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Occupation times of compact sets
by planar Brownian motion
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ABSTRACT. - Let K be a connected compact subset of 1R2. We consider
the distribution of the occupation time (over the interval [0, t]) of K by a
Brownian motion started at an arbitrary point in 1R2. We obtain an explicit
formula for the distribution of the occupation time of a closed disc by a
Brownian motion. Using this result, we then obtain some Tauberian
asymptotic results for the general case. The main technique involves
calculating the Ito excursion law for the BES (2) process.

Key words : Arc-sine law, occupation time, excursion theory.

RESUME. - Soit K c 1R2 compact. On considère la distribution du temps
de séjour (pendant l’intervalle [0, t]) dans K par un mouvement brownien
issu d’un point arbitraire dans 1R2. On obtient une formule explicite pour
la distribution du temps de séjour dans un disque fermé, que l’on utilise
alors pour obtenir quelques résultats asymptotiques taubériens pour le cas
general. La technique principale consiste à calculer la loi d’Ito des excur-
sions pour le processus BES (2).
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318 T. CHAN

1. INTRODUCTION AND STATEMENT OF RESULTS

Let K be a compact subset of [R2 with non-empty interior; such a set
will be referred to as a compact region in [R2. Consider the problem of
finding the distribution of the occupation time of K during the interval
[0, t] by a Brownian motion started at an arbitrary point in [R2. Of course,
one cannot hope to obtain any explicit results without making some
specific assumptions about K. We first take K to be a closed disc.

Let B = (X, Y) be a Brownian motion in [R2 started at 0 and let DR
denote the closed disc of radius R, {z: z I  R ~ . For fixed z let Vt (z; R)
and Vt (z) denote the occupation times

(In three or more dimensions, U~, V~  oo almost surely and the distribu-
tion of U~ is given by the Ciesielski-Taylor theorem).
The occupation time Vt (z) is related to the following problem concerned

with heat-flow with cooling. Suppose that an infinite plate (1R2) is initially
at temperature 1 and that the plate is insulated everywhere except for a
"hole" shaped like K where the plate is exposed to an environment kept
at constant temperature 0. The rate of heat loss due to cooling is propor-
tional to the difference in temperature between the plate and its surround-
ing environment. Let a &#x3E; 0 denote the constant of proportionality and let
u (t, z) denote the temperature at the point z at time t. Then u satisfies

But this problem can be reformulated probabilistically: according to Kac’s
formula [see Itô and McKean ( 1965), § 2 . 6], u (t, ~r cZ~] .
The main results in this paper are the following.

THEOREM 1. - Fix a, ~, &#x3E; 0 and let T be an exponential random variable
of rate À, independent of B. If z E DR, I z ~ = r __ R, the distribution of Ut (z; R)
is specified by

where y = J2 (À + a), 9 = J2 À and I~ and K~ are modified Bessel functions.
’ 
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319OCCUPATION TIMES OF 2-D BROWNIAN MOTION

If z ~ DR, z I = r &#x3E; R, the distribution of Ut (z; R) is specified by

The proof of Theorem 1 occupies Section 2. We shall use methods of
excursion theory which are inspired by the excursion proof of the arc-sine
law for Brownian motion [see Rogers and Williams (1987), § VI. 53].
Although the formulae (1.2 a, b) are very complicated functions of À

and a and it is not possible to invert the Laplace transform, we can
nevertheless deduce some interesting asymptotic results from Theorem 1.

COROLLARY 1. - Fix a &#x3E; o. Then as t - oo, the following asymptotic
result holds for all z E I1~2 :

where

Proof. - Let z E [R2 be arbitrary and define

Using the following asymptotic properties of Bessel functions,

it is easy to see from (1. 2 a, b) that as À 1 0,

(The constant c must be calculated from ( 1. 2 a) and ( 1. 2 b) separately;
the formula for c given above is merely a compact way of writing the
different values of c for the cases I z ( _ R and z ( &#x3E; R.) The function 1/log À
is slowly varying (at infinity) and the function is clearly
monotone, so by Karamata’s Tauberian theorem together with the mon-
otone density theorem [see Bingham et al. (1987), Theorems 1.7.1
and 1.7.2] the result follows. 0

We can deduce from the above results for the disc the following
asymptotic result for the occupation time of a general compact region.

Vol. 30, n° 2-1994.



320 T. CHAN

COROLLARY 2. - Let K be a compact region in f1~2 and let z E 1~2. Then
for fixed a &#x3E; 0, as t - ~, the following asymptotic result holds:

for some constant c(K)&#x3E;0 depending on z, a and K.
~

Let B)/(~)= Jo -aV, (z) }]~. From the proof of

Corollary 1 above, we see that it is sufficient to establish the analogue
of(l .4), namely

as À 1 0, or equivalently, the limit

exists and is positive.
We can find 0  r  R such that so that

Ut (z; R) for all t and hence

for all ~, &#x3E; o. (The functions cpr and cpR are as defined at (1. 3).) The
asymptotic result ( 1 . 4) therefore implies that there exist positive constants
c and c2 such that

for all À &#x3E; 0 sufficiently small.
Because ~ ~--~ ~ (À) is the Laplace transform of a positive function, it is

a completely monotonic function (i. e. a non-negative function whose even
derivatives are all non-negative and whose odd derivatives are all non-

positive). Therefore the function B)/ is analytic in the (open) right half-
[see Widder (1941), Chapter IV, Theorem 3 a] and

so (À log 1 /~,) ~r (À) is also analytic in the right half-plane, provided we take
the principal branch of the log function. Furthermore, for pe R and À &#x3E; 0,

and also, as t -~ oo , the integral e - ‘ a t ~ [e - °‘ ~t] d t
o

exists as a Riemann integral. Hence from ( 1. 7) we see that the function
(~, log 1 /~,) ~r (~,) is actually bounded in a neighbourhood of 0 in the right
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321OCCUPATION TIMES OF 2-D BROWNIAN MOTION

half-plane, not just for sufficiently small real ~, &#x3E; o. But since the trans-

formation ~, H I/À maps the right half-plane to itself, the function

is analytic in the right half-plane and bounded in a
neighbourhood of infinity, and so the worst that can happen is that it has
a removable singularity at infinity. This shows in particular that the limit

exists, which implies ( 1 . 5). D

The constants c~ 1 and c2 in ( 1. 7) are given by the asymptotic result of
Corollary 1 and since the constant c (K) involved in the asymptotic result
of Corollary 2 lies between c~ and c2, it is possible to obtain upper and
lower bounds for c (K) in terms of z, the diameter of K and other quantities
depending on the geometry of K.
The preceding two results concern the large-time behaviour of Vt and

as such are related to Birkhoffs ergodic theorem for planar Brownian

motion, which states the following: let f be such that y= dx  ~

and let Tn be the successive hitting times by Bt of the unit circle via the
circle of radius 2, then 

[See § 7 . 17 of Ito and McKean (1965).] Specializing to the occupation
time of the disc, we have UTn (0; R)/n - R2 log 2 almost surely.

It is easy to see from the asymptotic behaviour of Iv and K~ at infinity
that as À - ~, cpR (03BB)~ I/À, which is as expected since E [e - °‘ Ut (z)] T 1 as

t i 0. For a point z on the boundary of the disc, one could of course use
the asymptotic behaviour of 03C6R(03BB)-1/03BB as À - oo to obtain the leading-
term asymptotics for small t, but there is an easier method
because this behaviour is determined by the behaviour of E [UJ for small
t and since there are other well-known methods for determining such
asymptotics, we shall not pursue them here. One can also differentiate
( 1. 2 a, b) to obtain explicit formulae for the Laplace transforms of
moments of Ut. These are still very complicated functions of A and one
can only hope to get asymptotic results for large t; but these too are

already known by other means [see for example, Darling and Kac (1957).]
Theorem 1 may be regarded as a generalization of the classical arc-sine

law for one-dimensional Brownian motion. Note that Ut (z; R) as defined
in ( 1 . 1 ) may be written as

Vol. 30, n° 2-1994.
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where p is a BES (2) process started at r &#x3E; 0. Theorem 1 is therefore an

analogue of the arc-sine law for the two-dimensional Bessel process.
Similar analogues of the arc-sine law for one-dimensional time-homogen-
eous diffusions have been obtained by Truman and Williams (1990),
assuming that the drift is a bounded C~ 1 function and that the speed
measure has an L 1 density. The Bessel process does not satisfy these
assumptions, which enabled Truman and Williams to use Kac’s formula
to obtain the result of Theorem 1. (However, we shall see later that the
formula (1. 2 a) is exactly identical to the formula Truman and Williams
(1990) obtained using Kac’s theorem.)

2. PROOF OF THEOREM 1

Throughout, we use the representation (1 . 8) of Ut in terms of a BES (2)
process. Let p be a BES (2) process started at R. We regard R as fixed
and we write R) for convenience. We begin by developing
some excursion theory needed in the proof. For a more detailed treatment
of the ideas of excursion theory used in the sequel, we refer the reader to
the relevant sections in Chapter VI of Rogers and Williams (1987).

Consider the excursions of p from R. The key to excursion theory
is the Ito excursion measure n, which is a a-finite measure on the
canonical space of excursions U --_ ~ continuous f : ~ + -~ s. t.

.f’-1 (~+~{ R ~) _ (0, ~) for some § ). The essential idea behind the excur-
sion measure n - which is an immediate consequence of the celebrated
theorem of Ito [Rogers and Williams (1987), Theorem VI. 47 . 6] - is that
if A1, A2, ..., Ak are disjoint (Borel) sets of excursions in U with
n (Ai)  oo for i =1, 2, ..., k, and if Nt (Ai) is the number of excursions
in Ai by the time p as accumulated local time t at R, then under the
canonical measure P~ associated with the process p, Nt (A 1 ), ..., Nt (Ak)
are independent Poisson processes with rates n (A1), ..., n (Ak). In par-
ticular, the local time when the first excursion in Ai occurs is exponentially
distributed with rate n (Ai). Furthermore, the probability that the first

k

excursion in A = U Ai belongs to Ai is n (Ai)/n (A). Next, define a family
i= 1

of measures on the state space of p by

for Borel sets B, where § is the lifetime of the excursion f. The family (nr)
is an entrance law for the semigroup associated with the BES (2) process
killed at R, and the Ito excursion measure n is completely specified by
the family (nt) [see Rogers and Williams (1987), Theorem VI. 48 . 1 ].
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323OCCUPATION TIMES OF 2-D BROWNIAN MOTION

The best way to calculate nt (dx) is via its Laplace transform

(There is no scope for confusion in the notation here as we shall follow
the convention of using Roman subscripts for the entrance law and Greek
subscripts for its Laplace transform.) The measure n03BB admits a probabilistic
interpretation in the context of marked excursions. If we mark the time
axis [0, oo ) with points of a Poisson process of rate À, independent of p,
then some excursions will contain a mark. (Strictly speaking, we need to
incorporate the Poisson process of marks into the Poisson process of
excursions and define a process on a canonical space of marked excursions.
See section VI. 49 of Rogers and Williams (1987) for the precise details.)
An important observation is that we can either first mark the time axis with
points of an independent Poisson process of rate À and then decompose the
path of p into (marked) excursions from R, or we can first decompose
the path of p into (unmarked) excursions and then mark each excursion
independently with an independent Poisson process of rate À - the result
is the same. A precise formulation of this obvious result can be found in
Theorem VI. 49 . 2 of Rogers and Williams (1987). One consequence of
this is that

is the n-measure (i. e. local time rate) of marked excursions and
À nx ([R, oo]), À nx ([0, R]) are respectively the n-measures of the "up" and
"down" excursions from R which contain a mark. Moreover, for a Borel
subset B c 

where R~ is the resolvent operator. Thus heuristically speaking, À nx (B) is
the n-measure of excursions of which are in the set B at the time of the
first mark.

To prove Theorem 1, we first suppose that the Brownian motion B is
started at a point z on the circumference of the disc: z ~ = r = R. Fix a,
~, &#x3E; o. Mark the time axis [0, oo ) with red points according to a Poisson
process of rate À, independent of p. Also, mark [0, oo) with blue points
according to another Poisson process, independent of the first, at

rate a R~ (Pt). Thus, conditional on p, the number of blue points in the
time interval [0, t] has a Poisson distribution with mean (’J, Ut (R) and the
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probability that there are no blue points in [0, t] is Hence

The problem now is that an excursion of p into the interval [0, R] could
well contain both a red and a blue point. To get around this problem, we
use the following trick which is also used in the proof of the arc-sine law
in Rogers and Williams (1987). The red and blue marks could also be
produced by the following alternative method. Firstly, mark [0, oo ) with
red points, not at constant rate À, but at (0) (pj and independently
(conditional on p) mark the time axis with green points at rate

(À + a) 1 [o, R~ (Pt). Next, recolour each green point, independently of other
green points, red with probability ~,/{~, + a) and blue with probability
a/{~, + a). Since before recolouring, a red point can only occur during an
excursion by p into (R, oJ) and a green point can only occur during an
excursion into [0, R], no excursion can contain both a red point and a
green point. We also have

P (first red point appears before the first blue point)
= P (first red point appears before the first green point)

+ P (first green pt. appears before first red pt. and is recoloured red)
= P ( 1 st red pt. before 1 st green pt.)

+ ~ ~ (1st green pt. before 1 st red pt.)
~, + a 

( g p p )

(2 . 3)
It is now a matter of computing the two probabilities in (2. 3), which we
do using excursion theory.
The transition density function pt (x, y) for p is

[see Revuz and Yor (1991), p. 415]. From this, we obtain the resolvent
density rx (x, y) [see Erdélyi (1954), § 4 .17 Eq. (4)]

(recall that e = J2 À.) Letting y - x in the above shows that
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where L~ is the local time spent at R by time t. (The local time is defined
only up to constant multiples but the exact normalization is of no import-

ance here; the identity r J. (R, R)= Jo in (2 . 4) holds if LRt

is given by Tanaka’s formula, the so-called semi-martingale normalization
of local time).
We first need to calculate À n~ ((~+), the n-measure of excursions which

contain a mark (from a Poisson process of constant rate À). If T is the
time of the first mark, then L~ has an exponential distribution of rate
~, n~ (f~ +). Therefore, with o = , JZ ~,,

Next, we can use (2 .1 ) and (2 . 5) to obtain a formula for the density of
n~ (dx) = ~~ (x) dx:

Putting P = À + a, the n-measure of excursions which contain at least one
green mark - which is the same as the n-measure of P-marked excursions
into [0, R] - is given R]), as explained earlier. From (2 . 6) we
have

where we have put y = /2p. We now proceed to calculate the integral in
(2.7) (1).

It is known that the Bessel function J~ satisfies the following identity:

[see Watson ( 1952), § 12.11, Eq. (1)]. Putting Jl=v=O in (2 . 8) gives

(~) This, and other similar computations elsewhere in the paper, can be quickly verified
using a suitable computer package for symbolic computations, such as Mathematica.

Vol. 30, n° 2-1994.



326 T. CHAN

For the modified Bessel functions we have and substi-
tuting this in (2. 9) yields

and hence

Upon substitution of this last integral into (2.7), we finally obtain the
excursion measure (or local time rate) of green-marked excursions:

Next, from (2 . 5) and (2.10) the local time rate of red marked excursions
is given by

Using another well-known identity for Bessel functions [Watson (1952),
§ 3 . 71, Eq. (20)],

we can write

Substituting this into (2 .11 ) then yields the excursion measure of red-
marked excursions:

The local times at R at the time of the first green and the first red
mark are exponential random variables whose rates are given respectively
by (2.10) and (2.12). Moreover, since the Poisson process of excursions
into [0, R] is independent of the excursions into [R, these are indepen-
dent exponential random variables. Thus, for instance, the event that the
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first red mark appears before the first green mark is equivalent to the
event that the local time at R when the first red mark appears is less than

the local time at R when the first green mark appears. The probabilities
in (2. 3) can hence be calculated as follows:

and

Substituting (2.10) and (2.12) into (2.13-2. 14) and using (2. 2) and (2. 3)
now yields the desired result (1. 2 a) in the case where r = R.

Consider now the case that z is in the interior of the disc: 

Define the hitting time Next mark the time axis with

red and green points and recolour the green points exactly as before, only
this time the Bessel process p starts at r  R. By the strong Markov
property at ’tR we have

P~ (first red point before the first blue point)
= [pr (1st red pt. before 1 st green pt.)

+ 
03BB 

Pr (1st green pt. before 1 st red pt.)
~, + a 

( g p p )

= P~ (no green pts. before Tn) [pR ( 1 st red pt. before 1 st green pt.)

+ ~, (~, + a) -1 green pt. before TR)
+ P’’(no green pts. before TR) [pR (1st green pt. before 1 st red pt.)].

(2 .15)

It remains to calculate P’’ (no green pts. before Tp) = E’’ [exp ~ - where

But this can be done by a standard elementary argument as
follows. First, by the Markov property, for r  R  y we have

Taking Laplace transforms and letting R then gives (using (2 . 4) for
the resolvent density)

(which of course is not a new result.) Putting (2.16) together with what
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we have already done at (2.13-2. 14) and substituting into (2.15) gives
the formula (1. 2 a).
The result (1. 2 b) for a starting point outside of DR can be derived

similarly, but this time using the fact that for r &#x3E; R,

This completes the proof of Theorem 1. D

We conclude this section with a few additional observations. For ~-&#x3E;0,

define M (~): = f~ ? ~ E [? "~ ~] ~. Next, introduce the notation

for some function f Formally applying the formula for u (R) given in
Truman and Williams (1990) [Eq. (61)] gives

From (2.16) we have

and substituting (2.18) into (2.17) shows that the formal result (2.17)
indeed agrees with ( 1 . 2 a) when r = R.

Finally, the method presented here can be used similarly to compute
the occupation time distribution for an annulus. We leave the details to
the reader.
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