@article{AIHPB_1994__30_4_607_0, author = {Fleischmann, Klaus and Kaj, Ingemar}, title = {Large deviation probabilities for some rescaled superprocesses}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {607--645}, publisher = {Gauthier-Villars}, volume = {30}, number = {4}, year = {1994}, mrnumber = {1302763}, zbl = {0834.60092}, language = {en}, url = {http://www.numdam.org/item/AIHPB_1994__30_4_607_0/} }
TY - JOUR AU - Fleischmann, Klaus AU - Kaj, Ingemar TI - Large deviation probabilities for some rescaled superprocesses JO - Annales de l'I.H.P. Probabilités et statistiques PY - 1994 SP - 607 EP - 645 VL - 30 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/item/AIHPB_1994__30_4_607_0/ LA - en ID - AIHPB_1994__30_4_607_0 ER -
%0 Journal Article %A Fleischmann, Klaus %A Kaj, Ingemar %T Large deviation probabilities for some rescaled superprocesses %J Annales de l'I.H.P. Probabilités et statistiques %D 1994 %P 607-645 %V 30 %N 4 %I Gauthier-Villars %U http://www.numdam.org/item/AIHPB_1994__30_4_607_0/ %G en %F AIHPB_1994__30_4_607_0
Fleischmann, Klaus; Kaj, Ingemar. Large deviation probabilities for some rescaled superprocesses. Annales de l'I.H.P. Probabilités et statistiques, Tome 30 (1994) no. 4, pp. 607-645. http://www.numdam.org/item/AIHPB_1994__30_4_607_0/
[1] Probability Theory and Elements of Measure Theory, 1981, Academic Press, London. | MR | Zbl
,[2] Occupation times for critical branching Brownian motion, Ann. Probab., 13, 1985, pp. 1108-1132 | MR | Zbl
and ,[3] Measure-valued Markov Processes, École d'Été de Probabilités de Saint-Flour XXI-1991 (ed. P. L. Hennequin), Lecture Notes Math., Vol. 1541, 1993, pp. 1-260. | MR | Zbl
,[4] Strong clumping of critical space-time branching models in subcritical dimensions, Stochastic Processes Appl., Vol. 30, 1988, pp. 193-208. | MR | Zbl
and ,[5] Diffusion and reaction caused by point catalysts, SIAM J. Appl. Math., Vol. 52, 1992, pp. 163-180. | MR | Zbl
and ,[6] Stable hydrodynamic limit fluctuations of a critical branching particle system in a random medium, Ann. Probab., Vol. 17, 1989, pp. 1083-1117. | MR | Zbl
, and ,[7] Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics, Vol. 20, 1987, pp. 247-308. | MR | Zbl
and ,[8] Large deviation lower bounds for general sequences of random variables, In: Random Walks, Brownian Motion and Interacting Particle Systems, A Festschrift in Honor of Frank Spitzer, Editors: R. Durrett and H. Kesten, Progress Probab., Vol. 28, 1991, pp. 215-221, Birkhäuser, Boston. | MR | Zbl
, and ,[9] Large Deviations, 1989, Academic Press, Boston. | MR | Zbl
and ,[10] Large Deviations for a general class of random vectors, Ann. Probab., Vol. 12, 1984, pp. 1-12. | MR | Zbl
,[11] A Schilder type theorem for super-Brownian motion, Uppsala University, Dept. Math., 1993, Preprint No. 14. | MR | Zbl
, and ,[12] Random Perturbations of Dynamical Systems, 1984, Springer-Verlag, New York. | MR | Zbl
and ,[13] On the blowing up of solutions of the Cauchy Problem for ut = Δu + u1+α, J. Fac. Sci. Univ. Tokyo, Vol. 13, 1966, pp. 109-124. | MR | Zbl
,[14] A weighted occupation time for a class of measure-valued branching processes, Probab. Th. Related Fields, Vol. 71, 1986, pp. 85-116. | MR | Zbl
,[15] Large deviations for occupation times of measure-valued branching Brownian motions, Stochastics, Stochastic Reports, Vol. 45, 1993, pp. 177-209. | MR | Zbl
and ,[16] Random Measures, 3rd revised and enlarged ed. 1983, Akademie-Verlag, Berlin. | MR | Zbl
,[17] Some limit theorems for super-Brownian motion and semilinear differential equations, Ann. Probab., Vol. 21, 1993, pp. 979-995. | MR | Zbl
,[18] Invariante zufällige Punktfolgen, Wiss. Z. Friedrich-Schiller-Universität Jena, Vol. 18, 1969, pp. 361-372. | MR | Zbl
,[19] Infinitely Divisible Point Processes, 1978, Wiley, Chichester. | MR | Zbl
, and ,[20] Single point blow-up for a general semi-linear heat equation, Indiana Univ. Math. J. Vol. 34, 1985, pp. 881-913. | MR | Zbl
and ,[21] Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc., Vol. 139, 1969, pp. 301-310. | MR | Zbl
and ,[22] Nonlinear Functional Analysis and its Applications I, 1986, Springer-Verlag, New York. | MR | Zbl
,