
ANNALES DE L’I. H. P., SECTION B

P. A. FERRARI

C. KIPNIS
Second class particles in the rarefaction fan
Annales de l’I. H. P., section B, tome 31, no 1 (1995), p. 143-154
<http://www.numdam.org/item?id=AIHPB_1995__31_1_143_0>

© Gauthier-Villars, 1995, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section B »
(http://www.elsevier.com/locate/anihpb) implique l’accord avec les condi-
tions générales d’utilisation (http://www.numdam.org/conditions). Toute uti-
lisation commerciale ou impression systématique est constitutive d’une
infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIHPB_1995__31_1_143_0
http://www.elsevier.com/locate/anihpb
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


143

Second class particles in the rarefaction fan
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ABSTRACT. - We consider the one dimensional totally asymmetric nearest
neighbors simple exclusion process with drift to the right starting with the
configuration "all one" to the left and "all zero" to the right of the
origin. We prove that a second class particle initially added at the origin
chooses randomly one of the characteristics with the uniform law on the
directions and then moves at constant speed along the chosen one. The
result extends to the case of a product initial distribution with densities
p &#x3E; A to the left and right of the origin respectively. Furthermore we
show that, with a positive probability, two second class particles in the
rarefaction fan never meet.

Key words: Asymmetric simple exclusion, second class particle, law of large numbers,
rarefaction fan, characteristics, Burgers equation.

On considère le processus d’ exclusion simple totalement
asymétrique unidimensionnel avec derive à droite. Le processus commence
avec la configuration « tout un » à gauche de l’origine et « tout zero » à
droite. On prouve qu’une particule de deuxième classe placée a l’origine
a F instant zero choisit une des caractéristiques avec une loi uniforme et
ensuite suit cette caractéristique a vitesse constante. Le résultat s’étend au
cas d’une mesure initiale produit avec densités p a gauche et A a droite
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144 P. A. FERRARI AND C. KIPNIS

de l’origine, satisfaisant p &#x3E; A. Finalement, on prouve que deux particules
de deuxième classe dans le front de rarefaction ont une probabilité positive
de ne pas se rencontrer.

1. INTRODUCTION

The one dimensional asymmetric exclusion process is known to have

the inviscid Burgers equation as hydrodynamic limit. Usually one takes
advantage of the deep knowledge accumulated through the years on this
non linear pde to prove results for the exclusion process. In this short note
we intend to do exactly the contrary. We prove a result for the exclusion
process and use it to guess a result for the pde.

For this purpose we study the trajectory of a second class particle which is
known to give information on the characteristics of the pde. More precisely,
it has been proved (Ferrari ( 1992), Rezakhanlou ( 1993)) except for the case
of the rarefaction fan, that a second class particle added at a macroscopic
site a has a position at macroscopic time determined by the characteristic
emanating from a. Of course in these cases there is only one characteristic
issued from a. When dealing with a rarefaction fan one has an infinite
number of characteristics issued from a. We prove that the second class

particle chooses instantaneously at random (uniformly) among the possible
characteristics and then of course follows it.

This suggests the following result for the pde: if a small perturbation is
added at a point of discontinuity that would give rise to a rarefaction fan,
then the perturbation is smeared uniformly in the fan.

Informally the one dimensional asymmetric simple exclusion process we
study here is described as follows. Only a particle is allowed per site and
at rate one each particle independently of the others attemps to jump to its
right nearest neighbor; the jump is realized only if the destination site is
empty. A second class particle is a particle that jumps over empty sites to
the right of it at rate 1 and interchanges positions with the other particles
to the left of it at rate 1. Let S(t) be the semigroup corresponding to the
process without the second class particle. 

~ 

.
Let be the product distribution with marginals = 1) =

pI {x  &#x3E; 0~. Let vp = vp,p. The process with initial distribution
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145SECOND CLASS PARTICLES IN THE RAREFACTION FAN

has hydrodynamic limit

where f is a cylinder function, Tx is the translation by x operator, [.] is the
integer part and for t &#x3E; 0, r E R, u(r, t) is the entropy solution of

where uo(r) = pl{r  0~ + &#x3E; 0}. We consider p &#x3E; A. In this case

the explicit form of u(r, t) is the following:

(See Rost (1982), Andjel and Vares (1987), Rezakhanlou (1990), Landim
( 1993) and references therein.) The characteristics emanating from a related
to this equation are the solutions r(t) of the ode

Here 1 - 2u is the derivative with respect to u of the current u( 1 - u)
appearing in the non linear part of the Burgers equation (1.2). "Since u
is not continuous, (1.4) is understood in the Filippov sense: an absolutely
continuous function r is a solution if for almost all t, 2014 is between the

essential infimum and the essential supremum of 1 - 2u(r, t) evaluated at
the point (r(t), t)." (Rezakhanlou (1993); see Filippov (1960)). Under our
initial condition there is only one characteristic for every a ~ 0 but there
are infinitely many characteristics departing from the origin producing the
fan in the region [( 1 - 2 p)t, ( 1- 2A)t] . Our first result says that the second
class particle chooses one uniformly among those and follows it.

THEOREM 1. - Consider the simple exclusion process starting with the
product measure vP, a with 1 ~ p &#x3E; ~ &#x3E; 0. At time zero put a second class

particle in the origin regardless the configuration value at this point. Let Xt
be the position of the second class particle at time t and let X: = 
Then -

Vol. 31, n° 1-1995.



146 P. A. FERRARI AND C. KIPNIS

where Ut is a random variable uniformly distributed in the interval

~(1 - 2p)t, (1 - 2~~t~. Moreover for any 0  s  t,

In other words, the initial perturbation to the right of the front smears
in the rarefaction region instantaneously in the macroscopic scale. Once
chosen a direction the second class particle follows this direction.
A perturbation of the initial condition of the Burgers equation in the

rarefaction front has an analogous behavior. To describe it let 8 &#x3E; 0 and
be a density that differs from uo (r) only in the interval ~0, b~ and

in this interval the density is equal to p (instead of A). Then ~cs (r, t), the
entropic solution of the Burgers equation (1.2) but with initial condition

is given by

and the difference between this solution and the solution of the unperturbed
system is given by t) = v,~(r, t) - u(r, t). For 8  2(p - A)t,

In other words, the perturbation is smeared in the rarefaction front. The
same result is presumably true for more general initial conditions and more
general type of perturbations. To show (1.8) it suffices to compute u(r, t)
for the two different initial conditions and subtract. To do this computation
observe that u5 is just a translation of u by 8.
Theorem 1 is shown in the next section. Its proof is based in computing

the same quantity using two different couplings. In Section 3 we consider
the process starting with vl,o, that is with the configuration that has l’s to
the left of the origin (including it) and 0’s to its right. We show that if two
second class particles are added in sites 0 and 1 at time zero, then there is
a positive probability that they never meet.
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147SECOND CLASS PARTICLES IN THE RAREFACTION FAN

2. COUPLINGS

A coupling is a joint realization of two versions of the process with
different initial configurations. To realize the "basic coupling" of Liggett
(1985) one attaches a Poisson clock of parameter one to each site of Z.
When the clock rings for site x, if there is a particle in x and there is no
particle in x + 1, then the particle jumps one unit to the right. Under this
coupling the two configurations use the same realization of the clocks.
Under the "particle to particle" coupling we have to label the particles of

the two configurations. We can also use the same realizations of the clocks
attached to the sites, but only one of the configurations (say the first one)
looks at the clocks. When a clock rings for the i-th particle of the first

configuration, then the i-th particles of both configurations try to jump. On
each marginal the jump is actually performed if the exclusion rules of the
configuration of that marginal allow it.

Proof of ( 1.5). - We want to show that for r E [( 1 - 2 p)t, ( 1 - 2~)t~,

For a given initial configuration 7/, let be the number of particles
of 7/ to the left of the origin (including it) that end up at time t strictly
to the right of r minus the number of particles of 1] strictly to the right
of the origin that end up at time t to the left of r (including it). We call

Jr,t the current through r up to time t. Let = Now we

compute in two different ways

where Tx is the translation by x operator: (T~ r~ ) ( z ) = r~ ( z - x ) . For any
coupling p of and and any coupling P of the two processes
the previous quantity is also equal to

In the sequel we write E for the expectation with respect to the coupled
process. We first couple and T- i vp,x in such a way that if r~° and 1]1 are
two configurations with those distributions respectively, then r~° (~) - 1]1 (x)
for all x ~ 0 and with probability p - A there is a particle in the

origin for the first marginal and no particle for the second marginal:
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~(~~°(0) = 1 - 7~(0) = 1) = p - A. Now, in the event that there is a
discrepancy in the origin, we use the basic coupling and observe that this
discrepancy behaves like a second class particle. If we label the particles at
the other sites and call them first class particles, then under this coupling
the positions of these particles are exactly the same for both marginals. This
implies that the current produced by the first class particles are identical for
both marginals and that the only difference can arise from the second class
particle. It is then easy to see that the currents through at time e-lt
for the two marginals differ if and only if at time e-lt the second class
particle is beyond e-lr. Hence, taking expectations, from this coupling we
see that (2.2) is equal to

We now couple and T-ivp,x in such a way that 1/1 = Then

we use the particle to particle coupling to obtain that the currents through
for the two marginals differ by one if and only if for the first marginal

there is a particle at [~-1 r] + 1 at time ~-1t and no particle in site 1 at time
0. Those currents differ by -1 if and only if for the first marginal there
is a particle in site 1 at time 0 and there is no particle in site [E -1 r] + 1
at Taking expectations and noting that the above events depend
only on the first marginal, (2.2) is also equal to

Since for the first marginal the initial distribution is = 1) = A.
Letting e tending to zero we obtain by standard convergence to local
equilibrium (1.1) that

where u(r, t) is defined by ( 1.3). Putting (2.3), (2.4) and (2.5) together
we get (2.1 ). D
To show (1.6) we need the following lemma.

LEMMA 2.6. - Consider the simple exclusion process starting with the
product measure vP,a with 1 &#x3E; p &#x3E; a &#x3E; 0. Let r E (1 - 2p,1 - 2~).
Assume that at time we put a second class particle in position 
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149SECOND CLASS PARTICLES IN THE RAREFACTION FAN

disregarding the occupation number in this position. For t &#x3E; s let Rt be ~
times the position of this particle at time Then

Proof - We first take b &#x3E; 0 and use the basic coupling for the

process starting with densities uo and U8, respectively, where U8 is

defined in (1.7). Define a family of initial distributions where

~ is a product distribution with marginals = 1) = 
+ &#x3E; We couple the initial distributions and vE:

in such a way that if (q, ~) is a pair of configurations chosen from
this coupling, then r~(x)  a(x) for all x. We use the basic coupling to
construct the process with initial configurations (1], cr). Calling 1]t and at the
corresponding configurations at time t, we have  at (x) and calling
~(~) = we have that the ~ particles behave as second class
particles interacting by exclusion among them. Define J;’t, the current of
second class particles through the space-time line (0,0)-(6’~r~’~) by

This is well defined because there is a finite number of second class particles
at all times for all c &#x3E; 0. Rezakhanlou (1990) proved the following law of
large numbers for the density fields. Let 03A6 be a bounded compact support
continuous function, then (in our context),

where U6 is defined in (1.7) and E denotes the expectation for the process
with initial distribution vE:. The limit also holds is the indicator of

a finite interval. The limit (2.7) implies a law of large numbers for the
density fields of the second class particles:

where m6 is the function given by (1.8) and E denotes the expectation for
the coupled process with coupled initial distribution with marginals vp,x
and v~ as described above. Call
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The limit (2.8) implies that

consider first 8 &#x3E; 0. We claim that for each r E ((1 - 2p), (1 - 2A)),
0  s  t, there exists r’ = r’(r, s, t, 8) with the following property:

In other words, the limit of the rescaled current of second class particles
through the line determined by the space-time points (rs, s) and (r’t, t) is
zero. To see that (2.10) is true one has to see how the extra particles evolve.
Their (macroscopic) evolution is given by (1.8) hence r’ is the point such
that the area of the perturbation at time t to the right of the point r’t is the
same as the area of the perturbation at time s to the right of rs. In other
words, r’ is the unique solution of

To see that there is a unique solution one checks that for each t and 6,
M8(., t) is strictly decreasing in the interval [(1 - 2p)t, (1 - 2A)t + 8]. This
and (2.9) imply (2.10). From (2.11) it is easy to check that r’ = r - O(6),
where 0(8) is some positive function that goes to zero as 6 goes to zero.
Let Z[ be e times the position at time e-lt of the extra particle that at
time e-ls is located in site e-lrs (if there is not we add one in this

site disregarding the previous occupation number). Since by the exclusion
interaction the current of second class particles through the space-time line
(e-lrs, e-lt) is zero, it is not hard to conclude that

It is simple to check that for t &#x3E; s, Z[ if the inequality holds for
a precedent time. This holds indeed because = Z~. It is here where
we use that the particles jump only to the right. Hence, for all 8 &#x3E; 0 and

~y &#x3E; 0, since r’ = r - 0(8),

If 8  0 we perform again the basic coupling. In this case r’ = r + O(6)
and the process with initial configuration yy has extra particles. A similar
argument shows that and as before,

Annales de Z’ Institut Henri Poincaré - Probabilités et Statistiques



151SECOND CLASS PARTICLES IN THE RAREFACTION FAN

Putting the two limits together and taking 6 to zero we get the result. D

Proof of (1.6). - By the first part of the Theorem we know that the
rescaled position of the second class particle at macroscopic time s belongs
to the interval ((1 - 2p)s, (1 - 2A)s) with large probability. We fix 03B3 &#x3E; 0

and partition this interval in N sub-intervals of length ry 8 (without loss of
generality we can take N = 2(p - ~)/7). Let

Now

The last term goes to zero as a consequence of the first part of the Theorem.
Since the sum above has a finite number of terms, it suffices to show that

each term goes to zero. We bound the k-th term by

As in the proof of’ (1.5) the position of the second class particle is given
by the position of a discrepancy initially at the origin. We consider two
initial configurations 7~ picked from and 1]1 that differs from only
in the origin, that is 1]1 (0) = 1 - ~r~°(0). Performing the basic coupling for
these configurations we get

Assume = 1 (the other case is treated similarly) and suppose £j  Xs .
For the process let L~,kt be E times the position at time ~-1t of a second
class particle that at time c-l s is put in site [~’~]. We describe the
position of this particle by introducing a new family of processes 
defined, for each c and u  s, by

Vol. 31, n° 1-1995.
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After time ~ -1 s, we perform the basic coupling for and Hence,
for t &#x3E; s,

There are two possibilities: either (a) = 0, in this case it
is easy to see that and X[ interact by exclusion and  X[ or
(b) 1]2-1s([c-lf:]) = 1, and in this case and X[ may coalesce but
can not interchange positions. Since lks = X~s implies = X[, we have
proved that if .~s  Xs then  A similar argument shows that
if .~s &#x3E; X: then &#x3E; This implies that the first term of (2.12) is
bounded above by

and using a similar argument, the second term of (2.12) is bounded above by

Both probabilities go to zero by Lemma (2.6). D

3. TWO SECOND CLASS PARTICLES

In this section we show that two coalescing second class particles initially
added in sites 0 and 1 do not meet with positive probability and that the
expectation of the difference of positions at time t is of order t. We assume
that when the second class particles are in sites x and x + 1, at rate 1 both
particles coalesce in site x.

THEOREM 2. - Let 1]t be the simple exclusion process with initial
distribution vl,o. Assume that at time 0 two coalescing second class particles
are added in sites 0 and 1. Call X ° and Xt their positions at time t. Then,

Furthermore,

Proof. - Let be the number of particles to the right of the origin
by time t:

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
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Let ~ the configuration ...111000... with the rightmost particle in the
origin. For the configuration ~ in a very small time interval only one jump
can occur: the particle in the origin jumps to site 1. This is because the

rightmost particle is the only particle that has an empty site to jump to.
Hence, the Kolmogorov backwards equation applied to the expectation of
Jt( fj) gives

where the configuration r0,1 is defined by 0,1,
r0,1(0) = 0 and ~(1) = 1. We perform the basic coupling for the

processes starting with 77 and 7?~ to conclude that under this coupling

where 5q° and Ytl are the positions of the discrepancies that at time 0
were in the origin and in site 1 respectively. These discrepancies behave
like annihilating second class particles. Hence, up to the meeting time,

This implies that

and

On the other hand,

Hence, by standard convergence to local equilibrium ( 1.1 ),

Putting (3.3), (3.4), (3.5) and (3.6) together we get (3.1). The same argument
can be applied to show that for r E ~-1, 1],

Write
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because up to the meeting time, Xf = Yt° almost surely. Using
(3.7) and dominated convergence,
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