@article{AIHPB_1997__33_4_491_0, author = {Lacey, Michael T.}, title = {The return time theorem fails on infinite measure-preserving systems}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {491--495}, publisher = {Gauthier-Villars}, volume = {33}, number = {4}, year = {1997}, mrnumber = {1465799}, zbl = {0894.60001}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1997__33_4_491_0/} }
TY - JOUR AU - Lacey, Michael T. TI - The return time theorem fails on infinite measure-preserving systems JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1997 SP - 491 EP - 495 VL - 33 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1997__33_4_491_0/ LA - en ID - AIHPB_1997__33_4_491_0 ER -
Lacey, Michael T. The return time theorem fails on infinite measure-preserving systems. Annales de l'I.H.P. Probabilités et statistiques, Tome 33 (1997) no. 4, pp. 491-495. http://www.numdam.org/item/AIHPB_1997__33_4_491_0/
[AD] On the FLIL for certain ψ-mixing processes and infinite measure-preserving transformations, (English. French summary), C. R. Acad. Sci. Paris, Série I, Math., Vol. 313, 1991, pp. 471-475. | MR | Zbl
and ,[BL] The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc., Vol. 288, 1985, pp. 307-345. | MR | Zbl
and ,[B] Almost sure convergence and bounded entropy, Israel J. Math., Vol. 63, 1988, pp. 79-97. | MR | Zbl
,[BFKO] Return times of dynamical systems, Appendix to : Pointwise ergodic theorems for arithmetic sets, by J. Bourgain, Pub. Math. I.H.E.S., Vol. 69, 1989, pp. 5-45. | EuDML | Numdam | MR | Zbl
, , and ,[D] Real Analysis and Probability, Wadsworth & Brooks/Cole, Pacific Grove, Gal., 1989. | Zbl
,[LPRW] Random ergodic theorems with universally representative sequences, Ann. Instit. H. Poincaré, Vol. 30, 1994, pp. 353-395. | EuDML | Numdam | MR | Zbl
, , and ,[W] Functional law of the iterated logarithm for the partial sums of i.i.d. random variables in the domain of attraction of a completely asymmetric stable law, Ann. Probab., Vol. 2, 1974, pp. 1108-1138. | MR | Zbl
,[WW] Harmonic analysis and ergodic theory, Amer. J. Math., Vol. 63, 1941, pp. 415-426. | JFM | MR | Zbl
and ,