
ANNALES DE L’I. H. P., SECTION B

N. TH. VAROPOULOS
Hardy-Littlewood theory on unimodular groups
Annales de l’I. H. P., section B, tome 31, no 4 (1995), p. 669-688
<http://www.numdam.org/item?id=AIHPB_1995__31_4_669_0>

© Gauthier-Villars, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1995__31_4_669_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


669

Hardy-Littlewood theory on unimodular groups

N. Th. VAROPOULOS

Ann. Inst. Henri Poincaré,

Vol. 31, n° 4, 1995, p. -688 Probabilités et Statistiques

ABSTRACT. - We give optimal estimates of the LOa-norm of the heat
diffusion kernel on a unimodular Lie group.

On donne des estimations pour la norme L°° du noyau de la
chaleur sur un groupe de Lie unimodulaire.

0. INTRODUCTION

Let G be a locally compact group and let  E P(G), then ~ ~2~2 = e
where A &#x3E; 0, here we denote the LP (G; dr g) - L~ (G; d~’ g)
norm of the operator f * jj where dr g the right invariant measure
on G. The number A = A (~c) will be called the spectral gap of ~. (We
shall use that terminology even for measures that are not symmetric and do
not satisfy ~ (g) = /~ (g-1)). It is well known that when G is connected
and when (g) = f (g) dg is given by a continuous density f, then the
number A (~) is either zero for all such measures, and we then say that
G is amenable, or A is always non zero. It is important to recall that a
connected Lie group G is amenable if and only if its quotient by the radical
Q (cf. [7]) G/Q = E is compact. Let us finally recall the definition of
the second moment of 
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670 N. TH. VAROPOULOS

where g ~ I = d (g, e) is the "distance" in G from g to the neutral element
e (cf. [3], for precise definitions).

Let now ~ be a real connected non compact semisimple Lie group and
let ~ = KAN be the Iwasawa decomposition of ~ where K contains the
center Z, and is such that K/Z is compact , Rd (d = 1, 2, ...) and
N is nilpotent. Let us also denote by p the number of indivisible positive
roots of the action of A on N (i. e. 1 /2 of any of these roots is not a root).
Let finally r = 0, 1, ... be the rank of the center Z ~ x F where F is

finite abelian group. I shall, in what follows, denote by

The significance of the integer q lies in the following well known theorem
of Ph. Bougerol (cf [2]).

THEOREM (Ph. Bougerol). - Let 03A3 be a real semisimple non compact
Lie group as above and let us assume that the center of 03A3 is finite. Let

(g) = f (g) dg be a probability measure with finite second moment
and with an Ll density and let us denote by (g) = f~ (g) dg the n‘n
convolution power of Let us further assume that U supp = G. For

n2::1

every compact subset C c c G we then have:

where ~ is the spectral gap of ~.
Observe that sup ~~2 ! ~ ~ ~ + C, g E ~ = KAN. This implies

k1,k2EK

that the above J-t has "un moment d’ ordre deux" in the sense of [2]. (Observe
also that the left distance that we use on ~ = NAK (cf. [3]) can be assumed
K-biinvariant. That distance induces therefore on the subgroup AN a new
left distance that is equivalent to the intrinsic left group distance of AN).

Let now G be an arbitrary real connected Lie group, let Q c G be its
radical (cf. [7]) which is a closed connected subgroup. We shall assume
throughout that G/Q = ~ is non compact in other words we shall assume
that G is non amenable. let also ~/ (n) = Haar measure in Q of where
Q = C Q is a compact Nhd of e in (n) is the growth function
of Q and we always have either C-1 (n)  C nD (n &#x3E; 1) for
some C &#x3E; 0 and D = 0, 1, 2, ..., if Q is of polynomial growth, or we
have, (n) &#x3E; C (n &#x3E; 1) for some (C &#x3E; 0), if Q is of exponential
growth. The number D = D (G) only depends on G and is independent
of the particular choice of f2 (cf. [17]).
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671HARDY-LITTLEWOOD THEORY ON UNIMODULAR GROUPS

For a Lie group as above we can consider a left invariant subelliptic
Laplacien A = - E XJ and the corresponding Heat diffusion semigroup
e-t °. The corresponding convolution kernel CPt can then be defined by
(cf. [3], [ 10])

To avoid unecessary complications let us assume from here onwards that
G is unimodular and let us define dEc (g) = ~i (g) dg. The above Theorem
applies to such a measure (cf. [3]) and it is interesting to observe that in
that case the spectral gap of ~ has the following geometric interpretation.

where

J

In this paper I shall prove the following theorem that improves previous
results of [ 1 ], [2].

THEOREM 1. - Let G be a connected unimodular, non amenable, real Lie

group and let ð and 03C6t (g) be as above let 03BB be the spectral gap of ð as
defined in (0.2). Let finally Q denote the radical of G.

If Q is of polynomial growth and if D = D (Q) is as above we have

where q = q (G/Q) is defined as in (0.1).
If Q is of exponential growth there exists c &#x3E; 0 such that

To clarify the above theorem the following remarks are in order:

(i) For every open subset f2 c G, by the local Harnack principle
cf. [3], there exists C &#x3E; 0 such that

(ii) The estimates given by the theorem are unimprovable in the sense
that they are sharp when G is soluble or when G is semisimple without
center cf. [3], [2]. We shall come back to this question at the end of this
paper.

Vol. 31, n° 4-1995.



672 N. TH. VAROPOULOS

(iii) Let G be a locally compact group and let H C G be a closed normal

subgroup that is amenable. Let further ~, E P (G) and 7r be the

image of  by the canonical projection. Then A the spectral gap of  in G

satisfies A where A is the spectral gap of M in G/H (cf. [4] and (5-1)
bellow). This remark applies in particular to Q C G where Q is as in our
theorem and to Z C E where Z is the center of the semisimple group E.

Let us now go back to a canonical Laplacian A on a real connected Lie
group and observe (cf. [3]) that there exists 6 = 1, 2, ... (if G ~ {e})
and C &#x3E; 0 such that

Let us also recall that we can define for every a E C, Rea&#x3E; 0 and
A as in (0.2)

More general functions of A - A can also be defined by:

where 0394 - 03BB = 100 x dEx is the spectral decomposition a. From

Theorem 1 we obtain easily the following natural generalization of classical
results of Hardy and Littlewood (cf [6]).

COROLLARY. - Let G as in the theorem and let us assume that its radical

Q is of exponential growth. Let further and 8 be as (0.2) (0.3) and
L  p  2  q  a E C, a = Rea&#x3E; 0 then the operator:

is bounded if and only if 1 /p - 1 /q  a/~.
The corollary extends to the more general operators (0.5) provided that

] nz (x) I =0 (x-a~2). The analogue of our corollary when Q = ~e~ has
been proved in [ 1 ] .
The proof of our theorem will be given in a slightly more general

context. For G as in the theorem we shall consider ( g) = f (g) dg where
0  f ~ C (G), E ( )  +00, and the corresponding convolution powers

= f n (g) dg. For every C C C G we shall then show that f n (xjdx

is either 0 (e-03BB( )nn-q/2-D/2) or 0 (c &#x3E; 0) as the case

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



673HARDY-LITTLEWOOD THEORY ON UNIMODULAR GROUPS

may be. This clearly contains our theorem since 0  ~i ( . ) E C (G), and
E (~~ ) = E {~)  +00.

Let us now recall that CPt (e) where we denote throughout
by ~R~p~q the operator norm R : Lp (G) - Lq (G). The Theorem 1
admits the following generalisation.
THEOREM 2. - Let G, Q, A, p, d, r, A and Tt = (0.1) and

as in Theorem 1. Let us further assume that Q is of polynomial growth and
that D = D (Q) is as in Theorem 1, then for all 2  q  we have:

(0.6) )!T~2-~ ~ C t t-1/2 (2~-I-d/2) t-(D+r)/2 (1/2-1/q) ~ , t &#x3E; 1

where C is independent of t.
To understand the way the exponent of t is made up in (0.6), one

should consider the case where D = r = 0. In that case the estimate (0.6)
is a consequence of the Kunze-Stein phenomenon (cf. [13]). This basic
observation comes from [ 1 ] . The interest of the estimate (0.6) lies in the
fact that it is optimal. This is easely seen on product groups (as in § 6)
for Laplacians that "split".
From the estimate (0.6) one easily deduces that 

and if 2  q  +00 are such that

[with 8 as in (0.3)] then the mapping:

with A &#x3E; 0 as in (0.2) is bounded. If we dualise (0.7) and combine this
with (0.7) we obtain a corresponding range of a’s for which (A - ~)-a~2
is Lq bounded with p~~lp2~~ +00. The estimate
(0.7) generalizes results of [1].
The question naturally arises as to what happens when G is not

unimodular. The right invariant Haar measure is given then by dr 9 =
m (g) d~ g where dl g = dg is the left invariant Haar measure and m (g) is
the modular function normalised by m (e) = 1. For such a group we can
still consider A = E XJ where Xj are left invariant fields that generate
the Lie algebra of G. What is however natural here is to consider instead
A = ml/2 which is now a left invariant operator on G that is in
addition self-adjoint with respect to the left measure (cf. [5]).
The spectral gap of A is then given by:

Vol. 31, n° 4-1995.



674 N. TH. VAROPOULOS

(cf. [5]). In [5] I have considered the semigroup Tt = and the powers

(A - À)0152, a E C and in [ 10] I have stated without proof the fact that:

for some c &#x3E; 0 provided that G is a (C) group (I shall refer the reader to
[ 10], [ 11 ], [5] for the definition of the ( C) condition). A proof of (0.9) was
given in [ 10] only in the case when ~ = 0. The proofs of [ 10] can however
be adapted to give a proof of the estimate (0.9) in the general case (i. e.
~ &#x3E; 0). The details of the proof will appear in a forthcoming paper. The
following Hardy-Littlewood type of theorem follows at once from (0.9).

THEOREM 3. - Let G be a Lie group that satisfies the (C) condition but is
not necessarily assumed to be unimodular. Let 0 and Li be as above and
let 03BB &#x3E; 0 and 8 = 1, 2, ... be as in (0.8) and (0.3) respectively. Let finally
1  p  2  q  +00, a E C, R e a &#x3E; 0. Then the mapping:

is bounded if and only if.

1. THE ACTION OF G/H ON H

Throughout this section we shall denote by G some locally compact
group and by H c G a closed normal subgroup. We shall say that G/H
acts on H if there exists a : G/~f 2014~ Aut (H) an algebraic homomorphism
(a is not necessarily assumed to be continuous) and S c G a locally
bounded Borel section of the canonical projection 7r : G 2014~ G/H (i.e.

(C) n S is relatively compact for all compact subsets C CC G/H
and 7r I s is (1 - 1) and onto 9 2014~ G/H) such that

When H G G is a central subgroup, then G / H acts on H trivially
(simply set a = Identity automorphism of H).
When G is a semidirect product of H with another closed subgroup K

(i. e. when there exists K C G a closed subgroup such that H n K = {e}
and HK = G) then again G/H acts on H for it suffices to set S = K. This
is in particular the case when G is a simply connected real Lie group and
H = Q is its radical. Indeed in this case G = Q AM where M is some Levi
subgroup M =~ G/Q. M is then simply connected and semisimple (cf. [7]).

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



675HARDY-LITTLEWOOD THEORY ON UNIMODULAR GROUPS

The situation is more complicated when G is connected but not

necessarily simply connected real Lie group. The analytic subgroup that
corresponds to the radical of the Lie algebra is again a closed connected
subgroup Q c G and we can find Mi C G a (not necessarily closed) Levi
subgroup which can be identified to a semisimple Lie group (cf. [7]). Let us
denote by M the universal covering group of Mi. The inner automorphisms
in G induce then an action of M on G and on Q and the semidirect product
G = Q A M can be defined, G is then a covering group of G. We shall
denote by (): G ~ G the corresponding covering map. Ker B lies then
in the center of G.

Let us denote by Z (M) the center of M (which is a discrete closed
subgroup), then there exists Z C Z (M) a subgroup that is of finite index
i.e. [Z (M) : Z]  +00 and such that the action of Z on Q is trivial. Here
is a proof of this fact. First of all we have Z (M) = Z (Mi) x ... Z (Mk)
where Mi x ... x Mk = M is the decomposition of M into simple factors.
Observe next that it is enough to consider the linear action Ad of Z (M)
on q the Lie algebra of Q. By Schur’s Lemma for each z E Z (Mi)
(i = 1, ... , k) Ad (z) gives rise to a scalar matrix on each component of
the representation Ad on GL (q). Since, by semisimplicity, the determinant
of this matrix is one, it follows that this scalar matrix can be identified with
a root of unity. Our assertion follows.
The situation we have is now this:

where 7r : Q A M ~ M denotes the canonical projection.
If we quotient by Ker 03B8 n if we obtain

Hi is clearly a closed normal subgroup of Gi. Since on the other
hand Ker B is central in G we have Ker B C 7r~ (Z (M)) and since
H = 7r-1 (Z) C 7r-1 (Z (M)) is of finite index it follows that Ker 9 f1 H
is of finite index in Ker 0. This means that Gi is a finite cover of G (in
the esoteric terminology of the subject one says that Gi is isogenic with
G). We also have:

and therefore G1/H1 is a semisimple group with finite center. M now
acts canonically by inner automorphism on G this action stabilises every
Vol. 31, n ° 4-1995.



676 N. TH. VAROPOULOS

element of Ker 03B8 furthermore the action of every element of Z on G
is trivial. We obtain thus canonical mappings: M 2014~ Inner Aut (G) ;
M - Inner Aut (Gi); M/Z -~ Inner Aut (G); M/Z - Inner Aut (Gi)
and it is very easy to verify that the induced action:

satisfies the conditions given at the beginning of this section.
We shall collect all the information obtained in this section in the

following

PROPOSITION. - Let G be a real connected Lie group. There exists then G1
a Lie group that is isogenic to G and Hl C G1 a closed normal subgroup
such that G1/H1 is semisimple with finite center and such that G1/H1 acts
on HI in the sense defined at the beginning of this section. Furthermore Hl
is isomorphic with Q1 x D where Q1 is a finite extension ofQ and ZT

with r = rank of the center of G/Q.
To see the last point observe, that by our construction, there exists Di a

subgroup of finite index of Z (M) such that 
It is furthermore clear that Ker 0 n Q = {e} and therefore Hi = Q 0 (Di).
Here B (Di) is a finitely generated, but not necessarily closed, subgroup
that is central in G1.

It follows that Hl/Q = 7LT x F where F a finite abelian. Let us denote
by Q1 = fi-1 (F) where ~ : ~r x F. Let us further choose

(i , ... , (r E 0 (Dl) such that x ((j ) j = 1, ..., r are free generators of ZT
and set D = G p ((1, ..., (r). It is then clear that Hi = Qi x D. Finally
r = rank of center of Gi/Qi = rank of center of Gl/Q because the center
of G1/H1 is finite. But then, by the isogeny between G and Gl, r is also
the rank of the center of G/Q.

2. EQUIVALENT MEASURES AND THE NASH INEQUALITIES

Let G be a unimodular compactly generated locally compact group. We
shall define first an equivalence relation on the set of probability measures
P (G) of G. We shall write ~ ~ ~ E P (G) if there exists g E G or

a E Aut (G) such that one (or several) of the following relations hold

a is the mapping induced by a on measures, h is the Haar measure
on G, and 69 is the point mass at g. We shall say that two measures

Annales de l’lnstitut Henri Poincaré - Probabilités et Statistiques



677HARDY-LITTLEWOOD THEORY ON UNIMODULAR GROUPS

(G) are equivalent and write if there exists p &#x3E; 1 and
VI, v2, ..., (G) such that 03BD1 ~ ... 03BDp ~ 2. It is of course
clear that for two equivalent measures ~c ~ v we have ] ] &#x3E; 
Let p E P (G) and n &#x3E; 0 we shall then define Nn = inf C (i.e. the

optimal C) among the numbers C &#x3E; 0 that satisfy

We shall of course set Nn (J-t) = +00 if no such C &#x3E; 0 exist. Let us assume
that G is such that 7 (n) &#x3E; C nD (cf § 0 for the definition of 1) for some
D &#x3E; 2 and let S2 = 0-1 C G be some open symmetric generating (i.e.

U 03A9n = G) neighbourhood of e in G and C, eo &#x3E; 0. Let further dJ-l = f dg

be a probability measure and let us assume that the density f satisfies

Then ND ( ~c )  Ci = Ci ( C, eo , ~). It is important to observe that
Ci (C, eo, 0) is independent of go (cf. [3], [8]). Up to the above "~"
equivalence relation between measures, we can replace go 0 by S2 go in (2.1).
This fact and the freedom of choice for go is basic for the understanding
of (3.2) further down, and for the proofs of our theorems. If we relax the
condition D &#x3E; 2 then the same fact holds for measures that satisfy (2.1 )
with arbitrary D &#x3E; 0 provided that we assume in addition that the second
moment of the measure E = ( g 12 (g)  +00 is finite. The constant

Ci depends then also on E. We shall not need this refinement in this paper
and shall therefore not give the proof.
When, (n) &#x3E; Co e~° n for some Co, co &#x3E; 0, then the measures E P (G)

for which (2.1) holds satisfy the stronger inequality (cf. [3]):

where C2, c2 only depend on G (in fact only on Co, co). Inequalities of
the form where considered for the first time in [9]. [To extract (Noo)
from [3] and (2.1) we may assume that go = e. But then with the notations
of [3], VII.5, the Dirichlet form It f ~~2 - /I ~ * f ~~2 = ((~ - ~ * u) f, f)
clearly dominates ~ (I - T0)1/2 f ~22]. For any J1 e P (G) we shall define
N~ ( ) = inf C where the inf is taken among the numbers C &#x3E; 0 for
which (Noo) holds with the convention that Noo (~,) = +00 if not such
a number exists.

Vol. 31, n° 4-1995.



678 N. TH. VAROPOULOS

It is evident from the definition that Nn (~) = Nn (6g * for all

n e]0, +oo~, ~, e P (G), g E G. It can also be easily verified that for

any unimodular automorphism a E Aut (G) (i.e. a (h) = h) we have
Nn (J-t) = Nn (a (~)). Combining these two remarks, and the fact that

gxg-l is a unimodular automorphism of G, we deduce that

Let us now consider n measures ..., E P (G) and a subsequence
1  nl  ...  that satisfies

for some fixed v E ]0, +00]. If 0  v  +00 we shall conclude from

(2.2) that:

if v = +00 we shall conclude that:

where C3, c3 &#x3E; 0 only depend on v and C in (2.2).

Let tj ... * f ~~z for some fixed f E Co (G)
with II f = 1 and let Tj = tn~ (1  ~  k). Then clearly the sequence
ti &#x3E; t2 &#x3E; ... is non increasing and therefore when v = +00 we have

The inequalities (2.5) can easily be "integrated" (cf. [3]) and (2.4) follows.
When v  +00 the proof is a trifle more subtle. Let t (x) be a continuous

function for x E [nl, n] that satisfies t ( j ) = tj j = nl, ni + 1, ... n and
is piecewise linear for x between two integers. It is clear that we have:

Substituting ~ (x) = (x) we obtain

where C (x) &#x3E; 0 and C (x) &#x3E; C &#x3E; 0 if x E [np, p = 1, ..., k. If
we integrate the differential inequality (2.6) we obtain (2.3).

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques
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Let now G be a unimodular compactly generated locally compact
group. Let us further consider pi, ...,/~ E P (G) n measures on
G and a subsequence 1 ~ ni  ...  ~ ~ ~ such each measure

d nj (g) = fj (g) dg is given by a density that satisfies (2.1) for some fixed
C, ~o and H c G. Let further VI, ..., vn E P ( G) be another sequence of
measures such that ~ ~ ~ (equivalence in the sense given at the beginning
of this section). Let us also assume that the growth function of G satisfies
q (n) &#x3E; C nD for some C &#x3E; 0, D &#x3E; 2. We can conclude then from the
above conditions that

Indeed for any 1  s  n we have

where the 
v 

is defined by v (x) = v (x-1) (the 
" 

induces the adjoint.
convolution operator). If we choose 1  s  n so that it "cuts" the

subsequence 7~1...  nk "about half way" and if we bare in mind the fact
that the conditions (2.1 ) are, up to equivalence, stable by the involution
~ 2014~ we see that (2.7) is an immediate consequence of (.2.3). Similarly
we see from (2.4) that if I (n) &#x3E; C ecn for some C, c &#x3E; 0, then

3. THE DISINTEGRATION OF A MEASURE

In this section we shall place ourselves in the context of a locally compact
unimodular group G with a closed normal subgroup H c G such that there
exists (as in paragraph 1) a : G /H - Aut(H) an algebraic homomorphism
and S c G a locally bounded Borel section of 7r: G ~ G/H for which
a (7r (s)) h = s-1 hs (V s E S, h E H). We shall also assume that G/H
is unimodular. 

’

Let &#x3E; E P (G) we can then disintegrate that measure along the cosets
of H.

where = 7r ( ) E P (G/H) is the image of  induced by the mapping
x and E P (03C0-1 (x)) (x E G/H). The measure x is defined only for

Vol. 31, n° 4-1995.



680 N. TH. VAROPOULOS

~-almost all x E G/H. The Borel section S can then be used to identify
7r-1 (x) with H (: 7r-1 (x) = H s - H for s E S n 7[-1 (x)). We can
therefore identify with a measure on H.

We shall now make the additional hypothesis that the measure (g) =
f (g) dg is given by a continuous positive density f (g) &#x3E; 0 (g E G). It

follows then that d d g~ L1 (G/H) and for every x E G/H the
measure (h) = fx (h) dh is given by a continuous density on H (we
use the above identification to set px E P (H)). Given any c &#x3E; 0 it is

easy to see that we can find Ace G/H a compact subset such that
M (G/HBA) ~ ~ and we can also find, C, co &#x3E; 0 and 03A9 c H as in (2.1)

such that for each x E A the measure satisfie (2.1) (the go of (2.1)
o

depends on x, and we chose A such that f  C on A).

We can now apply (3.1) to the convolution power of ~, and obtain

where  n is the convolution power of ~ on G/H and where can be

identified to a measure in P ( H ) .
We shall now consider S2 the path space (w = (9i, S2, ...) EO) of the

left invariant random walk on G / H Sn = Xi X 2 ... X n with independent
increment Xj given by P (Xj E dx) = d ~ ( x). Using probabilisitc

notations we can then write as a conditional expectation:

where as in (3 .1 ) with x = Xj) and where ~,
the equivalence relation, is random (i. e. the chain ... ~ ~cx~
depends on the path w). The formula (3.2) is basic for us and it has

already been used crucially in [8], [10], [ 11 ]. The main observation that
is used for the proof of (3.2) is the fact that all the inner automorphisms
A 2014~ g~l hg (g E G, h E H) are unimodular on H (this is a consequence
of the unimodularity of G). Let us now fix cp E Co (G) and let us use (3.2).
We see that for any decomposition H = 01 U SZ2 we have

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



681HARDY-LITTLEWOOD THEORY ON UNIMODULAR GROUPS

where K CC G/H and C &#x3E; 0 depend on cp and I ( ~ ) denotes the

characteristic function of a set. It is this inequality, that for a proper
choice of the decomposition Hi U 522, will give the appropriate estimate
of I and the proof of our theorem.

4. PROOF OF THEOREM 1

We shall place ourselves once more in the context of a locally compact
unimodular group G with a closed compactly generated subgroup H that
satisfies the conditions of § 3. All the notations introduced up to now, and

especially in § 3, will be preserved.
We shall fix = f dg a probability measure given by a continuous

density. Let 0  ~7  1 be some small number to be chosen latter, let

1  n be an integer and let the A c c G/H, that was considered in § 3,
be chosen such that the following subset of the path space:

satisfies

This is clearly possible if P (G’/~fB~4) ~ ~ small enough (the proof
of this fact is an elementary calculation involving Bemouille coefficients

C n J j éi ( 1 - and will be left as an exercice for the reader). The

partition of the space S2 = Hi U S22 will be then defined by setting
O2 = 

For fixed p E Co (G) as in (3.3) the second member of the right hand
side of (3.3) can be estimated by C The first member of the right hand
side of (3.3) can be estimated by

Now by our definition of ~1 and (2.8) we see that if H is of exponential
volume growth then

Vol. 31, n° 4-1995.



682 N. TH. VAROPOULOS

for some C, c &#x3E; 0. Similarly by (2.7), if we assume that qH (n) &#x3E; cn~,
c &#x3E; 0, D &#x3E; 2, we can assert that there exists C &#x3E; 0 such that

We are now in a position to complete the proof of Theorem 1. The first
step is to use the consideration of § 1 and replace, if necessary, G by an

isogenic group Gi (this clearly does not affect the conclusion of Theorem 1)
such that Gi and Gi D Hi satisfy the conditions of the proposition of § 1.

The next reduction is to be able to assume, in the case when Q is of

polynomial growth, that D = D (Q) &#x3E; 2. This is done by the standard trick

(cf. [12]) of replacing, if necessary, G by G x 1R3 and A by A+standard
Laplacian on R~.

Having done these reductions we consider d 1 = fi dg with 0  fi E
C (Gi) and E  +00 and apply the (4.1) and (4.2) or (4.3) to
the subgroup Hi. The estimate (3.3) together Bougerol’s theorem for the
semisimple group G1/H1 that we apply to = f dg E L1 (Gi/Hi) where

o

f = f 1 &#x3E; 0 and E (~,)  +00 completes the proof of Theorem 1.

Let us finally give the proof of the corollary. Towards that we shall
decompose the integral in (0.4) as follows:

It is clear that 1 I1 ~p~q  +00 for 1/p - 1/q ~ Re03B1 03B4 (cf [3]).
When Q is of exponential growth, by our theorem, we have (cf [5])

II e-t  eÀ t 112--+q = 0 (t-A) for t &#x3E; 1 and any A &#x3E; 0, q &#x3E; 2. Therefore

II  +00 for any q &#x3E; 2. The conclusion is that ~ ~ ~2-~9  +oo as

long as q &#x3E; 2 and 1 /2 - 1 /q The corollary then follows by duality.

The boundedness of the more general operators (0.5) follows by
factorising these operators in the obvious way L~ 2014~ L~ 2014~ L~ 2014~ Lq.

5. PROOF OF THEOREM 2

The basis of the proof of the estimate (0.6) is once more the disintegration
formula (3.1). Let G, e P (G) be as in § 3 and let us disintegrate 
as in (3.1)’, then for any 1 ~ p, q  +00 we have
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where here ~ ~p~q is the Lp ~ Lq convolution norm on is

the convolution norm of  on G/H and ~ x~p~q is the convolution norm

on H. To prove (5.1) we use very heavily the unimodularity of the groups.
The details will be left as an exercise for the reader.

Let now 0 have the same meaning as in § 3 and let us assume that
00

H = U OJ be a covering of H by (not necessarily disjoint) subsets. With
j=1

the same notations as in § 3 and 4, we shall then define for each fixed n &#x3E; 1

It is clear of course that:

and from (5.1 ) it follows that

where § i is the projection of Mi on G/H and is given by:

In the above construction the set S21 will be defined exactly as in § 4 for
some A c G/H large enough. Let us also assume for the moment that the
volume growth of H satisfies 7H (t) &#x3E; c tL, (t &#x3E; 1) for some L &#x3E; 2. For
i = 1 the first factor on the right hand side of (5.2) can then be estimated by

This is a consequence of (2.7) and interpolation. To estimate the second
factor of the right hand side of (5.2) for any i = 1, 2, ... we shall make
the additional assumption that G/H is semisimple with finite center and
that d i (g) = (g) dg. The Kunze-Stein phenomenon (cf [13]) gives
then the estimate (for p = 2, q &#x3E; 2)

This will be used for i = 1 and
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where 03C6t is a Heat diffusion kernel as in § 0. We obtain

which together with (5.3) gives

It remains to control the contributions of the terms i = 2, ... To

be able to do this we have to choose O2, ... , 52~, ... appropriately. For
i = 2, ... we choose

We use here the notation [ j I = d (e, g), (gE G/H) for the canonical
distance on G/H (cf. [3]). It is clear that

From this and the standard Gaussian estimate on ~1 (g) (cf. [3]), it follows

that with ~, as in (5.4) we have

0

Since in our case we have 
n (g) =1 n (g) dg we can conclude also

o 
O 0

that d ~u a =1/J i d ~ and

Now for i = 2, ... the first factor of the right hand side of (5.2) can

be estimated by

where as in § 3 we denote by (h) = fx (h) dh (h E H, x E G/H).
To see this we simply use the log-convexity of the II lip and the fact that
each is a probability measure. To estimate (5.7) we use the following
two inequalities
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(cf. [3]). It follows that the right hand side of (5.7) can be estimated by

We can now complete the proof of our theorem. We start by choosing A
very large so that P (Sll) &#x3E; 1 - with an ~ very small to be chosen later.
This means that ~ ~ , ~  ~ (i = 2, ...) and therefore just as in (5.6)

II !!2-~g ~ C We then fix some k = 2, ... and estimate )) 
using (5.2) (5.6) and (5.8) for i = k + 1, ... For k large enough we obtain
thus the estimate:

For an appropriate choice of ri and k the above estimate together with (5.5)
completes the proof of (0.6).

In the above proof we have of course used the special structure of
the group G which had to satisfy the conditions of § 3 and be such that
G/H is semisimple with finite center. In addition the volume growth of
H was assumed to satisfy TH (t ) &#x3E; ctL, (t &#x3E; 1) with L = D + r &#x3E; 2.
Here D and r are as in Theorem 2. At this stage we shall invoque the
proposition of § 1 which shows that up to isogeny we can assume that
we are in the above situation (possibly with D + r = 0, 1, 2). The next
observation is that the conclusion of Theorem 2 is stable by isogeny. In
fact the conclusion of this theorem is even stable by taking the quotient by
a compact subgroup (i. e. passing from G to G / K with K compact. To see
this we use the Harnack principle and average over K). To deal with the
exceptional cases D + r = 0, 1, 2, we use once more the usual trick of
jacking up the dimension by replacing the group G by G x R3 as we did
in § 4. This completes the proof of Theorem 2. The proof of (0.7) follows
then immediately by the same argument as at the end of § 4.

6. THE LOWER ESTIMATES

The results in this final section are not sharp, we shall therefore be brief.
What we shall show is that if G = Q x ~ is a direct product of its radical
Q, which will be assumed to have polynomial volume growth, and of some
semisimple group ~, and if A, A, q, r, D, CPt are as in § 0, then there
exists C &#x3E; 0 such that
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This shows that the estimates obtained in Theorem 1 are essentially
unimprovable.
The proof of this estimate is an easy consequence of the following general

principle: let G be a general Lie group and let H c G a closed normal
subgroup that is of polynomial growth (this implies that H is amenable
but H will not be assumed to be connected). We shall further assume that

dH (x, y) (x, y E H), the intrinsic distance in H is equivalent (for large
distances cf. [3]) to the induced distance by the embeding H c G. To
be more explicit if we denote by dG (x, y), (x, y E G) the canonical left
invariant distance on G (cf. [3]) then there exists C &#x3E; 0 such that

This phenomenon is rather rare (cf [ 11 ]), but (6.1 ) does hold in the

following two cases:
Case A: G N H x G/H i.e. H is a direct factor. The verification is trivial.
Case B: G is semisimple and H = Z is the discrete center of G.

(6.1 ) is then not trivial and the verification relies on the fact that if

G = NAK then Z c K and K/Z is compact. To prove (6.1 ) we first

project G 2014~ and obtain a Z invariant (but not K invariant)
distance on K. Then we use the compactness of K/Z. The details will be
left to the reader (cf. [ 14], [ 15]) where the above result is proved when the
above distance is Riemannian).

For a group and a subgroup G  H as above and A some subelliptic

sublaplacian I shall denote by CPt (g) = (g) and $ t (g) 0 (g), 0
gE G/H the corresponding (canonically induced) heat diffusion convolution

o 0

kernels (~ is induced by the projected laplacian A= dx (A) on G/H where

7T : G ~ G/H is the canonical projection).
It is clear that

It is also known that

for some C &#x3E; 0 (cf. [3]). From this it follows that there exists Co &#x3E; 0

such that

Annales de l ’lnstitut Henri Poincaré - Probabilités et Statistiques



687HARDY-LITTLEWOOD THEORY ON UNIMODULAR GROUPS

o

provided that 03C6 t (e) verifies a lower estimate of the form:

for some C &#x3E; 0. Assuming that this happens, then we immediately deduce
that

If we apply the above procedure first in case B and then in case A, we
obtain the required lower estimate. The estimate (6.2) (when G/H = ~/Z
is a semisimple group with finite center), that is needed to complete the
proof, has been proved in [2].

In fact for the above group G = Q x ~ one can improve the above lower
estimate to the sharp result CPt (e) &#x3E; C e-~‘ t (t &#x3E; 1). The proof is
however considerably more difficult. It will be given elsewhere.

Observe finally that for more general groups (e.g. semidirect products
the situation is very different and the upper estimate of our Theorem 1

can, in some cases, be improved dramatically. We shall publish a complete
solution of the problem in a forthcoming paper (cf. [16]).
As a final remark I would like to observe that much of what has been

proved in this paper automatically extend to more general sublaplacians of
the form A = ~ XJ + Xo and to measure that are not symmetric. One then
of course has to define e-a = lim ~ ( ~cn ~ ~ 2~ 2 . This question however will
be taken up again in a future paper.
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