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Perfect filtering and double disjointness

Hillel FURSTENBERG, Yuval PERES (*) and Benjamin WEISS
Institute of Mathematics, the Hebrew University, Jerusalem.

Ann. Inst. Henri Poincaré,

Vol. 31, n° 3, 1995, p. -465. Probabilités et Statistiques

ABSTRACT. - Suppose a stationary process ~ Un ~ is used to select from
several stationary processes, i.e., if Un = i then we observe Yn which is
the n’th variable in the i’th process. when can we recover the selecting
sequence ~ Un ~ from the output sequence ~Yn ~ ?

RÉSUMÉ. - Soit ~ Un ~ un processus stationnaire utilise pour la selection
de plusieurs processus stationnaires, c’ est-a-dire si Un = i alors on observe
Yn qui est le n-ième variable dans le i-ième processus. Quand peut-on
reconstruire ~ Un ~ à partir de ~ Yn ~ ?

1. INTRODUCTION

Suppose a discrete-time stationary stochastic signal ~ Un ~, taking integer
values, is transmitted over a noisy channel. If Un = i then a random variable

is received at the end of the channel. In this note we give conditions
for the "multiplexed" signal {Yn} = (X(Un)n} to uniquely determine the
original signal ~ Un ~ with probability 1, in a stationary setting. These
conditions lead to some interesting questions in Ergodic theory, but leave
open the algorithmic problem of explicitly recovering {!7~}.

(*) Current address: Department of Statistics, University of California, Berkeley, CA 94720.
Research partially sponsored by the Edmund Landau Center for research in Mathematical

Analysis, supported by the Minerva Foundation (Germany).
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DEFINITION. - Assume that X ~i~ == is a stationary stochastic
process for each integer i &#x3E; 1. Let U = ~ Un ~ be a stationary process
defined on the same probability space, where each variable Un takes positive
integer values, and the joint distribution of all processess is stationary. We
say that the collection [U; X ~l&#x3E; , X ~2~ , X ~3&#x3E; , ...] admits a pefect filter if for
every m &#x3E; 1, the variable Urn may be expressed as a measurable function,
defined almost everywhere, of the sequence ~Yn ~ _ (in other
words, is measurable with respect to the completion of the a-algebra
by the variables Y1, Y2, Y3, ... in the underlying probability space).

THEOREM 1. - Assume that for each integer i, the process 
consists of independent identically distributed random variables,

where and have different distributions for i ~ j . If the integer
valued stationary process ~ Un ~ has zero entropy, then the collection

[U; X ~1~, X ~2~, ...~ admits a perfect filter.
Perhaps the most general stationary filtering problem consists of

recovering {Un}~n=1 from the data {F ( Un , where {Xn}~1 and
are stationary processes; if each variable Un takes only countable

many values, this reduces to the filtering problem above. We return to the
general case in §5 (cf. Theorem 7).

In [F] the case in which the binary operation F is addition was considered,
and it was shown that disjointness of two integrable stationary processes
{Vn} and {Zn} is sufficient to determine {Vn} from the sum {Vn + Zn}.

Recall from [F] that two stationary processes are disjoint if the only
stationary coupling of them is the independent coupling (detailed definitions
are given in the next section).

In the context of Theorem 1, disjointness of U from the is not

sufficient for perfect filtering; this may be seen by considering the case in
which U is a {1, 2}-valued i.i.d. process and X~1&#x3E;, X(2) are distinct zero
entropy processes with identical finite state-spaces. The pertinent condition
seems to be double disjointness of U from each X ~2~, which means that
any stationary coupling (i.e., joining) of two copies of U must be disjoint
from (see §2 for details).

CONVENTION. - For a stationary process Z = ~ Zn ~ n &#x3E; 1, we refer to the
distribution of Zi as the marginal distribution of the process Z.
We now state an extension of Theorem 1.

THEOREM 2. - Let X ~1~, X ~2~, X t3&#x3E;, ... be stationary processes with
distinct marginal distributions. If U = ~ Un ~ is an N-valued process, doubly
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455PERFECT FILTERING AND DOUBLE DISJOINTNESS

disjoint from each X ~i&#x3E;, then the collection [U; X ~1&#x3E;, X ~2~, ...~ admits a
perfect filter.

The rest of the paper is organized as follows. Some examples and
properties of double disjointness are discussed in §2. In particular, a system
with positive entropy cannot be doubly disjoint from any nontrivial system.
We also explain how Theorem 1, and similar filtering results, follow from
Theorem 2. The latter is proved in §3. In §4 the notion of tightness for
stationary processes, due to Ornstein and Weiss, is described. It is useful for
obtaining versions of the filtering theorem valid for all generic sequences.
The final section, §5, contains extensions of Theorem 2 to the case in
which each Un assumes a continuum of values and to the setting where the
distributions of U and XCi) are not known in advance.

2. DOUBLE DISJOINTNESS

DEFINITIONS. - Let Z = /1z, Tz) and V = (Hy, /3v, /1v, Tv)
be two measure preserving systems (all measure spaces we consider are
Lebesgue spaces with probability measures).

(i) A joining of Z and V is a measure on SZZ x Hy which is invariant
under Tz x Tv and projects to ~Z and flv respectively.

(ii) The systems Z and V are disjoint if their only joining is given by
product measure.

(iii) Z is doubly disjoint from V if any joining of Z with an isomorphic
system Z (i.e., a self-joining of Z), is disjoint from V.

(iv) The definitions above, when applied to stationary stochastic

processes, refer to the measure preserving systems given by the shift map.
Note the asymmetry in the definition of double disjointness. Indeed, in

the following lemma, usually V is not doubly disjoint from U; in particular,
compare part (a) of the lemma with Propositon 4 (ii) below.

LEMMA 3. - In each of the following cases, U is doubly disjoint from Y.

(a) U is a system with zero entropy, V is a K-system.
(b) U is a Kronecker system (i.e., a factor of an ergodic rotation on a

compact abelian group) and V is weak-mixing.
(c) U is rigid and V is mild mixing (see [FW] for the definitions).

Remark. - In each of these cases, Theorem 2 gives a filtering result. In
particular, by (a), Theorem 2 implies Theorem 1.

Vol. 31, n° 3-1995.
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Proof of the Lemma. - (a) Any joining of two zero entropy systems also
has zero entropy, and by [F] is disjoint from any K-system.

Parts (b), (c) are proved similarly. Note that in part (c), a joining of two
rigid systems need not be rigid, but a joining of a rigid system with itself
is easily seen to be rigid. D

In the converse direction we have

PROPOSITION 4. - Let V and Z be two invertible nontrivial measure
preserving systems (i.e., Tv and Tz are not the identity map). If V is
doubly disjoint from Z, then

(i) Z is ergodic, and

(ii) V has zero entropy.

Proof - (i) Assume that A c SZZ is an invariant set with 0  /-L (A)  1.
The hypothesis that V is nontrivial implies that the diagonal measure
on SZY x Qv is different from product measure x pv. Therefore the
measure À on 03A9V x 03A9V x 03A9Z defined by

yields a joining of two copies of V and Z, which shows that V is not
doubly disjoint from Z.

(ii) A direct proof is possible (see the remark below), but it is instructive to
see that this is an immediate consequence of the filtering result (Theorem 2).
If V has positive entropy then by Sinai’s theorem [S] it has a Bernoulli
factor, so there is a partition if V which defines a nonconstant i.i.d. process
{Un}, taking the values { 1, 2}. Let {X(1)n} be a nonconstant (0, 1}-valued
process defined by a partition of Z. Next, let be an independent copy
of ~X ~1~ ~, and denote X ~2~ = 1 - Xn. Since V is doubly disjoint from Z,
Theorem 2 asserts that each is measurable with respect to the complete
a-algebra spanned by the However, by conditioning on
the event = 1 = which occurs with positive probability, we
see that is not determined by X~B . Since ~ Un ~ is an i.i.d. process,
this yields the desired contradiction. D

Remark. - Using Theorem 1 of [ST], it is easy to infer the truth of the
following assertion, which implies part (ii) of the preceding proposition:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let V be an invertible measure preserving system with positive entropy.
For any nontrivial system Z, there is a joining of two copies of V which
has a nontrivial common factor with Z.

Examples.
1. There exists a weak mixing system W with zero entropy, which has

an ergodic self joining that is not weak mixing. We describe a variant of
Chacon’s transformation (cf. [P], section 4.5) with these properties.

For n &#x3E; 1 and i, j E ~ 0, 1} define inductively words A ~ of length
In as follows.

First, let l o = 2 and A° = i j . Next, assuming A ~ have been defined
for all z, j E ~ 0, 1}, write

and define

Finally, for every i, j E ~0, 1} let

where both words on the right-hand side are of length

and 0 denotes coordinate-wise addition modulo 2. The words Aoo converge,
as 7~ 2014~ oo, to an infinite word ~4~ and we take W = Tw ) to be the
orbit closure of Aoo with respect to the shift map in {0, 1}~. Elementary
block-counting shows that the topological entropy of W vanishes. One
proves that W is strictly ergodic and weak-mixing with respect to the unique
invariant measure exactly as is done for Chacon’s transformation ([P],
section 4.5). For each i, j E ~0, 1}, the map fij defined by

acts on Ow and satisfies Tw ( fij (x)) = fji (Tw (x)). Therefore Tw x Tw
interchanges the graphs of foi and fio. Symmetry considerations and
unique ergodicity imply that each fij preserves the measure /~. The map
x - (x, fij (x) ) from W to the graph of fij sends ~cw to a measure 
on this graph, and the projection of to each coordinate yields /~. Thus
the measure 1/2 + ~ ~°,) defines an ergodic self joining of W which
has a factor of period 2. J. King and the referee both pointed out that a
simple alternative construction with similar properties can be obtained by
using two-point extensions.

Vol. 31, n° 3-1995.
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2. As noted by J. King [personal communication], the construction

described above immediately yields an example of two disjoint measure
preserving systems, neither of which is doubly disjoint from the other.
Indeed let R be the two point system and let B be any Bernoulli system.
Then R x B is disjoint from the system W of example 1 (pairwise
disjointness of R, B and W is clear; as B is disjoint from R x W
which has zero entropy, the three systems are mutually disjoint). However
R x B is not doubly disjoint from W by Proposition 4, and W is not
doubly disjoint from R x B by the previous example.

3. Rudolph’s constructions of transformations with minimal self-joinings
[R], show that there exist weak mixing systems which are doubly disjoint
from all group rotations. Thus in this respect, the analogy with the positive
entropy case breaks down.

Remarks.

a. In all the examples we know, when a system U is doubly disjoint from
a system Z but not vice versa, Z is "more random" than U.

Question; If U is doubly disjoint from Z, it is necessarily triply disjoint
from Z (i.e., is any joining of three copies of U disjoint from Z)?

Results of a similar flavor are proved in [K].
b. The analogy between parts (a) and (b) of Proposition 3 is incomplete,

as there are many systems besides the Kronecker systems which are disjoint
from all weak mixing systems (cf. [F] and [GW]).

Question: If a measure preserving system is disjoint from all weak

mixing systems, is it doubly disjoint from each of them?

3. PROOF OF THE FILTERING THEOREM

First we establish a lemma.

LEMMA 5. - Let ~~B X(2),... be stationary stochastic processes with
distinct marginal distributions, where ==, Let U = ~ Un ~
be an N-valued stationary process which is doubly disjoint from each 
Denote by U = ~ Un ~ a process with the same distribution as U.

Supppose that we are given a joining of the processes X ~ 1&#x3E;, X(2),..., U,
X ~ 1 &#x3E;, ~(2) and U, such that for all n the identity

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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holds almost surely. Then in this joining

Remark. - This lemma may be viewed as a "process level" version of
Theorem 2.

Proof of the Lemma. - It suffices to show, for each i 7~ j, that

P [Un = z, Un = j ~ = 0. Fix i # j. Since and have different

laws, there exists a bounded function cp such that

By our hypothesis, for all n

Multiplying this identity by gives

Taking expectations and using disjointness of the joining of U with U from
and from X~B we find that

By our choice of 03C6, this forces the probability P [Un = i, Un = j] to

vanish. D

Proof of Theorem 2. - Rewriting our hypothesis, we have a measure

preserving system X (the joining of all the XCi)), another system U,

doubly disjoint from each X(i), and a factor map 03C8 : !1x x Hy
from a joining X V U to a system Y = (Hy, /3y, Ty), defined by
1jJ (~ ~) - 
We must show that the projection map 7ru : S2X x Ou -+ Qy is measurable

with respect to the complete ~-algebra ~ -1 
Let Z be the relatively independent joining of two copies of X V U

over Y. Explicitly,

and is defined by

Vol. 31, n° 3-1995.
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Since Z is a joining of X, U, X, 7 in which ~ (x, u) == ’ljJ (x, u) holds
almost surely, Lemma 5 implies that

To complete the proof, it suffices to check that the conditional expectation
operator u)] preserves L2-norm when applied to bounded functions
h (u). Let h : R be a bounded, flu-measurable function. Since /1z
projects to /1u on f2u and u = u a.s., we have

Using the definition of we conclude that

as claimed. D

Remark. - In the statement of Theorem 2, the hypothesis that the

process XCi) have distinct marginal distributions cannot be replaced by
the assumptions that XCi) have distinct distributions as processes. To see
this let and be 0 - 1 valued Markov chains, with transition

matrices Cp q ) and ) respectively, where p = 1 - q # 1/2. The

stationary vector for both chains is (1/2, 1/2). Let be the two-point
process given by

Since {)2 = ()2, the two processes moa 2)}n~1 and
mod 2) have the same distribution, so it is hopeless to recover

~Un~ from 
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4. TIGHTNESS

The proof of Theorem 2 in the previous section is highly nonconstructive,
and there is no control over the measure zero set which is discarded.

Specifically, we would like a "Wiener-Wintner" version of Theorem 2, in
which there is a set of full measure of U-sequences for which filtering is
possible, that does not depend on the X~2&#x3E; processes.
A partial result in this direction is suggested by Lemma 5. The T be a

continuous transformation on a compact metric space H. A point cv E 0
is called generic for a (T-invariant) measure ~, if for all continuous real
valued functions f on 0,

If this holds only when N - 00 along a subsequence {Nj} which does
not depend on f, then w is called a quasi-generic point for Every point
is quasi-generic for some invariant measure, as one sees by the diagonal
method. When applying these definitions to a real-valued stationary process,
we regard its distribution as a shift-invariant measure on the compact space
(R U 

PROPOSITION 6. - Let (un) and (vn) be two generic points for an
integer valued stationary process U = ~ Un ~. Also, for each i &#x3E; 1, let

= ~~2&#x3E; be a generic point for the stationary process X(i), where
U is doubly disjoint from each of the processes and the have

distinct marginal distributions. If for all n &#x3E; 1

then the sequences and ~vn ~ differ on a set of zero density, i.e.

CX)

Proof - Denote by SZX the Cartesian product II and by 03BE the
i=l

point (~~1~, ç(2), ç(3),...) in Ox.
be an increasing sequence for which

Vol. 31, n° 3-1995.
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Passing to a subsequence, we may assume the point

is quasi-generic for some measure v on 03A9 with the sequence in the
definition of quasi-generic point. Now v defines a joining of X, U, X, 7
which satisfies the hypothesis of Lemma 5.
The conclusion of that lemma implies that the continuous function

on Q has

Recalling the definition of quasi-generic points and our initial choice of
{A~}, we obtain

as claimed. D

In order to sharpen the conclusion of the last proposition, further
restrictions on the sequences and beyong genericity, are needed.
This leads naturally to the following

DEFINITION. - The discrete stationary process U = ~ Un ~ is tight if there
is a set of sequences A c Qu such that P[{Un} E A] = 1 and for any two
different sequences ~ un ~, ~ vn ~ in A, we have

This notion was studied by Ornstein and Weiss [unpublished] who showed
that a process with positive entropy is never tight, and there also exist zero
entropy processes which are not tight.
On the other hand, it is easily verified that any Kronecker process (i.e.,

a stationary process with discrete spectrum) is tight.
If the process {Un} in Proposition 6 is tight, and the generic points

~un ~ and ~vn ~ are chosen from the set A in the definition of tightness,
then, of course, the conclusion of the proposition may be strengthened to
un for all n.

If we seek a constructive filtering procedure, the most natural approach
is to use a maximum-likelihood criterion.

Question: In the setting of Theorem 2, assume that the processes XCi)
have discrete marginal distributions, and define Yn = Suppose that
for every n &#x3E; 1, there is a function rn : R" - which assigns

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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to every vector (Y1’..., Yn) in the support of (Yi,..., Yn ) a sequence
rn (~/i, Y2,..., ~n) _ (VI, v2, v3, ...) in f2u, for which the probability
P == Y1, ... , Yn] is maximal. When can we ensure that the
sequence of f2u-valued random variables

converges almost surely (coordinate-wise) to ( Ul , U2, U3, ...) as n - oo ?

5. A CONTINUOUS VERSION AND UNKNOWN DISTRIBUTIONS

In [F], Theorem 1.5, it is shown that if (Un) and ~Xn ~ are sequences
of integrable real random variables which define two disjoint stationary
processes, then the sum (Un + Xn) determines ~ Un ~ . It is noted there

that the integrability assumption may be removed if we know that Un is

doubly disjoint This remark, as well as our Theorem 2, are
contained in the following.

THEOREM 7. - Let U == { Un ~ and X = ~ X n ~ be real stationary stochastic
processes, such that U is doubly disjoint from X. Denote by S the closed
support of the distribution of Ul. Let W : S x R be a measurable

function, continuous in the first variable, such that for any two distinct points
s ~ s in S, the distribution of the variables W (s, X1 ) and W (s, X1 ) are
different. Define Yn = ~ (Un, Xn).

Then the sequence ~Yn ~ determines the sequence ~ Un ~, i.e., each is

measurable with respect to the complete a-field spanned by the sequence
of random variables ~Yn ~ .

Proof - As in the proof of Theorem 2, it suffices to establish the

corresponding statement at process level. Namely, we may assume that U
and X are processes with the same distributions as U and X respectively,
and that a joining of U, X, U and X is given, such that 

’

We must show that this implies

For c &#x3E; 0, points so, So in S and integer n, denote by Ae = ~4~ (so, so, n)
the event

Vol. 31, n° 3-1995.
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in the joining above. It is enough to show that for any two different points
So in S, the probability of A~ vanishes for some c &#x3E; 0. As this

probability does not depend on n, we take n = 1.

By the hypothesis on W, there exists a continuous function of compact
support cp : R - R such that

Denote by 03A6 (s) the random variable cp (w (s, Xl)). From our second
hypothesis,

Rewrite this in the form

Next, we take expectations, using the independence of 03A6 (s) (for fixed s)
from the indicator which is a function of the pair (!7~ !7i). We get

The left continuity of 03A8 implies that ( s ) depends continuously on s,
and therefore the last inequality forces ~ (Aa) = 0 for sufficiently small
e &#x3E; 0. D

Unknown distributions.

Returning to the setting in which the process ~ Un ~ takes integer values, we
again consider the problem of determining {Un} from {X(Un)n} = {Yn} as
in the previous sections, but now we do not assume that the distributions of
U and are given a priori. Of course in this situation one can permute
the processes X~i~, and apply the same permutation to the values taken by
~ Un ~, without affecting the output sequence (Yn). Under an appropriate
disjointness condition, this is the only remaining ambiguity, as is shown
by the following analogue of Proposition 6.

PROPOSITION 8. - Let U = ~ Un ~ and T~ _ ~ Yn ~ be N-valued stationary
processes. Suppose that for each i &#x3E; 1, and are real stationary
processes. We assume that

(a) For every i ~ j the processes and have different marginal
distributions, and similarly for and 

(b) Every joining of U and V is disjoint from each X ~i~ and also from
each 
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(c) ~un ~, ~vn ~, ~~~2~ }~=1 and ~~~2~ are generic sequences for U, V,
X ~i&#x3E; and respectively (for each i &#x3E; 1).

(d) The identity

holds for all n &#x3E; 1.

Then there exists a permutation N ~ N such that for every i &#x3E; 1,
the distributions of and Z~’~~i» are identical and also

The proof proceeds along the lines of Proposition 6, i. e. , one first

establishes an analogue of Lemma 5 with 7 and XCi) replaced by V
and respectively and then deduces the assertion.

Remark. - Observe that hypothesis (b) in the last proposition is satisfied if
U and V have zero entropy and all the processes ~~B Z(i) are K-processes .
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