@article{AIHPB_1996__32_3_395_0, author = {Brandi\`ere, Odile and Duflo, Marie}, title = {Les algorithmes stochastiques contournent-ils les pi\`eges ?}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {395--427}, publisher = {Gauthier-Villars}, volume = {32}, number = {3}, year = {1996}, mrnumber = {1387397}, zbl = {0849.62043}, language = {fr}, url = {http://www.numdam.org/item/AIHPB_1996__32_3_395_0/} }
TY - JOUR AU - Brandière, Odile AU - Duflo, Marie TI - Les algorithmes stochastiques contournent-ils les pièges ? JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1996 SP - 395 EP - 427 VL - 32 IS - 3 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1996__32_3_395_0/ LA - fr ID - AIHPB_1996__32_3_395_0 ER -
%0 Journal Article %A Brandière, Odile %A Duflo, Marie %T Les algorithmes stochastiques contournent-ils les pièges ? %J Annales de l'I.H.P. Probabilités et statistiques %D 1996 %P 395-427 %V 32 %N 3 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1996__32_3_395_0/ %G fr %F AIHPB_1996__32_3_395_0
Brandière, Odile; Duflo, Marie. Les algorithmes stochastiques contournent-ils les pièges ?. Annales de l'I.H.P. Probabilités et statistiques, Tome 32 (1996) no. 3, pp. 395-427. http://www.numdam.org/item/AIHPB_1996__32_3_395_0/
[1] Coefficient properties of random variable sequences. Ann. of probability, vol. 3, 1975, p. 840-848. | MR | Zbl
,[2] Algorithmes adaptatifs et approximations stochastiques. Masson, 1987.
, et ,[3] Un algorithme du gradient pour l'analyse en composantes principales. Comptes Rendus Académie des Sciences, 321, série I, 1995, p. 233-236. | MR | Zbl
,[4] Independent sequences with the Stein property, Ann. of math. stat., vol. 39, 1968, p. 1282-1288. | MR | Zbl
,[5] A deterministic approach to stochastic approximation, IRISA, prépublication n° 789, 1994.
,[6] Two models for analysing the dynamics of adaption algorithms. Avtomatika i Telemekhanika, 1, 1974, p. 67-75; en anglais, Automation and remote control, vol. 1, 1974, p. 59-67. | MR | Zbl
et ,[7] Méthodes récursives aléatoires. Masson, 1990. | MR | Zbl
,[8] Sur la convergence presque sûre d'algorithmes stochastiques : le théorème de Kushner-Clark revisité. Prépublication du SAMOS 33, Université Paris 1, 1994.
et ,[9] Recursive stochastic algorithms for global optimization in Rd. SIAM J. control and optimization, vol. 29, 1991, p. 999-1018. | MR | Zbl
et ,[10] Metropolis-type annealing algorithms for global optimization in Rd. SIAM J. control and optimization, vol. 31, 1993, p. 111-131. | MR | Zbl
et ,[11] Ordinary Differential Equations, Wiley, 1964; seconde édition, 1982. | Zbl
,[12] Convergence analysis of local feature extraction algorithms. Neural networks, vol. 5, 1992, p. 229-240.
et ,[13] On the behaviour of a stochastic algorithm with annealing. Rapport technique, Academia sinica, Taiwan, 1990.
et ,[14] Distribution functions and the Riemann zeta function. Trans. american math. soc., vol. 38, 1935, p. 725-734. | MR | Zbl
et ,[15] Stochastic estimation of the maximum of a regression fonction. Ann. math. stat., vol. 23, 1952, p. 462-466. | MR | Zbl
et ,[16] Asymptotic global behavior for stochastic approximation and diffusions with slowly decreasing noise effects: Global minimization via Monte Carlo. SIAM J. Appl. Math., 47, 1987, p. 169-185. | MR | Zbl
,[17] Stochastic approximation for constrained and unconstrained systems. Applied math. science series, vol. 26, Springer, 1978. | MR | Zbl
et ,[18] A note on martingale difference sequences satisfying the local Marcinkiewicz-Zygmund condition. Bull. of the institute of mathematics, Academia Sinica, vol. 11, 1983, p. 1-13. | MR | Zbl
et ,[19] Convergence of stochastic-approximation procedures in the case of a regression equation with several roots. Problems of Information Transmission, vol. 28, 1992, p. 66-78; en russe, Problemy Peredachi Informatsii, vol. 28, 1992, p. 75-88. | MR | Zbl
,[20] Sur les séries dont les termes sont des variables éventuellement indépendantes. Studia math., vol. 3, 1931, p. 119-155. | JFM | Zbl
,[21] Analysis of recursive stochastic algorithms. IEEE Trans. Automatic Control, vol. 22, 1977, p. 551-575. | MR | Zbl
,[22] Stochastic approximation of random systems. Birkhäuser, 1992. | MR | Zbl
, et ,[23] Theory and practice of recursive identification, MIT Press, 1983. | MR | Zbl
et ,[24] Markov chains and stochastic stability. Springer, 1993. | MR | Zbl
et ,[25] Stochastic approximation and recursive estimations. Nauka, Moscou, 1972 - Translation of math. monographs, vol. 47, American Mathematical Society, 1973. | MR | Zbl
et ,[26] General irreductible Markov chains and nonnegative operators. Cambridge university press, 1984. | MR | Zbl
,[27] Principal networks, principal components, and linear neural networks. Neural networks, vol. 5, 1992, p. 927-935.
,[28] On stochastic approximation of the eigenvalues of the expectation of a random matrix. J. of math. analysis and appl., vol. 106, 1985, p. 69-84. | MR | Zbl
et ,[29] Mémoire sur les courbes définies par une équation différentielle (IV). J. Math. Pures Appl., vol. 4, 1886, p. 151-217. | JFM | Numdam
,[30] A stochastic approximation method. Ann. math. stat., vol. 22, 1951, p. 400-407. | MR | Zbl
et ,[31] Estimation and annealing gor Gibbsian fields. Ann. Inst. Henri Poincaré, vol. 24, 1988, p. 269-294. | Numdam | MR | Zbl
,[32] Parametric inference of imperfectly observed Gibbsian fields. Probability theory and related fields, vol. 82, 1989, p. 625-645. | MR | Zbl
,[33] Martingale transforms with non-atomic limits and stochastic approximation. Probability theory and related fieds, vol. 95, 1993, p. 103-114. | MR | Zbl
,Non convergence to unstable points in urn models and stochastic approximations. Ann. of Probability, vol. 18, 1990, p. 698-712. | MR | Zbl
,