Annales de l'I. H. P., Section B

N. Th. Varopoulos
 Hardy-Littlewood theory on unimodular groups

Annales de l'I. H. P., section B, tome 31, n 4 (1995), p. 669-688
http://www.numdam.org/item?id=AIHPB_1995_31_4_669_0
© Gauthier-Villars, 1995, tous droits réservés.
L'accès aux archives de la revue «Annales de l'I. H. P., section B » (http://www.elsevier.com/locate/anihpb) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Hardy-Littlewood theory on unimodular groups

by

N. Th. VAROPOULOS

Abstract. - We give optimal estimates of the L^{∞}-norm of the heat diffusion kernel on a unimodular Lie group.

Résume. - On donne des estimations pour la norme L^{∞} du noyau de la chaleur sur un groupe de Lie unimodulaire.

0. INTRODUCTION

Let G be a locally compact group and let $\mu \in \mathbb{P}(G)$, then $\|\mu\|_{2 \rightarrow 2}=e^{-\lambda}$ where $\lambda \geq 0$, here we denote by $\|\mu\|_{p \rightarrow q}$ the $L^{p}\left(G ; d^{r} g\right) \rightarrow L^{q}\left(G ; d^{r} g\right)$ norm of the operator $f \mapsto f * \mu$ where $d^{r} g$ the right invariant measure on G. The number $\lambda=\lambda(\mu)$ will be called the spectral gap of μ. (We shall use that terminology even for measures that are not symmetric and do not satisfy $\left.\mu(g)=\mu\left(g^{-1}\right)\right)$. It is well known that when G is connected and when $d \mu(g)=f(g) d g$ is given by a continuous density f, then the number $\lambda(\mu)$ is either zero for all such measures, and we then say that G is amenable, or λ is always non zero. It is important to recall that a connected Lie group G is amenable if and only if its quotient by the radical Q (cf. [7]) $G / Q=\Sigma$ is compact. Let us finally recall the definition of the second moment of μ :

$$
E(\mu)=\int_{G}|g|^{2} d \mu(g)
$$

where $|g|=d(g, e)$ is the "distance" in G from g to the neutral element e (cf. [3], for precise definitions).

Let now Σ be a real connected non compact semisimple Lie group and let $\Sigma=K A N$ be the Iwasawa decomposition of Σ where K contains the center Z, and is such that K / Z is compact, $A \cong \mathbb{R}^{d}(d=1,2, \ldots)$ and N is nilpotent. Let us also denote by p the number of indivisible positive roots of the action of A on N (i.e. $1 / 2$ of any of these roots is not a root). Let finally $r=0,1, \ldots$ be the rank of the center $Z \cong \mathbb{Z}^{r} \times F$ where F is finite abelian group. I shall, in what follows; denote by

$$
\begin{equation*}
q=q(\Sigma)=d+2 p+r \tag{0.1}
\end{equation*}
$$

The significance of the integer q lies in the following well known theorem of Ph. Bougerol (cf. [2]).

Theorem (Ph. Bougerol). - Let Σ be a real semisimple non compact Lie group as above and let us assume that the center of Σ is finite. Let $d \mu(g)=f(g) d g$ be a probability measure with finite second moment and with an L^{1} density and let us denote by $d \mu^{n}(g)=f_{n}(g) d g$ the $n^{\text {th }}$ convolution power of μ. Let us further assume that $\bigcup_{n \geq 1} \operatorname{supp} \mu^{n}=G$. For every compact subset $C \subset \subset G$ we then have:

$$
\int_{C} f_{n}(g) d g=0\left(e^{-\lambda n} n^{-q / 2}\right)
$$

where λ is the spectral gap of μ.
Observe that $\sup _{k_{1}, k_{2} \in K}\left|k_{1} g k_{2}\right| \leq|g|+C, g \in \Sigma=K A N$. This implies that the above μ has "un moment d'ordre deux" in the sense of [2]. (Observe also that the left distance that we use on $\Sigma=N A K$ (cf. [3]) can be assumed K-biinvariant. That distance induces therefore on the subgroup $A N$ a new left distance that is equivalent to the intrinsic left group distance of $A N$).

Let now G be an arbitrary real connected Lie group, let $Q \subset G$ be its radical (cf. [7]) which is a closed connected subgroup. We shall assume throughout that $G / Q=\Sigma$ is non compact in other words we shall assume that G is non amenable. let also $\gamma(n)=$ Haar measure in Q of Ω^{n} where $\Omega=\Omega^{-1} \subset Q$ is a compact Nhd of e in $Q . \gamma(n)$ is the growth function of Q and we always have either $C^{-1} n^{D} \leq \gamma(n) \leq C n^{D}(n \geq 1)$ for some $C>0$ and $D=0,1,2, \ldots$, if Q is of polynomial growth, or we have $\gamma(n) \geq C e^{C n}(n \geq 1)$ for some $(C>0)$, if Q is of exponential growth. The number $D=D(G)$ only depends on G and is independent of the particular choice of Ω (cf. [17]).

For a Lie group as above we can consider a left invariant subelliptic Laplacien $\Delta=-\Sigma X_{j}^{2}$ and the corresponding Heat diffusion semigroup $e^{-t \Delta}$. The corresponding convolution kernel ϕ_{t} can then be defined by (cf. [3], [10])

$$
e^{-t \Delta} f(x)=\int_{G} \phi_{t}\left(y^{-1} x\right) f(y) d y ; \quad f \in C_{0}^{\infty}(G)
$$

To avoid unecessary complications let us assume from here onwards that G is unimodular and let us define $d \mu(g)=\phi_{1}(g) d g$. The above Theorem applies to such a measure (cf. [3]) and it is interesting to observe that in that case the spectral gap of μ has the following geometric interpretation.

$$
\begin{equation*}
\lambda=\inf _{0 \neq f \in C_{0}^{\infty}} \frac{\|\nabla f\|_{2}^{2}}{\|f\|_{2}^{2}} \tag{0.2}
\end{equation*}
$$

where

$$
\|\nabla f\|_{2}^{2}=(\Delta f, f)=\sum_{f} \int_{G}\left|X_{j} f\right|^{2} d g
$$

In this paper I shall prove the following theorem that improves previous results of [1], [2].

Theorem 1. - Let G be a connected unimodular, non amenable, real Lie group and let Δ and $\phi_{t}(g)$ be as above let λ be the spectral gap of Δ as defined in (0.2). Let finally Q denote the radical of G.

If Q is of polynomial growth and if $D=D(Q)$ is as above we have

$$
\left\|\phi_{t}\right\|_{\infty}=0\left(e^{-\lambda t} t^{-q / 2-D / 2}\right)
$$

where $q=q(G / Q)$ is defined as in (0.1).
If Q is of exponential growth there exists $c>0$ such that

$$
\left\|\phi_{t}\right\|_{\infty}=0\left(e^{-\lambda t-c t^{1 / 3}}\right)
$$

To clarify the above theorem the following remarks are in order:
(i) For every open subset $\Omega \subset G$, by the local Harnack principle $c f$. [3], there exists $C>0$ such that

$$
\left\|\phi_{t}\right\|_{\infty}=\phi_{t}(e) \leq C \int_{\Omega} \phi_{t+1}(x) d x, \quad t>1
$$

(ii) The estimates given by the theorem are unimprovable in the sense that they are sharp when G is soluble or when G is semisimple without center $c f$. [3], [2]. We shall come back to this question at the end of this paper.
(iii) Let G be a locally compact group and let $H \subset G$ be a closed normal subgroup that is amenable. Let further $\mu \in \mathbb{P}(G)$ and $\stackrel{\circ}{\mu}=\check{\pi}(\mu)$ be the image of μ by the canonical projection. Then λ the spectral gap of μ in G satisfies $\lambda=\stackrel{\circ}{\lambda}$ where $\stackrel{\circ}{\lambda}$ is the spectral gap of $\stackrel{\circ}{\mu}$ in G / H (cf. [4] and (5-1) bellow). This remark applies in particular to $Q \subset G$ where Q is as in our theorem and to $Z \subset \Sigma$ where Z is the center of the semisimple group Σ.

Let us now go back to a canonical Laplacian Δ on a real connected Lie group and observe ($c f$. [3]) that there exists $\delta=1,2, \ldots$ (if $G \neq\{e\}$) and $C>0$ such that

$$
\begin{equation*}
C^{-1} t^{-\delta / 2} \leq \phi_{t}(e) \leq C t^{-\delta / 2} ; \quad 0<t<1 \tag{0.3}
\end{equation*}
$$

Let us also recall that we can define for every $\alpha \in \mathbb{C}, \operatorname{Re} \alpha>0$ and λ as in (0.2)

$$
\begin{equation*}
(\Delta-\lambda)^{-\alpha / 2}=C_{\alpha} \int_{0}^{\infty} t^{\alpha / 2-1} e^{-t \Delta} e^{\lambda t} d t \tag{0.4}
\end{equation*}
$$

More general functions of $\Delta-\lambda$ can also be defined by:

$$
\begin{equation*}
m(\Delta-\lambda)=\int_{0}^{\infty} m(x) d E_{x} \tag{0.5}
\end{equation*}
$$

where $\Delta-\lambda=\int_{0}^{\infty} x d E_{x}$ is the spectral decomposition of $\Delta-\lambda$. From Theorem 1 we obtain easily the following natural generalization of classical results of Hardy and Littlewood (cf. [6]).

Corollary. - Let G as in the theorem and let us assume that its radical Q is of exponential growth. Let further Δ, λ and δ be as (0.2) (0.3) and $L<p \leq 2 \leq q<+\infty, \alpha \in \mathbb{C}, a=R e \alpha>0$ then the operator:

$$
(\Delta-\lambda)^{-\alpha / 2}: L^{p}(G) \rightarrow L^{q}(G)
$$

is bounded if and only if $1 / p-1 / q \leq a / \delta$.
The corollary extends to the more general operators (0.5) provided that $|m(x)|=0\left(x^{-a / 2}\right)$. The analogue of our corollary when $Q=\{e\}$ has been proved in [1].

The proof of our theorem will be given in a slightly more general context. For G as in the theorem we shall consider $d \mu(g)=f(g) d g$ where $0<f \in C(G), E(\mu)<+\infty$, and the corresponding convolution powers $d \mu^{n}(g)=f_{n}(g) d g$. For every $C \subset \subset G$ we shall then show that $\int_{C} f_{n}(x) d x$ is either $0\left(e^{-\lambda(\mu) n} n^{-q / 2-D / 2}\right)$ or $0\left(e^{-\lambda(\mu) n-c n^{1 / 3}}\right)(c>0)$ as the case
may be. This clearly contains our theorem since $0<\phi_{1}(\bullet) \in C(G)$, and $E\left(\phi_{1}\right)=E(\mu)<+\infty$.

Let us now recall that $\phi_{t}(e)=\left\|T_{t}\right\|_{1 \rightarrow \infty}$, where we denote throughout by $\|R\|_{p \rightarrow q}$ the operator norm $R: L^{p}(G) \rightarrow L^{q}(G)$. The Theorem 1 admits the following generalisation.

Theorem 2. - Let $G, Q, \lambda, p, d, r, \Delta$ and $T_{t}=e^{-t \Delta}$ be as in (0.1) and as in Theorem 1. Let us further assume that Q is of polynomial growth and that $D=D(Q)$ is as in Theorem 1 , then for all $2<q \leq+\infty$ we have:

$$
\begin{equation*}
\left\|T_{t}\right\|_{2 \rightarrow q} \leq C e^{-\lambda t} t^{-1 / 2(p+d / 2)} t^{-(D+r) / 2(1 / 2-1 / q)} ; \quad t \geq 1 \tag{0.6}
\end{equation*}
$$

where C is independent of t.
To understand the way the exponent of t is made up in (0.6), one should consider the case where $D=r=0$. In that case the estimate (0.6) is a consequence of the Kunze-Stein phenomenon (cf. [13]). This basic observation comes from [1]. The interest of the estimate (0.6) lies in the fact that it is optimal. This is easely seen on product groups (as in § 6) for Laplacians that "split".

From the estimate (0.6) one easily deduces that if $\alpha \in \mathbb{C} ; R e \alpha \geq 0$ and if $2<q<+\infty$ are such that

$$
2 R e \alpha<p+d / 2+(D+r)(1 / 2-1 / q), 1 / 2-1 / q \leq \frac{R e \alpha}{\delta}
$$

[with δ as in (0.3)] then the mapping:

$$
\begin{equation*}
(\Delta-\lambda)^{-\alpha / 2}: L^{2}(G) \rightarrow L^{q}(G) \tag{0.7}
\end{equation*}
$$

with $\lambda>0$ as in (0.2) is bounded. If we dualise (0.7) and combine this with (0.7) we obtain a corresponding range of α 's for which $(\Delta-\lambda)^{-\alpha / 2}$ is $L^{p} \rightarrow L^{q}$ bounded with $p \neq q, 1<p \leq 2 \leq q<+\infty$. The estimate (0.7) generalizes results of [1].

The question naturally arises as to what happens when G is not unimodular. The right invariant Haar measure is given then by $d^{r} g=$ $m(g) d^{l} g$ where $d^{l} g=d g$ is the left invariant Haar measure and $m(g)$ is the modular function normalised by $m(e)=1$. For such a group we can still consider $\Delta=\Sigma X_{j}^{2}$ where X_{j} are left invariant fields that generate the Lie algebra of G. What is however natural here is to consider instead $\tilde{\Delta}=m^{1 / 2} \Delta m^{-1 / 2}$ which is now a left invariant operator on G that is in addition self-adjoint with respect to the left measure ($c f$. [5]).

The spectral gap of $\tilde{\Delta}$ is then given by:

$$
\begin{equation*}
\lambda=\inf _{f \in C_{0}^{\infty}}\left\{\int_{G} \sum_{j}\left|X_{j} f\right|^{2} d^{r} g ; \int_{G}|f|^{2} d^{r} g=1\right\} \tag{0.8}
\end{equation*}
$$

Vol. 31, n° 4-1995.
(cf. [5]). In [5] I have considered the semigroup $\tilde{T}_{t}=e^{-t \tilde{\Delta}}$ and the powers $(\tilde{\Delta}-\lambda)^{\alpha}, \alpha \in \mathbb{C}$ and in [10] I have stated without proof the fact that:

$$
\begin{equation*}
\left\|\tilde{T}_{t}\right\|_{1 \rightarrow \infty}=0\left(e^{-\lambda t-c t^{1 / 3}}\right) ; \quad t \geq 1 \tag{0.9}
\end{equation*}
$$

for some $c>0$ provided that G is a (C) group (I shall refer the reader to [10], [11], [5] for the definition of the (C) condition). A proof of (0.9) was given in [10] only in the case when $\lambda=0$. The proofs of [10] can however be adapted to give a proof of the estimate (0.9) in the general case (i.e. $\lambda \geq 0$). The details of the proof will appear in a forthcoming paper. The following Hardy-Littlewood type of theorem follows at once from (0.9).

Theorem 3. - Let G be a Lie group that satisfies the (C) condition but is not necessarily assumed to be unimodular. Let Δ and $\tilde{\Delta}$ be as above and let $\lambda \geq 0$ and $\delta=1,2, \ldots$ be as in (0.8) and (0.3) respectively. Let finally $1<p \leq 2 \leq q<+\infty, \alpha \in \mathbb{C}, R e \alpha \geq 0$. Then the mapping:

$$
(\tilde{\Delta}-\lambda)^{-\alpha / 2}: L^{p}(G ; d g) \rightarrow L^{q}(G ; d g)
$$

is bounded if and only if:

$$
1 / p-1 / q \leq \frac{R e \alpha}{\delta}
$$

1. THE ACTION OF G / H ON H

Throughout this section we shall denote by G some locally compact group and by $H \subset G$ a closed normal subgroup. We shall say that G / H acts on H if there exists $\alpha: G / H \rightarrow \operatorname{Aut}(H)$ an algebraic homomorphism (α is not necessarily assumed to be continuous) and $S \subset G$ a locally bounded Borel section of the canonical projection $\pi: G \rightarrow G / H$ (i.e. $\pi^{-1}(C) \cap S$ is relatively compact for all compact subsets $C \subset \subset G / H$ and $\left.\pi\right|_{S}$ is $(1-1)$ and onto $\left.S \rightarrow G / H\right)$ such that

$$
\sigma^{-1} h \sigma=\alpha(\pi(\sigma))(h) ; \quad \sigma \in S, \quad h \in H
$$

When $H \subset G$ is a central subgroup, then G / H acts on H trivially (simply set $\alpha=$ Identity automorphism of H).

When G is a semidirect product of H with another closed subgroup K (i.e. when there exists $K \subset G$ a closed subgroup such that $H \cap K=\{e\}$ and $H K=G$) then again G / H acts on H for it suffices to set $S=K$. This is in particular the case when G is a simply connected real Lie group and $H=Q$ is its radical. Indeed in this case $G=Q \lambda M$ where M is some Levi subgroup $M \cong G / Q . M$ is then simply connected and semisimple (cf. [7]).

The situation is more complicated when G is connected but not necessarily simply connected real Lie group. The analytic subgroup that corresponds to the radical of the Lie algebra is again a closed connected subgroup $Q \subset G$ and we can find $M_{1} \subset G$ a (not necessarily closed) Levi subgroup which can be identified to a semisimple Lie group (cf. [7]). Let us denote by M the universal covering group of M_{1}. The inner automorphisms in G induce then an action of $M \tilde{\sigma}$ on G and on Q and the semidirect product $\tilde{G}=Q \lambda M$ can be defined, \tilde{G} is then a covering group of G. We shall denote by $\theta: \tilde{G} \rightarrow G$ the corresponding covering map. Ker θ lies then in the center of \tilde{G}.

Let us denote by $Z(M)$ the center of M (which is a discrete closed subgroup), then there exists $Z \subset Z(M)$ a subgroup that is of finite index i.e. $[Z(M): Z]<+\infty$ and such that the action of Z on Q is trivial. Here is a proof of this fact. First of all we have $Z(M)=Z\left(M_{1}\right) \times \ldots Z\left(M_{k}\right)$ where $M_{1} \times \ldots \times M_{k}=M$ is the decomposition of M into simple factors. Observe next that it is enough to consider the linear action Ad of $Z(M)$ on q the Lie algebra of Q. By Schur's Lemma for each $z \in Z\left(M_{i}\right)$ $(i=1, \ldots, k) \operatorname{Ad}(z)$ gives rise to a scalar matrix on each component of the representation Ad on $G L(q)$. Since, by semisimplicity, the determinant of this matrix is one, it follows that this scalar matrix can be identified with a root of unity. Our assertion follows.

The situation we have is now this:

$$
\operatorname{Ker} \theta \cap \tilde{H} \quad \subset \begin{gathered}
\tilde{H}=\pi^{-1}(Z) \\
\subset \\
\operatorname{Ker} \theta \\
\subset
\end{gathered} \tilde{G}
$$

where $\pi: Q \lambda M \rightarrow M$ denotes the canonical projection.
If we quotient by $\operatorname{Ker} \theta \cap \tilde{H}$ we obtain

$$
H_{1}=\tilde{H} / \operatorname{Ker} \theta \cap \tilde{H} \subseteq G_{1}=\tilde{G} / \operatorname{Ker} \theta \cap \tilde{H} \rightarrow \tilde{G} / \operatorname{Ker} \theta=G
$$

H_{1} is clearly a closed normal subgroup of G_{1}. Since on the other hand $\operatorname{Ker} \theta$ is central in \tilde{G} we have $\operatorname{Ker} \theta \subset \pi^{-1}(Z(M))$ and since $\tilde{H}=\pi^{-1}(Z) \subset \pi^{-1}(Z(M))$ is of finite index it follows that $\operatorname{Ker} \theta \cap \tilde{H}$ is of finite index in $\operatorname{Ker} \theta$. This means that G_{1} is a finite cover of G (in the esoteric terminology of the subject one says that G_{1} is isogenic with G). We also have:

$$
G_{1} / H_{1} \cong \tilde{G} / \tilde{H} \cong M / Z
$$

and therefore G_{1} / H_{1} is a semisimple group with finite center. M now acts canonically by inner automorphism on \tilde{G} this action stabilises every
element of $\operatorname{Ker} \theta$ furthermore the action of every element of Z on \tilde{G} is trivial. We obtain thus canonical mappings: $M \rightarrow \operatorname{Inner}$ Aut (\tilde{G}); $M \rightarrow$ Inner Aut $\left(G_{1}\right) ; M / Z \rightarrow$ Inner Aut $(\tilde{G}) ; M / Z \rightarrow$ Inner Aut $\left(G_{1}\right)$ and it is very easy to verify that the induced action:

$$
\alpha: G_{1} / H_{1} \cong M / Z \rightarrow \operatorname{Aut}\left(H_{1}\right)
$$

satisfies the conditions given at the beginning of this section.
We shall collect all the information obtained in this section in the following
Proposition. - Let G be a real connected Lie group. There exists then G_{1} a Lie group that is isogenic to G and $H_{1} \subset G_{1}$ a closed normal subgroup such that G_{1} / H_{1} is semisimple with finite center and such that G_{1} / H_{1} acts on H_{1} in the sense defined at the beginning of this section. Furthermore H_{1} is isomorphic with $Q_{1} \times D$ where Q_{1} is a finite extension of Q and $D \cong \mathbb{Z}^{r}$ with $r=$ rank of the center of G / Q.
To see the last point observe, that by our construction, there exists D_{1} a subgroup of finite index of $Z(M)$ such that $\tilde{H}=Q \times D_{1} \subset Q \lambda M=\tilde{G}$. It is furthermore clear that $\operatorname{Ker} \theta \cap Q=\{e\}$ and therefore $H_{1}=Q \theta\left(D_{1}\right)$. Here $\theta\left(D_{1}\right)$ is a finitely generated, but not necessarily closed, subgroup that is central in G_{1}.

It follows that $H_{1} / Q \cong \mathbb{Z}^{r} \times F$ where F a finite abelian. Let us denote by $Q_{1}=\kappa^{-1}(F)$ where $\kappa: H_{1} \rightarrow H_{1} / Q \cong \mathbb{Z}^{r} \times F$. Let us further choose $\zeta_{1}, \ldots, \zeta_{r} \in \theta\left(D_{1}\right)$ such that $\kappa\left(\zeta_{j}\right) j=1, \ldots, r$ are free generators of \mathbb{Z}^{r} and set $D=G p\left(\zeta_{1}, \ldots, \zeta_{r}\right)$. It is then clear that $H_{1}=Q_{1} \times D$. Finally $r=$ rank of center of $G_{1} / Q_{1}=$ rank of center of G_{1} / Q because the center of G_{1} / H_{1} is finite. But then, by the isogeny between G and G_{1}, r is also the rank of the center of G / Q.

2. EQUIVALENT MEASURES AND THE NASH INEQUALITIES

Let G be a unimodular compactly generated locally compact group. We shall define first an equivalence relation on the set of probability measures $\mathbb{P}(G)$ of G. We shall write $\mu \sim \nu \in \mathbf{P}(G)$ if there exists $g \in G$ or $\alpha \in$ Aut (G) such that one (or several) of the following relations hold

$$
\mu=\delta_{g} * \nu ; \quad \mu=\nu * \delta_{g} ; \quad \mu=\check{\alpha}(\nu) \quad \text { et } \quad \check{\alpha}(h)=h .
$$

$\check{\alpha}$ is the mapping induced by α on measures, h is the Haar measure on G, and δ_{g} is the point mass at g. We shall say that two measures
$\mu_{1}, \mu_{2} \in \mathbb{P}(G)$ are equivalent and write $\mu_{1} \approx \mu_{2}$ if there exists $p \geq 1$ and $\nu_{1}, \nu_{2}, \ldots, \nu_{p} \in \mathbb{P}(G)$ such that $\mu_{1} \sim \nu_{1} \sim \ldots \nu_{p} \sim \mu_{2}$. It is of course clear that for two equivalent measures $\mu \approx \nu$ we have $\|\mu\|_{p \rightarrow q}=\|\nu\|_{p \rightarrow q}$.

Let $\mu \in \mathbb{P}(G)$ and $n>0$ we shall then define $N_{n}(\mu)=\inf C$ (i.e. the optimal C) among the numbers $C>0$ that satisfy

$$
\|\mu * f\|_{2}^{2(1+2 / n)} \leq C\left[\|f\|_{2}^{2}-\|\mu * f\|_{2}^{2}\right]\|f\|_{1}^{4 / n} ; \quad f \in C_{0}(G)
$$

We shall of course set $N_{n}(\mu)=+\infty$ if no such $C>0$ exist. Let us assume that G is such that $\gamma(n) \geq C n^{D}$ (cf. § 0 for the definition of γ) for some $D>2$ and let $\Omega=\Omega^{-1} \subset G$ be some open symmetric generating (i.e. $\left.\bigcup \Omega^{n}=G\right)$ neighbourhood of e in G and $C, \varepsilon_{0}>0$. Let further $d \mu=f d g$ ${ }^{n}$ be a probability measure and let us assume that the density f satisfies

$$
\begin{equation*}
\|f\|_{\infty} \leq C ; \quad f(g) \geq \varepsilon_{0} \quad \forall g \in g_{0} \Omega \quad \text { for some } g_{0} \in G \tag{2.1}
\end{equation*}
$$

Then $N_{D}(\mu) \leq C_{1}=C_{1}\left(C, \varepsilon_{0}, \Omega\right)$. It is important to observe that $C_{1}\left(C, \varepsilon_{0}, \Omega\right)$ is independent of $g_{0}(c f .[3]$, [8]). Up to the above " \approx " equivalence relation between measures, we can replace $g_{0} \Omega$ by Ωg_{0} in (2.1). This fact and the freedom of choice for g_{0} is basic for the understanding of (3.2) further down, and for the proofs of our theorems. If we relax the condition $D>2$ then the same fact holds for measures that satisfy (2.1) with arbitrary $D>0$ provided that we assume in addition that the second moment of the measure $E=\int_{G}|g|^{2} d \mu(g)<+\infty$ is finite. The constant C_{1} depends then also on E. We shall not need this refinement in this paper and shall therefore not give the proof.

When $\gamma(n) \geq C_{0} e^{c_{0} n}$ for some $C_{0}, c_{0}>0$, then the measures $\mu \in \mathbb{P}(G)$ for which (2.1) holds satisfy the stronger inequality (cf. [3]):
$\left(N_{\infty}\right)$

$$
\begin{array}{cc}
& \|f\|_{2}^{2} \leq C \lambda^{2}\left[\|f\|_{2}^{2}-\|\mu * f\|_{2}^{2}\right]+C_{2} e^{-c_{2} \lambda}\|f\|_{1}^{2} \\
\left(N_{\infty}\right) & f \in C_{0}(G) \quad \lambda>1
\end{array}
$$

where C_{2}, c_{2} only depend on G (in fact only on C_{0}, c_{0}). Inequalities of the form $\left(N_{\infty}\right)$ where considered for the first time in [9]. [To extract $\left(N_{\infty}\right)$ from [3] and (2.1) we may assume that $g_{0}=e$. But then with the notations of [3], VII.5, the Dirichlet form $\|f\|_{2}^{2}-\|\mu * f\|^{2}=((\delta-\tilde{\mu} * \mu) f, f)$ clearly dominates $\left\|\left(I-T_{0}\right)^{1 / 2} f\right\|_{2}^{2}$]. For any $\mu \in \mathbb{P}(G)$ we shall define $N_{\infty}(\mu)=\inf C$ where the inf is taken among the numbers $C>0$ for which $\left(N_{\infty}\right)$ holds with the convention that $N_{\infty}(\mu)=+\infty$ if not such a number exists.

It is evident from the definition that $N_{n}(\mu)=N_{n}\left(\delta_{g} * \mu\right)$ for all $n \in] 0,+\infty], \mu \in \mathbb{P}(G), g \in G$. It can also be easily verified that for any unimodular automorphism $\alpha \in \operatorname{Aut}(G)$ (i.e. $\check{\alpha}(h)=h$) we have $N_{n}(\mu)=N_{n}(\check{\alpha}(\mu))$. Combining these two remarks, and the fact that $x \mapsto g x g^{-1}$ is a unimodular automorphism of G, we deduce that

$$
\left.\left.\mu, \nu \in \mathbb{P}(G) \quad \mu \approx \nu \Rightarrow N_{n}(\mu)=N_{n}(\nu) \quad \forall n \in\right] 0,+\infty\right]
$$

Let us now consider n measures $\mu_{1}, \ldots, \mu_{n} \in \mathbb{P}(G)$ and a subsequence $1 \leq n_{1}<\ldots<n_{k} \leq n$ that satisfies

$$
\begin{equation*}
\left\|\mu_{n_{j}}\right\|_{1 \rightarrow 2} \leq C ; \quad N_{\nu}\left(\mu_{n_{j}}\right) \leq C \quad j=1, \ldots, k \tag{2.2}
\end{equation*}
$$

for some fixed $\nu \in] 0,+\infty]$. If $0<\nu<+\infty$ we shall conclude from (2.2) that:

$$
\begin{equation*}
\left\|\mu_{1} * \ldots * \mu_{n}\right\|_{1 \rightarrow 2} \leq C_{3} k^{-\nu / 4} \tag{2.3}
\end{equation*}
$$

if $\nu=+\infty$ we shall conclude that:

$$
\begin{equation*}
\left\|\mu_{1} * \ldots * \mu_{n}\right\|_{1 \rightarrow 2} \leq C_{3} e^{-c_{3} k^{1 / 3}} \tag{2.4}
\end{equation*}
$$

where $C_{3}, c_{3}>0$ only depend on ν and C in (2.2).
Let $t_{j}=\left\|\mu_{j} * \mu_{j-1} * \ldots * \mu_{1} * f\right\|_{2}^{2}$ for some fixed $f \in C_{0}(G)$ with $\|f\|_{1}=1$ and let $\tau_{j}=t_{n_{j}}(1 \leq j \leq k)$. Then clearly the sequence $t_{1} \geq t_{2} \geq \ldots$ is non increasing and therefore when $\nu=+\infty$ we have

$$
\begin{equation*}
\tau_{1} \leq C ; \quad \tau_{p} \leq C \lambda^{2}\left(\tau_{p}-\tau_{p+1}\right)+C_{2} e^{-c_{2} \lambda} ; \quad \lambda>1 \tag{2.5}
\end{equation*}
$$

The inequalities (2.5) can easily be "integrated" (cf. [3]) and (2.4) follows.
When $\nu<+\infty$ the proof is a trifle more subtle. Let $t(x)$ be a continuous function for $x \in\left[n_{1}, n\right]$ that satisfies $t(j)=t_{j} j=n_{1}, n_{1}+1, \ldots n$ and is piecewise linear for x between two integers. It is clear that we have:

$$
\begin{gathered}
\frac{d}{d x} t(x) \leq 0 ; \quad t(x) \leq C, x \in\left[n_{1}, n\right] ; \quad \frac{d}{d x} t(x) \leq-C(t(x))^{1+2 / \nu} \\
x \in\left[n_{p}, n_{p}+1\right] \quad p=1, \ldots, k
\end{gathered}
$$

Substituting $\xi(x)=1 / t(x)$ we obtain

$$
\begin{equation*}
\frac{d}{d x}(\xi(x))^{2 / \nu} \geq C(x) ; \quad x \in\left[n_{1}, n\right] \tag{2.6}
\end{equation*}
$$

where $C(x) \geq 0$ and $C(x) \geq C>0$ if $x \in\left[n_{p}, n_{p+1}\right] p=1, \ldots, k$. If we integrate the differential inequality (2.6) we obtain (2.3).

Let now G be a unimodular compactly generated locally compact group. Let us further consider $\mu_{1}, \ldots, \mu_{n} \in \mathbb{P}(G) n$ measures on G and a subsequence $1 \leq n_{1}<\ldots<n_{k} \leq n$ such each measure $d \mu_{n_{j}}(g)=f_{j}(g) d g$ is given by a density that satisfies (2.1) for some fixed C, ε_{0} and $\Omega \subset G$. Let further $\nu_{1}, \ldots, \nu_{n} \in \mathbb{P}(G)$ be another sequence of measures such that $\nu_{j} \approx \mu_{j}$ (equivalence in the sense given at the beginning of this section). Let us also assume that the growth function of G satisfies $\gamma(n) \geq C n^{D}$ for some $C>0, D>2$. We can conclude then from the above conditions that

$$
\begin{equation*}
\left\|\nu_{1} * \ldots * \nu_{n}\right\|_{1 \rightarrow \infty} \leq C k^{-D / 2} \tag{2.7}
\end{equation*}
$$

Indeed for any $1 \leq s \leq n$ we have

$$
\left\|\nu_{1} * \ldots * \nu_{n}\right\|_{1 \rightarrow \infty} \leq\left\|\nu_{s} * \ldots * \nu_{n}\right\|_{1 \rightarrow 2}\left\|\check{\nu}_{s-1} * \ldots * \check{\nu}_{1}\right\|_{1 \rightarrow 2}
$$

where the ${ }^{-}$is defined by $\check{\nu}(x)=\nu\left(x^{-1}\right)$ (the ${ }^{~}$ induces the adjoint convolution operator). If we choose $1 \leq s \leq n$ so that it "cuts" the subsequence $n_{1} \ldots<n_{k}$ "about half way" and if we bare in mind the fact that the conditions (2.1) are, up to equivalence, stable by the involution $x \rightarrow x^{-1}$ we see that (2.7) is an immediate consequence of (2.3). Similarly we see from (2.4) that if $\gamma(n) \geq C e^{c n}$ for some $C, c>0$, then

$$
\begin{equation*}
\left\|\nu_{1} * \ldots * \nu_{n}\right\|_{1 \rightarrow \infty} \leq C e^{-c k^{1 / 3}} \tag{2.8}
\end{equation*}
$$

3. THE DISINTEGRATION OF A MEASURE

In this section we shall place ourselves in the context of a locally compact unimodular group G with a closed normal subgroup $H \subset G$ such that there exists (as in paragraph 1) $\alpha: G / H \rightarrow \operatorname{Aut}(H)$ an algebraic homomorphism and $S \subset G$ a locally bounded Borel section of $\pi: G \rightarrow G / H$ for which $\alpha(\pi(s)) h=s^{-1} h s(\forall s \in S, h \in H)$. We shall also assume that G / H is unimodular.

Let $\mu \in \mathbb{P}(G)$ we can then disintegrate that measure along the cosets of H.

$$
\mu=\int_{G / H} \mu_{x} d \stackrel{\circ}{\mu}(x)
$$

where $\stackrel{\circ}{\mu}=\check{\pi}(\mu) \in \mathbb{P}(G / H)$ is the image of μ induced by the mapping π and $\mu_{x} \in \mathbb{P}\left(\pi^{-1}(x)\right)(x \in G / H)$. The measure μ_{x} is defined only for Vol. 31, n° 4-1995.
$\stackrel{\circ}{\mu}$-almost all $x \in G / H$. The Borel section S can then be used to identify $\pi^{-1}(x)$ with $H\left(: \pi^{-1}(x)=H s \leftrightarrow H\right.$ for $\left.s \in S \cap \pi^{-1}(x)\right)$. We can therefore identify μ_{x} with a measure on H.

We shall now make the additional hypothesis that the measure $d \mu(g)=$ $f(g) d g$ is given by a continuous positive density $f(g)>0(g \in G)$. It follows then that $d \stackrel{\circ}{\mu}=\stackrel{\circ}{f} d \stackrel{\circ}{g} \in L^{1}(G / H)$ and for every $x \in G / H$ the measure $d \mu_{x}(h)=f_{x}(h) d h$ is given by a continuous density on H (we use the above identification to set $\mu_{x} \in \mathbb{P}(H)$). Given any $\varepsilon>0$ it is easy to see that we can find $A \subset \subset G / H$ a compact subset such that $\stackrel{\circ}{\mu}(G / H \backslash A) \leq \varepsilon$ and we can also find, $C, \varepsilon_{0}>0$ and $\Omega \subset H$ as in (2.1) such that for each $x \in A$ the measure μ_{x} satisfie (2.1) (the g_{0} of (2.1) depends on x, and we chose A such that $f \leq C$ on A).

We can now apply (3.1) to the convolution power μ^{n} of μ and obtain

$$
\begin{equation*}
\mu^{n}=\int_{G / H} \mu_{x}^{(n)} d \stackrel{\circ}{\mu}^{n}(x) \tag{3.1}
\end{equation*}
$$

where $\stackrel{\circ}{\mu}^{n}$ is the convolution power of $\stackrel{\circ}{\mu}$ on G / H and where $\mu_{x}^{(n)}$ can be identified to a measure in $\mathbb{P}(H)$.

We shall now consider Ω the path space $\left(\omega=\left(S_{1}, S_{2}, \ldots\right) \in \Omega\right)$ of the left invariant random walk on $G / H S_{n}=X_{1} X_{2} \ldots X_{n}$ with independent increment X_{j} given by $\mathbb{P}\left(X_{j} \in d x\right)=d \stackrel{\circ}{\mu}(x)$. Using probabilisitc notations we can then write $\mu_{x}^{(n)}$ as a conditional expectation:

$$
\begin{equation*}
\mu_{x}^{(n)}=\mathbb{E}\left(\tilde{\mu}_{X_{1}} * \tilde{\mu}_{X_{2}} * \ldots * \tilde{\mu}_{X_{n}} / / S_{n}=x\right) \tag{3.2}
\end{equation*}
$$

where $\mu_{X_{j}} \approx \tilde{\mu}_{X_{j}}\left(\mu_{X_{j}}=\mu_{x}\right.$ as in (3.1) with $\left.x=X_{j}\right)$ and where \approx, the equivalence relation, is random (i.e. the chain $\mu_{X_{j}} \sim \nu_{1} \sim \ldots \sim \tilde{\mu}_{X_{j}}$ depends on the path ω). The formula (3.2) is basic for us and it has already been used crucially in [8], [10], [11]. The main observation that is used for the proof of (3.2) is the fact that all the inner automorphisms $h \rightarrow g^{-1} h g(g \in G, h \in H)$ are unimodular on H (this is a consequence of the unimodularity of G). Let us now fix $\varphi \in C_{0}(G)$ and let us use (3.2). We see that for any decomposition $\Omega=\Omega_{1} \cup \Omega_{2}$ we have

$$
\begin{align*}
\left|\left\langle\mu^{n}, \varphi\right\rangle\right| \leq & C \mathbb{E}\left[\left\|\tilde{\mu}_{X_{1}} * \ldots * \tilde{\mu}_{X_{n}}\right\|_{1 \rightarrow \infty} I\left(\Omega_{1}\right) I\left(S_{n} \in K\right)\right] \tag{3.3}\\
& +C \mathbb{E}\left[I\left(\Omega_{2}\right) I\left(S_{n} \in K\right)\right]
\end{align*}
$$

where $K \subset \subset G / H$ and $C>0$ depend on φ and $I(\bullet)$ denotes the characteristic function of a set. It is this inequality, that for a proper choice of the decomposition $\Omega_{1} \cup \Omega_{2}$, will give the appropriate estimate of $\left|\left\langle\mu^{n}, \varphi\right\rangle\right|$ and the proof of our theorem.

4. PROOF OF THEOREM 1

We shall place ourselves once more in the context of a locally compact unimodular group G with a closed compactly generated subgroup H that satisfies the conditions of § 3. All the notations introduced up to now, and especially in $\S 3$, will be preserved.

We shall fix $d \mu=f d g$ a probability measure given by a continuous density. Let $0<\eta<1$ be some small number to be chosen latter, let $1 \leq n$ be an integer and let the $A \subset \subset G / H$, that was considered in §3, be chosen such that the following subset of the path space:

$$
\Omega_{1}=\left\{\left[\text { number of } j^{\prime} \mathrm{s}, 1 \leq j \leq n, \text { for which } X_{j} \in A\right] \geq \frac{1}{2} n\right\}
$$

satisfies

$$
\mathbb{P}\left(\Omega_{1}\right) \geq 1-\eta^{n}
$$

This is clearly possible if $\mathbf{P}(G / H \backslash A) \leq \varepsilon$ small enough (the proof of this fact is an elementary calculation involving Bernouille coefficients $\binom{n}{j} \varepsilon^{j}(1-\varepsilon)^{n-j}$ and will be left as an exercice for the reader). The partition of the space $\Omega=\Omega_{1} \cup \Omega_{2}$ will be then defined by setting $\Omega_{2}=\Omega \backslash \Omega_{1}$.

For fixed $\varphi \in C_{0}(G)$ as in (3.3) the second member of the right hand side of (3.3) can be estimated by $C \eta^{n}$. The first member of the right hand side of (3.3) can be estimated by

$$
\begin{equation*}
C \sup _{\omega \in \Omega_{1}}\left\|\tilde{\mu}_{X_{1}} * \ldots * \tilde{\mu}_{X_{n}}\right\|_{1 \rightarrow \infty} \mathbb{P}\left(S_{n} \in K\right) \tag{4.1}
\end{equation*}
$$

Now by our definition of Ω_{1} and (2.8) we see that if H is of exponential volume growth then

$$
\begin{equation*}
\wedge_{n}=\sup _{\omega \in \Omega_{1}}\left\|\tilde{\mu}_{X_{1}} * \ldots * \tilde{\mu}_{X_{n}}\right\|_{1 \rightarrow \infty} \leq C e^{-c n^{1 / 3}}, \quad n \geq 1 \tag{4.2}
\end{equation*}
$$

for some $C, c>0$. Similarly by (2.7), if we assume that $\gamma_{H}(n) \geq c n^{D}$, $c>0, D>2$, we can assert that there exists $C>0$ such that

$$
\begin{equation*}
\wedge_{n} \leq C n^{-D / 2}, \quad n \geq 1 \tag{4.3}
\end{equation*}
$$

We are now in a position to complete the proof of Theorem 1. The first step is to use the consideration of $\S 1$ and replace, if necessary, G by an isogenic group G_{1} (this clearly does not affect the conclusion of Theorem 1) such that G_{1} and $G_{1} \supset H_{1}$ satisfy the conditions of the proposition of $\S 1$. The next reduction is to be able to assume, in the case when Q is of polynomial growth, that $D=D(Q)>2$. This is done by the standard trick (cf. [12]) of replacing, if necessary, G by $G \times \mathbb{R}^{3}$ and Δ by $\Delta+$ standard Laplacian on \mathbb{R}^{3}.

Having done these reductions we consider $d \mu_{1}=f_{1} d g$ with $0<f_{1} \in$ $C\left(G_{1}\right)$ and $E\left(\mu_{1}\right)<+\infty$ and apply the (4.1) and (4.2) or (4.3) to the subgroup H_{1}. The estimate (3.3) together Bougerol's theorem for the semisimple group G_{1} / H_{1} that we apply to $d \mu=f d g \in L^{1}\left(G_{1} / H_{1}\right)$ where $f=\stackrel{\circ}{f}_{1}>0$ and $E(\mu)<+\infty$ completes the proof of Theorem 1.

Let us finally give the proof of the corollary. Towards that we shall decompose the integral in (0.4) as follows:

$$
I=\int_{0}^{\infty} t^{\alpha / 2-1} e^{-t \Delta} e^{\lambda t} d t=\int_{0}^{1}+\int_{1}^{\infty}=I_{1}+I_{2}
$$

It is clear that $\left\|I_{1}\right\|_{p \rightarrow q}<+\infty$ for $1 / p-1 / q \leq \frac{R e \alpha}{\delta}$ (cf. [3]).
When Q is of exponential growth, by our theorem, we have (cf. [5]) $\left\|e^{-t \Delta} e^{\lambda t}\right\|_{2 \rightarrow q}=0\left(t^{-A}\right)$ for $t>1$ and any $A>0, q>2$. Therefore $\left\|I_{2}\right\|_{2 \rightarrow q}<+\infty$ for any $q>2$. The conclusion is that $\|I\|_{2 \rightarrow q}<+\infty$ as long as $q>2$ and $1 / 2-1 / q \leq \frac{R e \alpha}{\delta}$. The corollary then follows by duality.

The boundedness of the more general operators (0.5) follows by factorising these operators in the obvious way $L^{p} \rightarrow L^{2} \rightarrow L^{2} \rightarrow L^{q}$.

5. PROOF OF THEOREM 2

The basis of the proof of the estimate (0.6) is once more the disintegration formula (3.1). Let $G, H, \mu \in \mathbb{P}(G)$ be as in $\S 3$ and let us disintegrate μ^{n} as in (3.1)', then for any $1 \leq p, q \leq+\infty$ we have

$$
\begin{equation*}
\|\mu\|_{p \rightarrow q} \leq\|\stackrel{\circ}{\mu}\|_{p \rightarrow q} \sup _{x}\left\|\mu_{x}\right\|_{p \rightarrow q} \tag{5.1}
\end{equation*}
$$

where here $\|\mu\|_{p \rightarrow q}$ is the $L^{p} \rightarrow L^{q}$ convolution norm on $G,\|\stackrel{\circ}{\mu}\|_{p \rightarrow q}$ is the convolution norm of $\stackrel{\circ}{\mu}$ on G / H and $\left\|\mu_{x}\right\|_{p \rightarrow q}$ is the convolution norm on H. To prove (5.1) we use very heavily the unimodularity of the groups. The details will be left as an exercise for the reader.

Let now Ω have the same meaning as in $\S 3$ and let us assume that $\Omega=\bigcup_{j=1}^{\infty} \Omega_{j}$ be a covering of Ω by (not necessarily disjoint) subsets. With the same notations as in $\S 3$ and 4 , we shall then define for each fixed $n \geq 1$

$$
\mu_{i}=\mathbb{E}\left(\tilde{\mu}_{X_{1}} * \ldots * \tilde{\mu}_{X_{n}} I\left(\Omega_{i}\right)\right) ; \quad i=1,2, \ldots
$$

It is clear of course that:

$$
\left\|\mu^{n}\right\|_{p \rightarrow q} \leq \sum_{i=1}^{\infty}\left\|\mu_{i}\right\|_{p \rightarrow q}
$$

and from (5.1) it follows that

$$
\begin{equation*}
\left\|\mu_{i}\right\|_{p \rightarrow q} \leq \sup _{\omega \in \Omega_{i}}\left\|\tilde{\mu}_{X_{1}} * \ldots * \tilde{\mu}_{X_{n}}\right\|_{p \rightarrow q}\left\|\stackrel{\circ}{\mu}_{i}\right\|_{p \rightarrow q} \tag{5.2}
\end{equation*}
$$

where $\stackrel{\circ}{\mu}_{i}$ is the projection of μ_{i} on G / H and is given by:

$$
d \stackrel{\circ}{\mu}{ }_{i}(\stackrel{\circ}{g})=\mathbb{P}_{e}\left[S_{n} \in d \stackrel{\circ}{g} ; \omega \in \Omega_{i}\right] ; \stackrel{\circ}{g} \in G / H \quad i=1,2, \ldots
$$

In the above construction the set Ω_{1} will be defined exactly as in $\S 4$ for some $A \subset G / H$ large enough. Let us also assume for the moment that the volume growth of H satisfies $\gamma_{H}(t) \geq c t^{L},(t>1)$ for some $L>2$. For $i=1$ the first factor on the right hand side of (5.2) can then be estimated by

$$
\begin{equation*}
C n^{-\frac{L}{2}(1 / p-1 / q)} \tag{5.3}
\end{equation*}
$$

This is a consequence of (2.7) and interpolation. To estimate the second factor of the right hand side of (5.2) for any $i=1,2, \ldots$ we shall make the additional assumption that G / H is semisimple with finite center and that $d \stackrel{\circ}{\mu}_{i}(g)=f_{n}^{(i)}(g) d g$. The Kunze-Stein phenomenon (cf. [13]) gives then the estimate (for $p=2, q>2$)

$$
\left\|\stackrel{\circ}{\mu}_{i}\right\|_{2 \rightarrow q} \leq C\left\|f_{n}^{(i)}\right\|_{L^{2}(G / H)}
$$

This will be used for $i=1$ and

$$
\begin{equation*}
d \mu=\phi_{1} d g \tag{5.4}
\end{equation*}
$$

Vol. 31, n° 4-1995.
where ϕ_{t} is a Heat diffusion kernel as in $\S 0$. We obtain

$$
\left\|\stackrel{\circ}{\mu}_{1}\right\|_{2 \rightarrow q} \leq C\left\|\stackrel{\circ}{\phi}_{n}\right\|_{L^{2}(G / H)}=C \stackrel{\circ}{\phi}_{2 n}(e)^{1 / 2} \leq C e^{-\lambda n} n^{-\frac{1}{2}(p+d / 2)}
$$

which together with (5.3) gives

$$
\begin{equation*}
\left\|\mu_{1}\right\|_{2 \rightarrow q} \leq C e^{-\lambda n} n^{-\frac{1}{2}(p+d / 2)} n^{-\frac{L}{2}(1 / 2-1 / q)} \tag{5.5}
\end{equation*}
$$

It remains to control the contributions of the terms $\mu_{i}, i=2, \ldots$ To be able to do this we have to choose $\Omega_{2}, \ldots, \Omega_{n}, \ldots$ appropriately. For $i=2, \ldots$ we choose

$$
\omega \in \Omega_{i} \quad \Leftrightarrow \quad \omega \notin \Omega_{i-1} ; \quad \inf _{1 \leq k \leq n}\left|X_{k}(\omega)\right| \leq i
$$

We use here the notation $|\stackrel{\circ}{g}|=d(e, \stackrel{\circ}{g}),(\stackrel{\circ}{g} \in G / H)$ for the canonical distance on G / H ($c f .[3]$). It is clear that

$$
\mathbb{P}\left(\inf _{1 \leq k \leq n}\left|X_{k}\right| \geq p\right) \leq\{\stackrel{\circ}{\mu}(|\stackrel{\circ}{g}| \geq p)\}^{n}
$$

From this and the standard Gaussian estimate on $\phi_{1}(g)(c f .[3])$, it follows that with μ as in (5.4) we have

$$
\left\|\stackrel{\circ}{\mu}_{p+1}\right\| \leq C e^{-c n p^{2}}
$$

Since in our case we have $d \stackrel{\circ}{\mu}{ }^{n}(g)=\stackrel{\circ}{\phi}_{n}(g) d g$ we can conclude also that $d \stackrel{\circ}{\mu}_{i}=\stackrel{\circ}{\psi}_{i} d \stackrel{\circ}{g}$ and

$$
\begin{align*}
\left\|\stackrel{\circ}{\mu}_{i}\right\|_{2 \rightarrow q} & \leq C\left\|\stackrel{\circ}{\psi}_{i}\right\|_{L^{2}(G / H)} \leq C\left\|\stackrel{\circ}{\phi}_{n}\right\|_{\infty}^{1 / 2} \cdot e^{-c n(i-1)^{2}} \tag{5.6}\\
& \leq C e^{-c n(i-1)^{2}}
\end{align*}
$$

Now for $i=2, \ldots$ the first factor of the right hand side of (5.2) can be estimated by

$$
\begin{equation*}
\sup _{\omega \in \Omega_{i}}\left(\inf _{1 \leq k \leq n}\left\|\tilde{\mu}_{X_{k}}\right\|_{p \rightarrow q}\right) \leq \sup _{\omega \in \Omega_{i}} \inf _{1 \leq k \leq n}\left\|f_{X_{k}}\right\|_{\infty}^{C} \tag{5.7}
\end{equation*}
$$

where as in § 3 we denote by $d \mu_{x}(h)=f_{x}(h) d h(h \in H, x \in G / H)$. To see this we simply use the log-convexity of the $\left\|\|_{p}\right.$ and the fact that each $\tilde{\mu}_{X_{k}}$ is a probability measure. To estimate (5.7) we use the following two inequalities

$$
\left\|\phi_{1}\right\|_{\infty} \leq C ; \quad \stackrel{\circ}{\phi}_{1}(\stackrel{\circ}{g}) \geq C \exp \left(-c|\stackrel{\circ}{g}|^{2}\right), \quad \stackrel{\circ}{g} \in G / H
$$

(cf. [3]). It follows that the right hand side of (5.7) can be estimated by

$$
\begin{equation*}
C \exp \left(C i^{2}\right) \tag{5.8}
\end{equation*}
$$

We can now complete the proof of our theorem. We start by choosing A very large so that $\mathbb{P}\left(\Omega_{1}\right) \geq 1-\eta^{n}$ with an η very small to be chosen later. This means that $\left\|\stackrel{\circ}{\mu}_{i}\right\| \leq \eta^{n}(i=2, \ldots)$ and therefore just as in (5.6) $\left\|\stackrel{\circ}{\mu}_{i}\right\|_{2 \rightarrow q} \leq C \eta^{n}$. We then fix some $k=2, \ldots$ and estimate $\left\|\mu_{i}\right\|_{2 \rightarrow q}$ using (5.2) (5.6) and (5.8) for $i=k+1, \ldots$ For k large enough we obtain thus the estimate:

$$
\sum_{i \geq 2}\left\|\mu_{i}\right\|_{2 \rightarrow q} \leq C e^{-C k^{2} n}+C \eta^{n}
$$

For an appropriate choice of η and k the above estimate together with (5.5) completes the proof of (0.6).

In the above proof we have of course used the special structure of the group G which had to satisfy the conditions of $\S 3$ and be such that G / H is semisimple with finite center. In addition the volume growth of H was assumed to satisfy $\gamma_{H}(t) \geq c t^{L},(t>1)$ with $L=D+r>2$. Here D and r are as in Theorem 2. At this stage we shall invoque the proposition of $\S 1$ which shows that up to isogeny we can assume that we are in the above situation (possibly with $D+r=0,1,2$). The next observation is that the conclusion of Theorem 2 is stable by isogeny. In fact the conclusion of this theorem is even stable by taking the quotient by a compact subgroup (i.e. passing from G to G / K with K compact. To see this we use the Harnack principle and average over K). To deal with the exceptional cases $D+r=0,1,2$, we use once more the usual trick of jacking up the dimension by replacing the group G by $G \times \mathbb{R}^{3}$ as we did in § 4. This completes the proof of Theorem 2. The proof of (0.7) follows then immediately by the same argument as at the end of $\S 4$.

6. THE LOWER ESTIMATES

The results in this final section are not sharp, we shall therefore be brief. What we shall show is that if $G=Q \times \Sigma$ is a direct product of its radical Q, which will be assumed to have polynomial volume growth, and of some semisimple group Σ, and if $\Delta, \lambda, q, r, D, \phi_{t}$ are as in $\S 0$, then there exists $C>0$ such that

$$
\phi_{t}(e) \geq C e^{-\lambda t} t^{-\frac{q+D}{2}}(\log t)^{-\frac{D+r}{2}}, \quad t>1
$$

This shows that the estimates obtained in Theorem 1 are essentially unimprovable.

The proof of this estimate is an easy consequence of the following general principle: let G be a general Lie group and let $H \subset G$ a closed normal subgroup that is of polynomial growth (this implies that H is amenable but H will not be assumed to be connected). We shall further assume that $d_{H}(x, y)(x, y \in H)$, the intrinsic distance in H is equivalent (for large distances $c f$. [3]) to the induced distance by the embeding $H \subset G$. To be more explicit if we denote by $d_{G}(x, y),(x, y \in G)$ the canonical left invariant distance on G (cf. [3]) then there exists $C>0$ such that

$$
d_{G}(x, y) \geq C^{-1} d_{H}(x, y) ; \quad x, y \in H \quad d_{H}(x, y) \geq C
$$

This phenomenon is rather rare (cf. [11]), but (6.1) does hold in the following two cases:

Case $A: G \cong H \times G / H$ i.e. H is a direct factor. The verification is trivial.
Case $B: G$ is semisimple and $H=Z$ is the discrete center of G. (6.1) is then not trivial and the verification relies on the fact that if $G=N A K$ then $Z \subset K$ and K / Z is compact. To prove (6.1) we first project $G \rightarrow G / A N \cong K$ and obtain a Z invariant (but not K invariant) distance on K. Then we use the compactness of K / Z. The details will be left to the reader (cf. [14], [15]) where the above result is proved when the above distance is Riemannian).

For a group and a subgroup $G \supset H$ as above and Δ some subelliptic sublaplacian I shall denote by $\phi_{t}(g)=\phi_{t}^{G}(g)$ and $\stackrel{\circ}{\phi}_{t}(\stackrel{\circ}{g})=\stackrel{\circ}{\phi}_{t}^{G / H}(\stackrel{\circ}{g})$, $\stackrel{\circ}{g} \in G / H$ the corresponding (canonically induced) heat diffusion convolution kernels ($\stackrel{\circ}{\phi}$ is induced by the projected laplacian $\stackrel{\circ}{\Delta}=d \pi(\Delta)$ on G / H where $\pi: G \rightarrow G / H$ is the canonical projection).

It is clear that

$$
\int_{G} \phi_{t}(h) d h=\stackrel{\circ}{\phi}_{t}(e)
$$

It is also known that

$$
\phi_{t}(g) \leq C e^{-\lambda t} \exp \left(-\frac{d_{G}^{2}(e, g)}{C t}\right) ; \quad t \geq 1
$$

for some $C>0$ (cf. [3]). From this it follows that there exists $C_{0}>0$ such that

$$
\int_{|h| \geq C_{0} \sqrt{t \log t}} \phi_{t}(h) d h \leq 1 / 10 \stackrel{\circ}{\phi}_{t}(e)
$$

provided that $\stackrel{\circ}{\phi}_{t}(e)$ verifies a lower estimate of the form:

$$
\begin{equation*}
\stackrel{\circ}{\phi}_{t}(e) \geq C^{-1} t^{-C} e^{-\lambda t} ; \quad t \geq 1 \tag{6.2}
\end{equation*}
$$

for some $C>0$. Assuming that this happens, then we immediately deduce that

$$
\phi_{t}(e)=\sup _{h \in H} \phi_{t}(h) \geq C \stackrel{\circ}{\phi}_{t}(e)\left[\mathrm{Vol}_{H}\left(\text { Ball of radius } c_{0} \sqrt{t \log t}\right)\right]^{-1}
$$

If we apply the above procedure first in case B and then in case A, we obtain the required lower estimate. The estimate (6.2) (when $G / H=\Sigma / Z$ is a semisimple group with finite center), that is needed to complete the proof, has been proved in [2].

In fact for the above group $G=Q \times \Sigma$ one can improve the above lower estimate to the sharp result $\phi_{t}(e) \geq C e^{-\lambda t} t^{-\frac{q+D}{2}}(t>1)$. The proof is however considerably more difficult. It will be given elsewhere.

Observe finally that for more general groups (e.g. semidirect products $Q \lambda S$) the situation is very different and the upper estimate of our Theorem 1 can, in some cases, be improved dramatically. We shall publish a complete solution of the problem in a forthcoming paper (cf. [16]).

As a final remark I would like to observe that much of what has been proved in this paper automatically extend to more general sublaplacians of the form $\Delta=\Sigma X_{j}^{2}+X_{0}$ and to measure that are not symmetric. One then of course has to define $e^{-\lambda}=\lim \left\|\mu^{n}\right\|_{2 \rightarrow 2}^{1 / n}$. This question however will be taken up again in a future paper.

ACKNOWLEDGMENT

Il would like to thank the referee for the prompt and thorough way that he led this paper and for his constructive and interesting comments.

REFERENCES

[1] N. Lohoué, Inégalités de Sobolev pour les sous-laplaciens de certains groupes unimodulaires, Geom. and Funct. Analysis, 2 (4), 1992, pp. 394-420.
[2] Ph. Bougerol, Théorème central limite local sur certains groupes de Lie. Ann. Sci. Ec. Norm. Sup. $4^{\text {e }}$ sér., 14, 1981, pp. 403-432.
[3] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and geometry on groups, Cambridge tracts in Math., n° 100, C.U.P., 1993.
[4] N. Lohoú, Estimation L^{p} des coefficients de représentation et opérateurs de convolution. Advances in Math., 38, 1980, pp. 178-222.
[5] N. Th. Varopoulos, Théorie de Hardy-Littlewood sur les groupes de Lie, C.R.A.S., t. 316 (I), p. 999-1003, 1993.
[6] L. Hörmander, Estimates for translation invariant operators in L^{p} spaces, Acta Math., 104, 1960, pp. 93-139.
[7] V. S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice Hall.
[8] N. Th. Varopoulos, Wiener-Hopf Theory and non unimodular groups, Journal of Funct. Analysis, 120 (2), 1994, pp. 467-483.
[9] D. Robinson, Elliptic operators on Lie groups, Oxford University Press, 1991.
[10] N. Th. Varopoulos, Diffusion on Lie groups, Can. J. of Math., 46 (2), 1994, pp. 438-448.
[11] N. Th. Varopoulos, Diffusion on Lie groups (II), Can. J. of Math., 46 (5), 1994, pp. 1073-1092.
[12] N. Th. Varopoulos, Random walks and Brownian motion on manifolds Symposia Mathematica, XXIX, 1987, pp. 97-109.
[13] M. Cowling, The Kunze-Stein phenomenon, Annals of Mathematics, 107, 1978, pp. 209234.
[14] M. Gromov, Structures métriques pour les variétés riemanniennes, Cedre/Fernand Nathan, 1981.
[15] J. Milnor, A note on curvature and the fundamental group, J. of Diff. Geometry, 2, 1968, pp. 1-7.
[16] N. Th. Varopoulos, Théorème de Hardy-Littlewood sur les groupes de Lie, C.R.A.S., t. 318 (I), 1994, pp. 27-30.
[17] Y. Guivarc'h, Croissance polynomiale et périodes des fonctions harmoniques, Bull. Soc. Math. France, 101, 1973, pp. 333-379.
(Manuscript received June 30, 1993;
Revised November 24, 1993.)

