right
hand side of (5.5) into

where

Then, as an application of the local ergodic theorem, we have the next
lemma.

LEMMA 5.3. -

Proof - The square of the above integral is rewritten as

Vol. 35, n° 5-1999.
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and, by Schwarz’s inequality, this is bounded by

where

Therefore, once we can show that

the conclusion follows from the local ergodic theorem. In fact, noting that
pea) = P + (a + ) , the expectation in (5.6) can be decomposed as

where AK is the set introduced in Theorem 4.1. Since ~ E ÂK implies
= 0 and = 0, ~ E (R is the constant in (2.1)), the

second term vanishes oo uniformly in N. The first term also
vanishes as N - oo and then K ~ oo by Theorem 4.1. Recall that
P+ (p) = is independent of i by the condition (f).
To prove. (5.7), rewrite the sum in z2 e FN in ~p~;s,~ (r~) into

where f(zl N) := we introduce a slight abuse of

notation, Afi acts thought as a function on Note that

the operation (A~)’~ is well-defined, since 1) == 0. However,
for every r &#x3E; 0,

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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The first inequality is established by Young’s inequality and

and the second one follows by expanding f in terms of the orthonormal
system Thus (5.7) is shown. a 

’

Since a t x ~ ~  .~ 2 for every t &#x3E; 0, (5.5) and Lemmas 5.2,
5.3 imply 

’ 

.

and thus

where

for arbitrary subsequences { X* ~ and {N*}.
We introduce Young measures: Set M = A~([0, T ] x rrd x [-~ 1 ] )

and consider M-valued random variables

We denote the joint distributions of (aN, on the space ~([o, T],
x M by Then, the family is tight. Indeed,

the first marginal of is Q N which makes a tight family by
Proposition 3.2 and the compactness of the space A4 implies the tightness
of in the second coordinate. Therefore, based on the diagonal
Vol. 35, n° 5-1999.
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argument, from an arbitrary subsequence { N" } of the sequence { N’ }
given just before the statement of Theorem 5.1, one can find a further
subsequence { N"’ } such that weakly converges to some Q x for
all I~ . Note that the first marginal of the limit measure Q K is Q. for all K.

Denote by T[P E J4~ := A~([0,r] x 1fd x [0,P(1)]) the image
measure of 7r E J4 under the map

and by the image measure of Q K under the map )2014~

(a., Then, Theorem 5.1 readily follows from the following proposi-
tion :

PROPOSITION 5.1. - 
_

(i) QK,P weakly converges to some Q P as K ~ ~. The first
marginal of Q P is Q.

(ii) Q_P{(a., jr); = a(t, 9) d03B8 for some a(t, 9) E [-l, 1]} = l.
(iii) x ) j do dp) = dt = 1.

The assertion (i) of this proposition is a consequence of the rest
of assertions, since {2~}~ is tight and its limit Q P is uniquely
characterized by (ii) and (iii). The assertion (ii) is a restatement of

Proposition 3.2(ii). Therefore, the proof of (iii) is only left. To complete
it, we prepare a lemma. Since {Q K} K is tight, from an arbitrary
subsequence { I~’ } of { I~ }, one can find a further subsequence { K" } such
that weakly converges to some Q as K" - oo. Note that the image
measure of Q under the map (a., t2014~ (a., is certainly Q P .
LEMMA 5.4. -

(i) Q{(03B1.,03C0); 03C0(dt d03B8 da) = dt d03B803C0t,03B8(da) for some 03C0t,03B8} = 1.

(ii) =~,0)~ = 1.

Proof - The limits are taken twice along N"’ -~ oo and then K" ~ oo.
The relation (i) is shown first for Q K by noting that enjoys the prop-
erty

for every bounded measurable function 7(~,0). Then, (i) is established
for Q by repeating a similar argument. To prove (ii), we note that
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as AT - oo, 7~" -~ o for every J E Then, recall Proposi-
tion 3.2(ii). The proof is essentially due to Varadhan [20], Lemma 7.8;
see also [ 18], Lemma 7.4. 0

We are now at the position to give the proof of Proposition 5.1 (iii).
To this end, we continue the computations of Ai 1 and A2 taking with
N* = A~ and K* = K" .

LEMMA 5.5.-

Proof - Set = the inside of the expectation in the
definition of AI:

where ~(z) := is the heat kernel on Let be

the heat kernel on the whole lattice Zd and define a local function A by

Then, if 1  r  N,

The first term tends to 0 as N -~ oo for fixed r, while the second term

also tends to 0 as r - oo. Hence, it is sufficient to study the limit of
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Since [Ai 1 (r~)] = for every 0  M  N, using
the local ergodic theorem, we have

where AM is the set given in Theorem 4.1; note that ~ E AcM implies
= 0 for M &#x3E; K and y E 11M_K. Set F(a) = aP(a) for a E

[0,1]. Then,

which tends to 0 as K - oo and then r - oo. Thus we have proved

. lim lim sup lim sup lim sup|EN [1(~)] - EN [F(~+0,M)] = 0,
K-oo M~ oo N-oo 

’

note that ~ E AcM implies = 0 and therefore

However,

along the sequences N = N"’ - oo and then M = M" - oo by taking
M" the same sequence as K" given just before Lemma 5.4. This

completes the proof of lemma. 0

LEMMA 5.6. -
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Proof. - The expectation in the definition of A2 can be rewritten as

where [9] := [N9] /N. Letting N = N"’ - ~, K = K" - ~, this

quantity converges to

where qr (8 ) , r &#x3E; 0, 8 E ~~ is the heat kernel on 1[’d. However, since

by Lemma 5.4(ii), this is further rewritten as

which converges to the desired quantity as 8 t 0, cf. [ 18] . D

Since P is nondecreasing and is a probability measure on [-~ 1],
it is obvious that

However, since A2, Lemmas 5.5 and 5.6 imply the converse

inequality to (5.9) when it is integrated in Hence, we see

that (5.9) holds in equality for Moreover, if (5.9) holds
in equality, again noting that P is nondecreasing, we see that the

distribution Jrt,f3 o P-1 (dp) (the image measure of 03C0t,03B8 under the map
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P : [-~, 1] - [0, P(l)]) concentrates on a single point; in other words,
we have 1rt,e o P-1 (dp) _ This completes the proof of
Proposition 5.1 (iii) and consequently that of Theorem 5.1. 0

Completion of the proof of Theorem 2. l. - Since (3.4) implies that
0  CN-d, we have limN~~ E[(MN(t))2] = 0 and thus the
martingale term in (3.1 ) vanishes in the limit. On the other hand, we have
from (3.3)

with an error term satisfying limN~~ sup = 0 for each K &#x3E; 0.
Set

Then, the same argument developed in the proof of Lemma 5.3 based on
the local ergodic theorem proves

Finally, from Theorem 5.1, we see

for all g = g (a, u) . Therefore, a (t, 0) satisfies the Eq. (2.6) under Q. The
conclusion follows by the uniqueness of its solutions [19]; note that the
function Pea) is nondecreasing and the initial measure ao has a bounded
density a (0, 9) . 0

6. TWO-PHASE STEFAN PROBLEM

So far we have considered the model in which ice particles are

immobile. In this section, we shall make ice particles with label -l

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



599FREE BOUNDARY PROBLEM FROM LATTICE GAS

active. They perform stochastic lattice gases with jump rates different
from those for water particles. The particles with labels 2014~+1,...,20141
remain immobile and are regarded as those in intermediate states between
ice and water.

Let two nonnegative functions c~ (~) and cx , y (~ ) defined for ~ E x+
and x, given and both satisfy the conditions (a)-(f)
listed in Section 2. The canonical Gibbs measures {vp; p E [0, 1 ] } and
functions {~i,...,/~} appearing in the conditions (e) and (f) may be
different for cx and and are denoted by and { h 1 , ... , 
f h 1 , ... , h d } , respectively. We write P + ( p ) = Evt[hi] and P - ( p ) =

p E [0, 1 ] . Consider the Markov generator L N defined by

for functions f on the configuration space JYN = {-~,..., where

r)~-~~ :_ -((~ + ~ - 1) n 0), i.e., ~=-min{~+~- 1.0}~ E TN.
The operator is defined by (2.3), but the definition (2.4) of 
should be modified as follows. If r~x = 1 and r~y = 0, or if ~x-~~ = 1
and r~ ~-~~ = 0,

and 17x;y = 17 otherwise; in particular, the conservation law ~x + ~y =

( ~x’ y ) x + holds. The configuration 17x;y is obtained from 17 after a

(water or ice) particle located at x jumps to y. A water particle can jump
to neighboring vacant sites with rates cx y (r~+) . When a water particle
jumps to the site where an ice particle or a particle in an intermediate
state occupies or when an ice particle jumps to the site where a water

particle occupies, the water particle dies while the label of the ice particle
or the particle in an intermediate state is increased by 1. An ice particle at
site x can jump with rates cx, y (r~ ~-~~ ) to a vacant site or to the site y where
a particle in an intermediate state occupies. In this case, the label becomes
-l + 1 at site x and the label at y decreases by 1. Let r~ N (t ) = 
x t &#x3E; 0 be the Markov process on JYN with an infinitesimal

generator N2LN. The macroscopic empirical-mass distribution of 
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is similarly defined by (2.5). Then, under the same condition on the initial
distribution, we have the following theorem.

THEOREM 6.1. - For every t &#x3E; 0, aN converges to a(t, 8)d8 in

probability. The limit function a(t, 8 ) E [-.~, 1 ] is a unique solution of
Eq. (2.6). The function P on [-.~, 1] is different from that in Theorem 2.1
and now defined by Pea) = P+(a) for a E [0, 1], Pea) = 0 for a ~
[-.~ + 1 , 0] and P(a) = -P-(-a - .~ + 1) for a E [-.~, T.~ + 1]; note
that P+ (O) = P - (0) = 0 by the convention (2.1 ) for h ~.
Remark 6.1. - With this definition of Pea), Eq. (2.6) is the weak

formulation of the following two-phase Stefan problem for the density
p+ (t, 8 ) E [0, 1 ] of water and p - (t, 9 ) E [0, 1 ] of ice:

where n denotes the unit normal vector directed to Let), V
is the velocity of Z (t) to the direction n and VP+(p+) (respectively
VP’(~")) is the limit of the gradient of P + ( p + ) (respectively P - ( p - ) )
at 9 E when approached from ,C(t) (respectively s(t)). The
enthalpy function defined by a(t, ()) := p+(t, ()), () E ,C(t), and :=
-p-(t, 6~) - ~ + 1,0 E gives the solution of (2.6).

Outline of the proof of Theorem 6.1. - The proof goes quite similarly
to that of Theorem 2.1. So we shall only indicate the necessary
modifications. In the present situation the formula (3 .1 ) for ,l ~ holds
with bN (q) and y N (ri) replaced as in the next lemma:
LEMMA 6.1. -
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S i nce 0 implies x = z or y = z, we have

However, it is not difficult to see

... "................,IB. , . ~ /

and these identities show

The equality (6.1 ) is proved from this formula by using the gradient
conditions and then rearranging the sum. The formula (6.2) follows from
the next lemma which is a replacement of Lemma 3.2. 0

LEMMA 6.2. - (i) If Z1 = Z2 = Z,

Proof. - The assertion (i) follows from the following identities:
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To prove the assertion (ii), we use these identities and

Set va = V: (a E [0,1]) and va = o r,~ 1 (a E [-~, -l + 1]),
where r£ : is a map defined by = + 1, x E ~d.
For a E [-~, 1 ] , we denote (a E [-~, -l + 1 ] U [0,1])
for f E D, the class of all local functions on x. Just for simplifying
the notation, we set E"a [ f] == ( f) (a) = 0 for a E (-.~ + 1 , 0). Then,
Theorem 4.1 (the local ergodic theorem) can be replaced with

LEMMA 6.3. - For every f E D,

where ~K = { r~ E x; r~x = 1 for some x E 11 K } or ~K = { r~ E JY; ~x = -~
for some x E 

For the proof of this lemma, note that three types of configurations 1,
{-l + 2, ... , -1} and -l cannot coexist in the support of translation-
invariant stationary measures for the corresponding dynamics in infinite
region.
The formula (5.2) in Lemma 5.1 remains true, if we change hi (~+)

with /~(~+) - in the definition of (r~; G) and 
x (r~+ - r~+ )2 with (0~)(°/ ~1+ )2 + c- ( ~~)(°) ~~
~z+e) ) 2 in that of ~2 ( r~ ; G ) , respectively. Then, Theorem 5.1 holds

exactly in the same form; note that the definition of the function P is
now given as in the statement of Theorem 6.1 and different from that in
Theorem 5.1. Its proof goes quite similarly; should be replaced
with hi (r~+) - as indicated above. Note that

After these preparations, the proof of Theorem 6.1 can be concluded. 0
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