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Average properties of random
walks on Galton-Watson trees
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Peking University, Beijing, 100871, China.

Ann. Inst. Henri Poincaré,

Vol. 33, n° 3, 1997, p. 369. Probabilités et Statistiques

ABSTRACT. - We study the A-biased random walk on Galton-Watson trees
by the Dirichlet principle and a formula of mean exit time of a Markov
chain. We prove that the average of escaping probability and mean exit
time are bounded by the counterparts of the corresponding random walks
on {0,1,2,’’’ - - -}. In particular we partially verified the recent conjecture
of Lyons, Pemantle and Peres on the upper bound of the speed of A-biased
random walk on Galton-Watson trees.

RESUME. - Nous etudions la marche aleatoire de biais A sur un

arbre de Galton-Watson. Nous demontrons que la probability de fuite
et le temps de sortie en moyenne sont bornes par ceux de la marche
aleatoire correspondante sur {0,1,2, " - " ’}. En particulier nous confirmons
partiellement une conjecture de Lyons, Pemantle et Peres sur la limite

superieure de vitesse de la marche aleatoire de biais A sur un arbre de
Galton-Watson

1. INTRODUCTION

For a given tree T, a vertex is selected as the root and is denoted by o.
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The distance from vertex v to o is the minimum number of edges linking
o and v, and is denoted It is called the level or generation of v.
For vertex v other than root o (i . e, I &#x3E; 0), there is a unique adjacent
vertex which is of level 1. This unique adjacent vertex is called the
parent of v, and is denoted by ~4. Other adjacent vertices of v are all of
level |v| + 1, and are called children of v. Let kv be the number of children
of v. It is also known as the branching number of v. Children of v are
denoted by uz, i = 1,2,-"~.

For positive number A, ~-biased random walk on T is a Markov chain
~Xn ~ on the vertices of T with transition probability

The transition probability at o is different slightly in accordance with the
lack of o* . Let ko be the branching number of o and °i a child of o. We
define p ( o, oi ) = 1 / I~o in addition to ( 1 ). Note that ( 1 ) is also well defined
for A = 0 if kv &#x3E; 1 for all vertices v’s of T. Let

Tree T is called a Galton-Watson tree if it is a realization of a Galton-
Watson process. Namely, kv’s are i.i.d. random variables. Assume that the
offspring distribution satisfies that

The offspring distribution induces naturally a probability measure in the
collection T of all Galton-Watson trees. Let ET be the expectation according
to that probability measure on T. Define

Certainly m’ &#x3E; 1. ~-biased random walk on random trees is defined
in two steps. First, take a Galton-Watson tree T according to the probability
measure in T. Then, define a random walk Xn on T according to ( 1 ) starting
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at root o. Thus a point in the big probability space has two components: a
random tree and a random path. The offspring distribution and parameter A
determine a unique probability measure in this big space. In the following
Theorem 2, the double expectation ET E is the average first over all random
walks on a fixed tree starting at root o, then over all Galton-Watson trees.

The equalities hold if and only if m = m’, i.e., m is an integer and
P(k = m) = 1.

THEOREM 2. - Assume that P(k = 0) = 0. Then

The equalities hold if and only if m = m’, i.e., m is an integer and
P(l~ = m) = 1.

Random walk on random trees has been an active subject in recent
years. It is shown in [4] that the random walk on random trees is transient
a. s . in the big space if A  m. The speed, or the rate of escape, of the
random walk is defined to be liminfn~~ Xn’ /n. Lyons, Pemantle and
Peres proved recently in [5] ] that for a fixed A (A  m ) and for a.e.

Galton-Watson tree T,

. exists and is a positive constant, denoted by speed(~). speed(~) depends
only on A and the offspring distribution. For the case A = 1, they computed
the speed explicitly in [6].

On the other hand, consider the random walk on {0,1,2,3,’"} (which is
the simplest tree) with the following transition probabilities.

Vol. 33, n° 3-1997.
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One can easily verify that speed(A) = (m - + A) in this case.

Comparing with (7) we see that when A = 1 the random walk on random
trees is slower than the corresponding random walk on {0,1,2,3, - "}. It is
often observed that a random walk is slowed down in random environments.
A related example can be found in [8]. It is conjectured in [7] that

We are motivated by this conjecture, and verify it partially.
COROLLARY 3. - = 0 ) = 0, ~  1 and m  00, then

The equality holds if and only if m = m’, i.e., P(k = m) = 1 for some
integer m.

By (7) and the convexity of function (x - 1 ) / (x + 1 ), Corollary 3 holds
for 03BB = 1. For 03BB  1, one can show by coupling that s is bounded above
by that of a random walk on ~0, 1,2,3, ...} with transition probabilities

Hence Ts /s is uniformly integrable in the big space. By Proposition 5.112
of [ 1 ], we can exchange the integration and the limit, i . e ., the last equality,
in the following derivation.

The corollary now follows from Theorem 2. The next two sections are
devoted to the proof of Theorems 1 and 2 respectively.

2. PROOF OF THEOREM 1

For computing P(Ts  To IXo = o) on a fixed Galton-Watson tree T, it
suffices to consider the subtree of generations 0, 1, 2, ... , s of T. On

define a random walk ~Xn ~ according to
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Then the random walk so defined is reversible in the sense 

. x) for any vertices x, y (not necessarily adjacent) of T, and

Let H be the collection of all functions h on the vertices of such that

Then, by the Dirichlet principle (page 99 of [3]),

Consequently,

Upper bound. Define the decreasing sequence

Take h E H such that h(x) = Then

Vol. 33, n° 3-1997.
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Since P(Ts  o|X0 = o) is decreasing in s, converges to 03B3(T), and is
bounded,

Lower bound. Given a tree T, consider the simple forward random walk
which chooses randomly (uniformly) among the children of the present
vertex as the next vertex. Let ~c(x) be the probability that the random
walk starting at root o will visit vertex x. If kix’ s are the branching
numbers of the vertices along the shortest path from root o to x, then
~(~r) = l~x~ )-l. This is the visibility measure of the set of
rays emanating from root o and passing vertex x. See §2 of [6] for the
details.

By the Cauchy-Schwarz inequality, for any h E H,

Since ~~-1 ~(~) = ~(~), the right hand side of the above inequality
actually is equal to

Thus by (10),

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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and

Letting s - oo we obtain the other half of Theorem 1. D

It is shown in the proof of Corollary 3.5 of [5] that

where qx is the smallest nonnegative number satisfying

The lower bound of Theorem 1 is simpler and works better when ~  l.

is called the escaping probability. If tree T is thought as an electrical
network, and if the resistance of an edge linking vertices of level l and (l -i-1 )
is ~l, then the total resistance between vertex o and the infinity is 
In deriving the lower bound we actually proved a stronger statement.

COROLLARY 4. - If P(k = 0) = 0 and 03BB  m’  oo, then the total

resistance between root o and the infinity has a finite mean over all

Galton-Watson trees. Namely,

3. PROOF OF THEOREM 2

Choose l E [0, s]. Take the subtree of the first l levels of a Galton-

Watson tree and extend it by pipes .(see Figure). In our earlier notation
the tree is characterized by kv = 1 for I v I &#x3E; l . The collection of all

such infinite trees with pipes at level l is denoted by T(l). The offspring
distribution induces a probability measure on T(l) for every l . In the

following Lemma 5, ET(l) is the expectation taken with respect to this

Vol. 33, n° 3-1997.
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induced measure on T(I). Restricting attention only to the first I levels,
a subset of T(I) can be regarded also as a subset of T( I + 1) and it has
the same probability measure in both T(l) and T(l +1). This consistence
of induced measures on T(l)’s is used in the proofs of Lemma 5 and
Theorem 2 below.

Run a random walk on T E T(l) with transition probabilities

Some obvious change is needed if l = 0 or v = o. Let ExTs be the mean
of the first hitting time of level s by the random walk defined by ( 11 )
starting at vertex x.

Proof 1 .1. - Suppose that tree T’ E T ( + 1). That is, from level (I + 1 )
on there is only one child for each vertex. Suppose that u is a vertex

of = I and ku is the branching number of u. Notice that there
are ku pipes emanating from u and the transition probabilities along these
pipes are identical. So we combine these pipes together as one combined

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques
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pipe. Let ui be the only child of u after this combination, and change the
transition probability at u as

The randomness of the branching number of u is converted to the

randomness of transition probability at The distribution of s is preserved
after this modification. In particular, we have

In general

Replacing (13) by

and solving the system of linear equations by the Cramer rule, we see that
EoTs is the quotient of two determinants. Notice that appears only in
the last equation. Thus each determinant is a linear function of ku and

where a, b, c and d are independent of 
Function /(~c) = (ax-~-b)/(cx-~-d) is convex if and only if f(0) &#x3E; f {oo).

However, f(O) is EoTs when ku = 0, or in other words, p(u, ui) = 0,
p(u, u* ) = 1; and ,f {oo) is EoTs when = 1, p(u, u* ) = 0. Define
two random walks ~Yn ~ both starting at root o, with the same
transition probability everywhere except at u. For {Y~}. = 0,

p(u, u* ) = 1; = 1, p(u, u* ) = 0. Notice that the

combined pipe and other pipes of the tree are symmetric beyond level

Vol. 33, n° 3-1997.
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(l + 1), including level (l + 1). So  IZnl by the method of coupling.
It is follows from this fact that f (0) &#x3E; f (x) (unless s = 1).
We have demonstrated that EoTs is a convex function of By the

Jensen’s inequality, the average of EoTs over all possible k~ is greater than
or equal to (am + 6)/(cm + d). This is exactly the mean hitting time of
level s by the random walk with deterministic transition probability at u,

The above argument can be applied to other vertices of level lone by
one to decrease the mean hitting time of level s. What we have proved is
that for T E T(l), EoTs is less than or equal to the average of EoTs over
those trees of T( + 1 ) whose subtree of first l levels is T. The equality
holds if and only if P(k = m) = 1 for some integer m. The statement of
this lemma then follows by taking the average of random trees of T(l).
Namely, take ET(l) . D

Remark. - This simplied proof is kindly suggested to the author by
Professor R. Lyons. The original proof is lengthy and uses a cumbersome
formula of the mean exit time from [2].

Proof of Theorem 2. - The distribution of first hitting time TS of level s
is determined by the subtree of first s levels. By the consistence of induced
measures on T ( s ) and T, and by Lemma 5, we have that

ETETs = ET(s)EoTs 2: (15)

However, there is only one member of T(0). The right hand side of (15)
further reduces to the mean of the first hitting time Ts of s by the
random walk on {0,1,2,3,---} starting at 0 with transition probabilities
given by (8). This can be calculated by solving a system of linear equations.

The first half of Theorem 2 is now an easy consequence of (15) and (16).
For the second half, rewrite (14) as

which is a concave function of Taking the average over I~y we get

The remaining argument is identical with that of the first half. D

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



369AVERAGE PROPERTIES OF RANDOM WALKSON ON TREES

Remark. - It is for simplicity that we assume throughout this paper that

P(k = 0) = 0. This assumption is needed in the half involving m’ of both
theorems; but is not required for the other half (involving m).
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