Interface for one-dimensional random Kac potentials
Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) no. 5, pp. 559-590.
@article{AIHPB_1997__33_5_559_0,
     author = {Bodineau, Thierry},
     title = {Interface for one-dimensional random {Kac} potentials},
     journal = {Annales de l'I.H.P. Probabilit\'es et statistiques},
     pages = {559--590},
     publisher = {Gauthier-Villars},
     volume = {33},
     number = {5},
     year = {1997},
     mrnumber = {1473566},
     zbl = {0893.60014},
     language = {en},
     url = {http://www.numdam.org/item/AIHPB_1997__33_5_559_0/}
}
TY  - JOUR
AU  - Bodineau, Thierry
TI  - Interface for one-dimensional random Kac potentials
JO  - Annales de l'I.H.P. Probabilités et statistiques
PY  - 1997
SP  - 559
EP  - 590
VL  - 33
IS  - 5
PB  - Gauthier-Villars
UR  - http://www.numdam.org/item/AIHPB_1997__33_5_559_0/
LA  - en
ID  - AIHPB_1997__33_5_559_0
ER  - 
%0 Journal Article
%A Bodineau, Thierry
%T Interface for one-dimensional random Kac potentials
%J Annales de l'I.H.P. Probabilités et statistiques
%D 1997
%P 559-590
%V 33
%N 5
%I Gauthier-Villars
%U http://www.numdam.org/item/AIHPB_1997__33_5_559_0/
%G en
%F AIHPB_1997__33_5_559_0
Bodineau, Thierry. Interface for one-dimensional random Kac potentials. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) no. 5, pp. 559-590. http://www.numdam.org/item/AIHPB_1997__33_5_559_0/

[1] P. Baldi, Large deviations and stochastic homogenization, Ann. Mat. Pura Applic., 132, 1988. | MR | Zbl

[2] T. Bodineau, Interface in a one-dimensional Ising spin system, Stoch. Proc. Appl., 61, 1996, pp. 1-23. | MR | Zbl

[3] A. Bovier, V. Gayard and P. Picco, Large deviation principles for the Hopfield model and the Kac-Hopfield model., Prob. Theory Relat. Fields, 101, 1995, pp. 511-546. | MR | Zbl

[4] A. Bovier, V. Gayard and P. Picco, Distribution of overlap profiles in the one-dimensional Kac-Hopfield model. Preprint 1996.

[5] M. Cassandro, E. Corlandi and E. Presutti, Interfaces and typical Gibbs configurations for one-dimensional Kac potentials, Prob. Theo. Relat. Fields, 96, 1993, pp. 57-96. | MR | Zbl

[6] F. Comets, Large deviation estimates for a conditional probability distribution. Applications to random interaction Gibbs measures., Prob. Theo. Relat. Fields, 80, 1989, pp. 407-432. | MR | Zbl

[7] J.D. Deuschel and D. Stroock, Large deviations, San Diego, Academic Press, 1989. | MR | Zbl

[8] T. Eisele and R. Ellis, Symmetry breaking and random walks for magnetic systems on a circle, Z wahr. Verw. Geb., 63, 1983, pp. 297-348. | MR | Zbl

[9] R. Ellis, Entropy large deviations and stastical mechanics, Springer-Verlag, 1985. | MR | Zbl

[10] M.I. Freidlin and A.D. Wentzell, Random perturbations of dynamical systems, Springer-Verlag, 1983. | MR | Zbl

[11] A. Galves, E. Olivieri and M.E. Vares, Metastability for a class of dynamical systems subject to small random perturbations, Ann. Prob., 1987, 87, pp. 1288-1305. | MR | Zbl

[12] R. Georgii, Gibbs measures and phase transitions, studies in mathematics, De Gruyter, 1988. | MR | Zbl

[13] J. Lebowitz and O. Penrose, Rigourous treatment of the Van der Waals-Maxwell theory of the liquid vapor transition, J. Math. Phys., 7, 1996, pp. 98-113. | MR | Zbl

[14] T. Seppäläinen, Entropy, limit theorems and variational principles for disordered lattice systems, Comm. math. Phys., 171, 1995, pp. 233-277. | MR | Zbl

[15] B. Zegarlinski, Interactions and pressure functionals for disordered lattice systems., Comm. Math. Phys., 139, 1991, pp. 305-339. | MR | Zbl

[16] B. Zegarlinski, Spin systems with long-range interactions, Reviews in Math. Phys., 6, 1994, pp. 115-134. | MR | Zbl