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Multiplicative chaos and random translation
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ABSTRACT. - Let G = ~ Gk }k &#x3E; 1 be a standard Gaussian sequence and
Y = ~ Yk ~k &#x3E; 1 an independent non-negative random sequence which is also
independent of G. We shall analyse the conditions on Y for the equivalence
(= mutual absolute continuity) of the measures ~,~ and on ROO

induced by G and G+Y, respectively. This problem implies a typical
example of the multiplicative chaos. In particular we shall analyse in detail
the case where Yk’s are two valued in view of the regularity of the
multiplicative chaos and, as an application, give a negative answer to a
conjecture of J.-P. Kahane on the regularity of the multiplicative chaos.

Key words : Multiplicative chaos, absolute continuity.

RÉSUMÉ. - Soit G = {Gk}k~1 une suite de variables aléatoires gaussien-
nes et }k~1 une suite de variables aléatoires non-negatives indépen-
dantes qui soit aussi indépendante de G. On donne les conditions sur Y
pour 1’equivalence des mesures JlG et sur R °° induites par G et

G + Y, respectivement. Ce problème fournit un exemple typique du chaos
multiplicatif. En particulier, on analyse en détail le cas où Yk sont deux-
valuees au point de vue de la régularité du chaos multiplicatif et, comme
application, on donne une réponse negative a une des conjectures de
J.-P. Kahane sur la régularité du chaos multiplicatif.
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246 H. SATO AND M. TAMASHIRO

1. INTRODUCTION

Let T be a compact metric space an indepen-
dent family of centered Gaussian processes on a probability space
(Q, ~ ,P). For every k E N we assume that

and Xk (t, (o) is (X ~ F)-meaurable, where X is the Borel field of T, and
define

Then, for every fixed tET, { Mn (t, 1 is naturally a positive martin-
gale.

For the collection of all finite measures on (T, E),
define a random measure M a by

for every continuous function ()) on T. After Kahane [2] the above map
M; Ma is called a multiplicative chaos, and 03C3 E u (T) is said
to be M-regular or M-singular according as E [(M 6) (T)] = 6 (T) or 0.
When T is the d-dimensional torus, o is the Lebesgue measure and the

covariance functions satisfy

for some § &#x3E; 0, Kahane [2] proved that a is M-regular if §  2 d and M-

singular if ~ &#x3E;_ 2 d. In other words o is M-regular if and only if

We should remark that this result implies the complete solution to the
problem of absolute continuity of measures in the 2-space time dimensional
H~egh-Krohn’s model of quantum fields, which has been investigated by
many authors (H~egh-Krohn [I], Kusuoka [7] and its references).

For a E ~~ (T) and u &#x3E;__ 0 define

Then Kahane posed the following conjecture.
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247RANDOM TRANSLATION

Conjecture (Kahane [4]). - Let M be a multiplicative chaos. Then
a E u (T) is M-regular if and only if a is expressed as a sum 03C3 (conver-

n

gence in total variation) of 6n E ~~ (T) such that I ( 1; ~n)  oo .

On the other hand let be an i.i.d. random sequence
defined on (S2, ~ , P), a probability measure on (T, E) and
Y = ~ Yk (t) ~k &#x3E; 1 an independent random sequence defined on (T, E, a).
Then is defined on the product probability
space (Q x T, ~ Q E, P Q a) and X and Y are independent. The authors
[6, 8, 9] investigated the problem of the equivalence of the probability
measures ~,X and Jlx+y on R °° induced by X and X + Y, respectively.

In particular let 1 be a standard Gaussian sequence on

(Q, ~ , P), an independent non-negative random sequence
on (T, L, a) and

Then (1.2) defines a multiplicative chaos M for Xk (t, ~) = Yk (t) Gk (~)
and we have

On the other hand JlG and are equivalent or singular
according as a is M-regular or M-singular. Owed to the well

known Kakutani dichotomy [5] we have either ~c 1 

To characterize the equivalence of j~ and is our first aim. In

Section 2 we shall prove the following theorem.

THEOREM 1.

and

for some E&#x3E;O imply 
Conversely implies

and ( 1. 3) for all E &#x3E; o.
As a cororally we obtain a positive answer to the conjecture in the case

where for some (Proposition 1).
k
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248 H. SATO AND M. TAMASHIRO

In particular we analyse, in Section 3, when Y = ~ E (ak, pk) ~k &#x3E;_ 1 is an

independent random sequence with distributions

where and 1 for every k E N. Define

Then, relating to the Kahane’s conjecture, we shall prove:

THEOREM 2. - (a) Assume sup ak  r . Then I (u ; a)  r for some u &#x3E; 0
k

implies Conversely, G~ G+X implies I (u ; a)  aJ for every
u &#x3E; 0. Consequently we have f and only f I (I ; a)  aJ .

(b) Assume sup ak = ~, and define 03B1 = lim inf 03B1k and £ = lim sup 03B1k.
k i k; ak&#x3E; i i i k; ak&#x3E; i i

(b-I) Assume 03B1 &#x3E; 3 2. Then f and only f I (2 ; a)  aJ .

(b-it ) Assume 1 2 ~03B1~03B1~3 2. Then 1 (2 ; a)  aJ implies G~ G+Y. Con-

versely, implies I ( I - E; a)  aJ for every 0  E  I .

(b-iii) Assume 03B11. Then 1 (2 a + E ; a)  aJ for some E &#x3E; 0 implies
2

In particular I ( I ; a)  aJ implies Conversely
implies 1 ((2 a - E) + ; a)  aJ for every E &#x3E; 0, where a + denotes

max (a, 0) .
More precisely we shall analyse the case (b-it). Define

and

Then we shall prove:

THEOREM 3. - Assume su a = oo and 1 - a = a = a - 3 . Then 03BB( a  8

implies Conversely ~, (a) &#x3E; 9 implies 
As an application we shall give a negative answer to the Kahane’s

conjecture by giving examples in Section 4.
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2. GENERAL CASE

Let be a standard Gaussian sequence defined on

(Q, ~ , E ~l (T) a probability measure and Y = ~ Yk (t) ~k &#x3E; 1 an inde-
pendent non-negative random sequence defined on (T, X, a). Define

and

Then the following theorem is our starting point.

THEOREM 4. [6, Theorem 2]. - The next four statements are equivalent.
is M-regular, where M is the multiplicative chaos defined by (1.2).

(b) ~G ~ .

(c) ~ Zk (Gk) converges almost surely.
k

(d) For some, so that any, K ( &#x3E;_ 1)

and

Proof of Theorem 1. - For any £ &#x3E; 0 decompose Zk (Gk) into

where E~ denotes the expectation with respect to a. Then, from the same
arguments as in [6, Lemma 1, Theorem 4] and [8, Theorem 3.2 (B)],

implies the almost sure absolute convergence of
k

~ V£ (Gk), and ( 1. 3) implies the L2-convergence, therefore the almost sure
k

convergence, of 03A3 WE (Gk). Thus we obtain the sufficiency.
k

Conversely assume the almost sure convergence Then,
k

since 0, Zk (x) is increasing and continuous in x, and

Vol. 30, n° 2-1994.



250 H. SATO AND M. TAMASHIRO

Theorem 4 (d-2) implies

Therefore we have which

implies

Next we shall prove (1.3). For any E &#x3E; 0 we have -8~ for

every ~e[0 3 E). Then Theorem 4(~-2) implies

which completes the proof of Theorem 1. D

PROPOSITION 1. - (a) Assume sup Yk  ~, a-a. s .. Then I ( 1; 6)  o0
k

implies 
(b) Assume sup Yk  L, a-a. s . for some L &#x3E; o. Then if and only

k

6)  oo .

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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Proof. - is an independent random sequence, we
have 

and thus we have 1(1; cr)  oo if and only if

(a) Assume supYkoo, a-a.s. and Then we have
k

for some L &#x3E; 0 so that £ implies
k k

the almost sure convergence of 03A3Zk (Gk) by Theorem 1. In fact, since
k

0, I (1; a)  oo implies

(b) Assume sup Yk  L, a-a.s. for some L &#x3E; o. Then we obtain "if" part
k

by (a). Conversely assume the almost sure convergence of £ Zk (Gk). Then,
k

by Theorem 1, we so that
k k

which proves (b). D

In Section 4 (4. 3) we shall give an example that sup Yk  a-a.s. and
k

do not imply I ( 1; 

Vol. 30, n° 2-1994.
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3. TWO-VALUED CASE

In this section we consider the case Y = ~ E (a~, pk) } . By definition ( 1. 4)
and (2.1) we have

By Theorem 4, M-regularity of a, the equivalence of JlG and and
the almost sure convergence of £ Zk (Gk) are equivalent. Relating to the

k

conjecture, we shall characterize them in terms of

First we shall prove the following.

PROPOSITION 2. - (a) 03A3pk  oo implies the almost sure absolute conver-
k

gence of ~ 
k

(b) I (2; ~)  ao implies the almost sure convergence of ~ Zk (Gk).
k

Proof. - (a) Assume ~. Then

which proves (a).
(b) Assume 1(2; 6)  oo . is a sequence of indepen-

dent random variables with mean 0, L E [Zk (Gk)2]  oo implies the L2-
k

convergence, consequently the almost sure convergence, of £ Zk (Gk). In
k

fact we have

Decompose N into

Annales de l’Institut Henri Poincare - Probabilités et Statistiques



253RANDOM TRANSLATION

Remark 1. - We have L pk ak  oo if and only if
1

for some, so that any, u &#x3E; 0.

The next lemma is immediately derived from Proposition 2 and
Remark 1.

LEMMA 1. - (a) L implies the almost sure convergence of
k ~ N2

Z Zk 
k ~ N2

(b) implies the almost sure convergence of 03A3 Zk (Gk).
k ~ N1 k ~ N1

The following lemma plays a central role in our discussion.

LEMMA 2. - L Zk (Gk) converges almost surely if and only if
k

and

Proof. - Assume the almost sure convergence of £ Zk (Gk). Then, by
k

Theorem 1, we have

which proves (3 .1 ) and (3. 2).

Vol. 30, n° 2-1994.
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Since Zk (x) is strictly increasing and Z~j o~+ 2014 ) = 1, we have by
Theorem 4 (d-1) and (d-2)

which proves (3 . 3), and

thus, by (3 . 2), this proves (3.4).
Conversely (3.1) implies the almost sure convergence of £ Zk (Gk) by

1

Lemma 1 (b). On the other hand, by Theorem 4, (3 . 2), (3 . 3) and (3 . 4)
implies the almost sure convergence of £ Zk (Gk), which completes the

proof. D

Remark 2. - We have proved Lemma 2 for a decomposition of N
according 1 or ak&#x3E; 1. But it is not difficult to show that Lemma 2

is true for any decomposition of N according E or ak &#x3E; E, where E

is an arbitrary positive number.

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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Remark 3. - Since the series (3 . .1 ) ~ (3 . 4) are of positive terms, for
n

any decomposition N = U ffj’ 1~~ Zk (Gk) converges almost surely if and
i

only if L Zk (Gk), j =1, 2, ..., n, separately converge almost surely.
k e 

PROPOSITION 3. - (a) + - for every k E ~+’ 2 ~ then 
ak 2 k

converges almost surely if and only if I (2 ; ~)  

(b) every k E N2, then Z k ( G k) converges almost surely f

Proof - (a) I (2 ; a)  oo implies the almost sure convergence of

by Proposition 2 (b).
k

Conversely assume oc k &#x3E; - 1 a k + 3 2 for every and the almost sure

convergence Then we have by Lemma 2
k

On the other hand we have by Lemma 2 (3 .1 ) and Remark 1

Therefore we have 03A3p2k (exp [ak ] -1 )  oo and, consequently,
k

1(2; 
(b) By Lemma 1, (3 . 1 ) and L pk~ imply the almost sure conver-

gence of 03A3Zk (Gk).
k

Conversely assume the almost sure convergence Since
k

a - 1 _ 0 and a a + 1 &#x3E;_ 1 for every k E % 2’ we have, by Lemma 2

consequently L oo . Then Lemma 2 completes the proof of (b). D

Vol. 30, n° 2-1994.
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Proof of theorem 2. - (a) is proved by Proposition I (b).
(b) Assume sup ak = aJ .

k

(b-I) Assume 03B1 &#x3E; 3. Then for large k e N, so that
~ 

2 2

Proposition 3 (a) and Theorem 4 prove (b-I).

(b-it) ~ 3 2.
1 (2; a)  aJ implies G +Y by Proposition 2 (b) and Theorem 4.
Conversely assume and fix any 0EI. Then, by

Theorem 4, converges almost surely and we have (3 .2) by
k

Lemma 2. Choose T &#x3E; 0 such that T  Jl + E - I and also choose ko e N2
such that k &#x3E; ko, k e N2 implies 03B1k ~1 2 - ’to Then we have by Theorem 4
and Lemma 2

which proves (b-it).

(b-iii) Assume 03B11. Then 03B1k1 for large k~N, thus we have
2 2

if and only if (3 . I) and £ p~  aJ by Proposition 3 (b) and
k e i~

Theorem 4. On the other hand, for any E &#x3E; 0, we may choose ko e /~, by
definition, such that k &#x3E; ko, k e /~ implies

It is easy to check

for k &#x3E;_ ko, k E ~V’2, which proves (b-iii). D

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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For the proof of Theorem 3 we shall give the next lemma. Define

and note that ~,’ (x, x) = ~, (x) for every x &#x3E;_ o.

LEMMA 3. - Assume lim su p ak&#x3E; 1 , (3 . .1 , (3 . 2) and 1  a k- _ - 1 + 3
k 2 ak 2

for every 
(a) (i) (a, a)  9, then we have (3 . 3).

(ii) If ~,’ (a, oc) &#x3E; 9, then (3. 3) does not hold.
(b) (i) If ~, (oc)  9, then we have (3 . 4).

(ii ) If ~, &#x3E; 8, then (3 . 4) does not hold.

Proof. - Before proving the lemma we shall remark that 1 _ a - oc - 3’}. 
-_ - 2

0  ~,’ (a, oc) -- ~,’ (oc, a) _ 2 and 1  ~, (a)  ~, (a)  2, and that (3. 2) implies
lim consequently,
k~N2

Therefore, for an 0  b  1 we may choose k ~ E ~V’ such thatY 
2 

~ Y C)

for every k &#x3E;_ k (~), kEJV’2.
On the other hand (3 .1 ) implies

for every u &#x3E; 0 and we have by (3. 2)

Vol. 30, n° 2-1994.
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(a-i ) Assume ~,’ (a, a)  8 and fix any u, such that

~,’ (oc, a)  uo  u  8. Then, by (3 . 6), we have ~ pk exp  oo .

According as _ a &#x3E; 2 1 or a _ = 2 ~ 1 choose 0  b  1 such th at ~, ’ (a + b, a ~) -  uo
and a &#x3E;_ 1 + b or 03BB’ a + 03B4, 1 _ u . Then we have

and

for every k &#x3E;_ k (~), k E ~V’2. Consequently we have

which proves (~-i).
Assume ~(a, a)&#x3E;0 and fix any such that ~’(a, a)&#x3E;M&#x3E;8.

Then, by (3.6), we have p2k exp [u 2a2k] =00. Choose 082014 such
that 03BB’ (a - 8, a + 2 8) = u. Then we have

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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so that

which proves 
(M) Assume ~(a)8.
If a = -, then p2k cxp  oo by 03BB( - ) = 2 and (3.6), thus we

obtain the conclusion.

Next we assume a- and fix any M&#x3E;0 such that A(a)M8. Then,

by (3.6), 03A3 p2kexp[ua2k] oo. Choose 0§ - such that
~

Then from (3 . 5) we have

for every k &#x3E;_ k (~), k E ~V’2. Thus

which proves (b-i).

Vol. 30, n° 2-1994.
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(Mi) Assume ~(a)&#x3E;8 and fix any such that ~(a)&#x3E;M&#x3E;6. Then,

by (3.6), we have p2kexp[u 2a2k] ==oo. Choose 082014such that
~ (a 2014 2 8) ~ u. Then we have from (3.5)

for every k &#x3E;_ k (~), and

which proves (Mi). D

Proof of theorem 3. - First we consider the case 03B1=3 2.03BB(3 2)=203B8
implies 1(2; a)oo, thus we have by Proposition 2(b) and
Theorem 4.

Conversely ~( - )&#x3E;9 implies 1(220142 r; o)=oo for some 0T1, thus
we have

Without loss of generality, by Lemma 2 and Theorem 4, we may assume
(3.1) and (3 . 2), and consequently we have

Choose b &#x3E; 0 such that b2  2 i and such that k ? ko, 

implies 03B1k + b &#x3E;_ 3 . Then we have

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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which implies JlG..L by Lemma 2 and Theorem 4.

Next we consider the case 1 2  a  3 . 2 Choose 0  ~  1 and ko E JV 2 such

that

for every k &#x3E;_ ko, k ~ N2.03BB(03B1)03B8 implies (3.1) and (3.2) since 03BB(03B1)&#x3E;1

for 1  a  3 . On the other hand, by ( 3 . 2 ) and (3 . 7), we have
2 2

lim so that lim Therefore we may choose kl &#x3E;_ ko, kl 

such that

for every Thus we have by Lemma 3, Lemma 2 and
Theorem 4.

Conversely By Lemma 2 and Theorem 4, we may
assume (3.1) and (3 . 2), consequently we have by the same
argument from above.

Finally we consider the case a = 1 . 2 ~, 1 2 =1  9 implies I ( 1 + T; a)  o0

for some 0  T  1, then we have (3.1), (3 . 2) and

Choose such that for every k~N2. Then we

have

so that by Lemma 1 and Theorem 4.

Vol. 30, n° 2-1994.
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Conversely ~, C 1 2l 1 &#x3E; 6 implies I ( I - i; cr) = oo for some 0  i  1, so that

By Lemma 2 and Theorem 4, we may assume (3 .1 ) and (3. 2), and
consequently we have

Choose b &#x3E; 0 such that 8  J1 + i -1 and ko E ~V’2 such that k &#x3E;_ ko, kE% 2
implies 03B1k + b &#x3E;_ 1 . Then we have

which implies ~,~ -L by Lemma 2 and Theorem 4. D

4. EXAMPLES

In this section we shall give negative answers to Kahane’s conjecture.
For the two-valued sequence Y = ~ E (ak, 1 on (T, E, o), define

where fl is positive constant and &#x3E; 1 . Then we have2

and a = lim o~ = -. Moreover we have
k P

Annales de l’Institut Henri Poincare - Probabilités et Statistiques



263RANDOM TRANSLATION

for every u&#x3E;O, so that 9 = 2 (2 y -1 ) and I(03B8; 6 = ~. The multiplicativeY ~ 

~Y 
( ~ )

chaos M defined in ( 1. 2) is given by

In this case 1(1; o)oo but a is not M-regular. In fact we have

a=2&#x3E;- and 6=2, so that 1(2; o)=oo, 1(1; o)oo and a is
k 2

not M-regular by Theorem 2(~-i) and Theorem 4.

In this case also I (l; 03C3)  oo but 6 is not M-regular. In fact we

have supak=~, 1  a = 6  3 8 = 6 &#x3E; 1 and 03BB(03B1)= 191 &#x3E; 9 so that
k 

&#x3E; 

2 5 2 
&#x3E; 

5 
( ) 

100

I (1; ~)  oo and 6 is not M-regular by Theorem 3 and Theorem 4.

In this case 1(1; 6) = oo but a is M-regular. In fact we have

so that sup E (ak, pk)  o0 a-a.s. and a is M-regular by Proposition 1 (a)
k

and Theorem 4.
On the other hand 8 =1, hence I ( 1; a) = oo .
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