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ABSTRACT. - We consider a stationary ergodic sequence ~.n (~),
n E N, of random probability measures on a compact group G and study
the asymptotic behaviour of their convolutions

in the weak topology as n -~ oo .
Let ~m (~) be the set of all limit points of as n -~ oo,

w _

Am (~) = U supp (~) and ~,m (~) = lim (~) * (~). Theren - 1 ~ n -~ o0

exists a compact A~ such that a. s.
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214 D. S. MINDLIN AND B. A. RUBSHTEIN

We call this set ~ ~ the convolutional attractor since also
~~ _ {v~m~ (~), m E N) - a. s. where the sequence = (~) * ~,m (~) is
asymptotically equivalent to (~) as h ~ oo a. s. Describing properties
of ~ ~ we in particular find conditions under which ~,m (~), Am (m) and
Am (03C9) do not depend essentially on 03C9 and A~ forms a group of measures
as in the well known case of convolution powers Jl (n) of a single measure p.
Key words : Random measures, convergence of convolutions, compact groups.

RESUME. - Nous considerons une suite stationnaire et ergodique
n = n (03C9), n E N, de mesures de probabilités sur un groupe compact G et
etudions le comportement asymptotique des produits de convolution

(~) * - - - * dans la topologie faible lorsque n - oo .
Soit d m (o) l’ensemble de tous les points d’adherence de (eo) lorsque

Il existe un ensemble compact ~~ tel que, p. p.,

Nous appelons l’attracteur convolutionnel de la suite puisque

ou la suite = (m) * 03BBm (m) est p. p. asymptotiquement équivalente a
la suite lorsque n - oo p. p.
En decrivant les proprietes de ~ ~ nous trouvons en particulier des

conditions pour que Àm (m), Am (m) et d m (m) ne dependent pas essentielle-
ment de m, et pour que A~ forme un groupe de mesures comme dans le
cas bien connu des puissances de convolution d’une mesure unique Jl
est p. p.

1. INTRODUCTION

Let G be a compact Hausdorff group and J!(1 (G) be the convolution
semigroup of Borel probability measures on G with the weak topology.
We consider a stationary random process ~,n = ~,n (m), n E N, defined on

the probability space (Q, ~ , P) with values in (G) and study the limit
behaviour of the random measures.

for the typical realizations of the process Iln (co) as n - oo .

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



215CONVOLUTIONAL ATTRACTORS

The convergence of convolutions of probability measures on a compact
group has been examined by many authors (e. g. see [1], [4], [6], [7], [8],
[10], [ 11 ], [14]-[16] and references cited there).

Precisely, the asymptotic behaviour of the sequence of the convolution
powers = p * ... * p (n-times), n E N for a fixed ~. E 1 (G) is described
as follows (see [4], ch. II).

THEOREM 1. 0. - a) The set d = L m Pn ~ ~ y(n) of all limit points of the
1 has the form

where X = ~,K is the normalized Haar measure of the subgroup

K is a normal subgroup of

and furthermore

b) The sequence is asymptotically equivalent to the sequence
_ ~ * ... * j of the convolution powers of the measure j = X * ~, i. e.

and

Here and elsewhere [A] denotes the group generated by the set A and
A - is its closure. S (Jl) denotes the support of the measure Jl and we use
the notation px and x Jl instead ~. * ~x and where bx is a Dirac
measure in a point. The measure jl is the image of Jl by the involution
x -~ x-1, x E G. The definition of lim and lim see in [4], ch. 2, or in [9],
§ 29, and means the set of all limit (accumulation) points of
the corresponding sequence as n - oo .

It’s natural to call the set d in the above theorem 1 . 0 the convolutional
attractor (CA) of the measure p.
The main purpose of the paper is to construct the analogous (as it is

possible) convolutional attractor for a stationary sequence of random
measures (SSRM) ~.n = ~,n (c~), n E N. To this end we shall investigate the
limit points of the corresponding convolutions (c~) as n ~ oo .
For a given 1 on G we introduce the following notation.

Vol. 30, n° 2-1994.



216 D. S. MINDLIN AND B. A. RUBSHTEIN

Denote by d(n) the essential image of the random element e. the

support of its distribution P (v~m~) -1 on ~~ 1 (G). Put also

We shall assume everywhere in the course of the paper that the following
conditions hold.

A) The 1 is ergodic, i. e. every stationary event has
the probability 0 or 1.

B) The compact set ~~°°~ (and therefore d(n) for all n) has a countable
base of its topology.
The condition B) is equivalent to the metrizability of the compact set

~~°°~ (see [9], § 41. II). But we do not assume any conditions of sepability
or metrizability on G.
The main results of the paper are the theorems 1.1-1. 4 stated below

THEOREM 1. 1. - For all m and the following statements hold.
a) The set (co) of all limit points of the sequence
((o) as n ~ oo has the form

where

and

are the Haar measures of the subgroups

and

Herewith the subgroups Km (~) are conjugated in Hand

b) The equality

defines a SSRM such that the sequence of corresponding convolutions

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



217CONVOLUTIONAL ATTRACTORS

is asymptotically equivalent to (~) as n -~ o0

for all m and 
c) There exists a compact subset ~~ of ~~°°~ such that

for 
We shall call the above set ~~ the convolutional attractor of the SSRM

~~n~n=1 i
The asymptotic behavior of the convolutions as n ~ oo is completely

defined by the convolutions of the limiting 1. The

correspondence 
,. -

is retractive i. e. the limiting SSRM of ( ~,n ~~° 1 is ( ( ~,n ~ itself
It should be mentioned that the sets Km (~), Am (~) and ~m (c~) (unlike

K, H, A~, A~ and B~) can essentially depend on 03C9 and m. The main
new phenomenon arising here is that CA need not to be a group of
measures. In particular it can contain the Haar measures of a family of
distinct conjugated subgroups Krn (~) of the group K.

Such phenomenon appears even in the case forms a Markov
chain with a finite state space (sec. 6). But it disappears for independent
random measures ~,n.

THEOREM 1.2. - The following conditions are related by
8) ~ 7) ~ 6) ~ 5) and 1)-5) are equivalent among themeselves.

1 ) the mapping ~ -~ ~,m (~) is constant a. e. ;
2) where ~,K is the Haar measure of K;
3) there exists lim (~) * (~) a. e. ;

4) lim (w) * (~) _ ~,K a. e. ;

5) ~,K E 
6) ~ ~ is a subgroup of the semigroup 1 (G).
7) ~~=~.KH~
8) * ... * ~c 1 ~ (n- times), n E N.

COROLLARY 1 . 3. - 1 is a sequence of independent identically
distributed (i. i. d.) random measures, then the condition 8) and hence the
other conditions of the Theorem 1. 2 hold.

Vol. 30, n° 2-1994.



218 D. S. MINDLIN AND B. A. RUBSHTEIN

In fact the i. i. d. sequence { n} satisfies the following condition:

where Pn be the distributions of the random vectors (Jll’ ..., Thus 8)
holds too.
Thus the CA of a sequence of i. i. d. random measures always has a

quite similar form and properties as in the case of convolution powers
{ ~n ~~° i (theorem 1. 0).
As a consequence we obtain the convergence conditions for 

THEOREM 1. 4. - The following properties are equivalent.
1) One of the limits lim v~~ exists a. e.;

n - m

2) lim 

3) Km (o) = H a. e. for some (or for all) m E N;
4) Am (co) = lim S (co)) with positive probability;

5) lim S (co)) ~ 0 with positive probability.

6) 
This theorem generalizes the familar Ito-Kawada theorem (see [6], [7],

[8], [15] and [4], ch. 2). It is an easy consequence of the above results. The
condition 2) in the above theorem means the compositional convergence
of the sequence { n (03C9)}~n= 1 in the sence of Maksimov [ 11 ] .
Our method of the study of the CA is based on the notion of a normal

sequence, which is introduced in sec. 2. These are sequence with a block
recurrence property in the topological sense. Every Borel normal sequence
(see [16]) is a normal in our sence but not conversely.

It is easily verified (see ass. 5 .1 ) that almost all realizations of a SSRM
satisfying A) and B) are normal sequences. Therefore we can consider

the CA of an arbitrary normal sequence of measures and obtain the
above results as a consequence of the corresponding theorems for normal
sequences in the sections 2-4. Some of the results about normal sequences
(th. 3 .1, th. 4 .1 and others) are of independent interest.
A part of the results of this paper was announced in [12], [13].
We would like to thank Prof. M. Lin for useful and stimulating discus-

sions.

2. NORMAL SEQUENCES

Recall that a sequence ( an ))= 1 is said to be Borel normal (see e. q. [16])
if for every l &#x3E;__ 1 there exist infinitely many numbers n such that

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



219CONVOLUTIONAL ATTRACTORS

DEFINITION 2.1. - A sequence {an}~n= 1 of elements of a topological
space E will be called normal if for every l &#x3E;__ 1 and for any collection ofneighborhoods V1, ..., Vl of the points al, ... al there exist infinitely many
numbers n such that

Every Borel normal sequence is obviously normal and these two notions
coincide when E has the discrete topology.
The strictly increasing sequence {nk }~= 1 which consists all n satisfying

(2.1) will be called the recurrence sequence of the block ... , al) into
the neighborhood V 1 x ... x VI.
The next theorem plays an important part in the sequel..
Let now E be a compact semigroup and for an arbitrary sequence

{ an }n"= 1 in E consider its partial products

THEOREM 2 . 2. - normal sequence in a compact
semigroup E and G denotes the set of all limit points of the corresponding

Then 2 contains at least one idempotent.

Proof. - Let 0/1 be the totality of all where U" is
an neighborhood of an for each n. We shall fix one such sequence

and for every consider the recurrence sequence
nk=nk(u, I), of the block (ai ... al) into U 1 x... 

Let now 2 (u, I) be the set of all limit points of the sequence {bnk }~= i
where nk = nk (u, I) .
The set 2 (u, I) is closed as the totality of all limits of the convergent

subnets of the sequence {bnk}~k=1 and on account of the
normality 

Since

we have a decreasing sequence of non-empty closed subsets
00

{cP (u, l ) ~ ~° 1, which has the non-empty intersection cP (u) = Q Ef (u, I).
1= 1

We may define the intersection of a finite subset { ui, i =1, ..., s} of U
by

Vol. 30, n° 2-1994.



220 D. S. MINDLIN AND B. A. RUBSHTEIN

where ui = {Un,i}~n= 1 e 4Y . Since {an} is normal

We obtain the system {2 (u), of nonempty closed subsets of 2.
It is a centered system by (2 . 2), i. e. it has the finite intersection property.
Thus its intersection 20= n 2 (u) is a non-empty closed susbset of 2.

We shall show now that

If this inclusion is false there exist l E N and b~f0 such that 
One can choose u = ~ Un ~n 1 E ~, which satisfies

and Un=E for n&#x3E; I. Since b E F0~F (u, I), it is a limit point of the

sequence {bnk}~k=1, where I) is the recurrence sequence of the

block (a 1 ... a~) into U 1 x ... x U~. Taken a convergent net bnk ~a&#x3E; 
- b we

deduce from

that the set ... ~ Ui b) - contains limit points of the net bnk ~a~ + ~ and
then limit points of bn. This contradicts (2. 4).
Thus (2 . 3) holds and hence F Efo c F.
By construction we have and then ~ contains the compact

/ ~ V
semigroup ( U ~f~ ) generated by Any compact semigroup contains/
an idempotent ([5], 9.18). Employing this assertion to the semigroup
/ co -

( U Fn0) we complete the proof..
1 /
3. CENTERED CONVERGENCE AND ITS CONSEQUENCES

In the course of the sections 3 and 4 we shall consider a fixed normal
in ~1 (G) and its convolutions

Introduce the compact groups

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



221CONVOLUTIONAL ATTRACTORS

of the group H = [S n E and denote by ~,m the probability Haar
measure of Km.
The next theorem on centered convergence will be the main tool to

describe limit points of as n -~ o0

THEOREM 3 . I . - For a normal sequence { n}~n=1 in there exist
the following limits

where Àm is the Haar measure of the subgroup Km is an
arbitrary sequence of elements E S 
To prove this theorem we make use the left regular representation of G

and u1 (G) in the Hilbert space H = L2 (G, 03BBG), which are defined by

for f~H, gEG The mapping L is in fact a unitary
representation of G and a *-representation of the convolutional semigroup
Jt 1 (G); L (~) = L (~,)* and ( L (~,) ( ~ ~ 1 (see [5], § 27). Herewith, L : i - L (~)
is a topological isomorphism of u1 (G) onto L (u1 (G)) with the strong
operator (so)-topology or with the weak operator (wo)-topology on

(G)) on account of the compactness of Jt 1 (G).
Proof of theorem 3 . .1. - It is enough to consider the case m =1.
Denote neN. We will use the order on L(Jt1 (G)) which

is induced by the cone of all non-negative defined operators on ~, i. e.

Then where and

implies

i. e. the sequence {T: Tn is a decreasing one and it is bounded below.
Hence there exists the limit

(see [3], prob. 94).
On the other hand, there is an idempotent in the set ~ 1 of all limit

points of as n - oo by the Theorem 2. 2. Then X is a limit point of
the sequence Since L : y - L (Jl) is a homeomorphism, there exists
the limit lim vin) = X, where L (~,) = E.

n -. o0

The operator L (~,) is an orthogonal projector on :Y’e and it gives the
orthogonal decomposition where Xi=ImE and Y 1 = Ker E.

Vol. 30, n° 2-1994.



222 D. S. MINDLIN AND B. A. RUBSHTEIN

We have by (3 . 2)

and

Thus

We want to show now that 

We have ~, * by v~l ~ * --&#x3E; ~, and S (v ln~ * v~l ~) c K 1. Conversely,
if X * f = f, (i. e. f E X 1 ) then v~l ~ * * f = f for all n by (3 . 3) and
hence ~X * f = f a. e. for all neN. Therefore ~x * f = f a. e.
for all and Thus and hence Xi = X. (It was
used, that ~, * f = f ~ bx * f = f a. e. for all x E S (~), (See [4], 1. 2 . 7).) Let

with For f~X1 we have x(n)103BD(n)1*f=f=03BB
a. e. by (3 . 3) since For f~Y1 we have

by (3.4). Taking into account the decomposition 1 and

Xi = L (~,1 ) ~ we obtain

for all f E ~ and hence x 1"~ * - 

COROLLARY 3. 2. - For all m E N the following limits exist

Remark 3 . 3. - The choice of a centering sequence on the left side
of is essentially connected with the order of the factors ...,

p~ in The following simple example shows that the sequence 
need not converge as n - oo . In this case does not converge under

any choice of 

Annales de I’Institut Henri Poincaré - Probabilités et Statistiques



223CONVOLUTIONAL ATTRACTORS

Example 3 . 4. - Let L 1 and L2 be a pair of conjugate subgroups of G
and L2 = x L 1 x -1, L1 ~ L2 . Consider a periodic sequence { n}, supposing

For n &#x3E;_ 3 ~ we have v~l ~ * v ln~ _ ~,L , but v ln~ * v ln~ _ ~,L2 for and
* = 03BBL1 otherwise. Then * has exactly two limit pomts 03BBL

and 03BBL2.
Remark 3.5 If the Second Axiom of Countability holds on G the

centering sequence always exists for every (even non-normal) sequence in
(G) (see [8]). In the case of a normal sequence we need not SAC-

condition and the limit of the centered sequence of measures always has
the form x À, where x E H and X is an idempotent.
We are able to describe now the limits points of as n - 00

Introduce the following notation.

and Cm be the set of all limit points of all possible sequences { as

n -~ oo where E S At last let, ~m be the set of all limit points of
as n - oo and fixed m e N. L e. ~m = L m Pn ~ ~ 

THEOREM 3 . 6. - For a ~~1 (G) and mEN
the following assertions hold:

b) 

Proof. - We may suppose m =1.
1) C1 =A1. It is obvious that C1 cA1 =A1 and hence C1 cA1. For

every x E A1 and an arbitrary neighborhood U and of x one can choose a
such that E S (v~l ~), n E N and E U for infinitely

many of n. By the compactness the sequence {x(n)1}~n=1 has a limit point
in U’. Hence C 1 n U - ~ QS for every neighborhood U of x and x E C1.
Thus A1 cC1.

2) À1 follows from theorem 3 .1, since

for any sequence {x(n)1}~n= 1 with E S 

3) By theorem 2. 2 ~ 1 contains an idempotent ~,, which has
the form by 2). Then ~, _ ~,1.

4) Since 03BB1~A1 there exists a of the sequence
which converges to À1. For any no there exists ao such that n (a) &#x3E; no

for all ex&#x3E;exo. Hence

Vol. 30, n° 2-1994.



224 D. S. MINDLIN AND B. A. RUBSHTEIN

On the other hand for x~A1 one can choose a number no and a
neighborhood U of x such that n U = QS for all n &#x3E; no and hence
U n K 1= QS, i. e. xK1. Thus K1 cA1.

5) The equality implies

Hence mEN. Using 1 ) to Am+1 and A1, we have
also Am+1 m E N.

Applying 4) to the set 1 we obtain 1 ~ 1 ~ e, where e is the
unit element of G. Hence mEN and B 1 c A 1. The inverse
inclusion is obvious..

THEOREM 3 . 7. - For a normal 1 in u1 (G) the following
equalities hold for all m, n E N and E S (v~m~)

,. _ _ ._ , .... ,

Proof. - We again may suppose m =1.
Choosen any xlk) E S and 1 E S i) we deduce by theorem 3 .1

as n~~

Then taking into account the equality

we obtain

that is

Taking integration over E S by the measures we have also

To prove the last equality

we need the following lemma.

LEMMA 3. 8. - Let ~ be the decomposition of the Hilbert
space ~ defined by the orthoprojector L (~,m), mEN. Then

Proof. - It is obvious Since G is compact the
representation L is decomposed into the direct sum of finite dimensional
sub-representations L= Q LS acting in the subspaces ~S where

seE

Annales de l’lnstitut Henri Poincare - Probabilités et Statistiques



225CONVOLUTIONAL ATTRACTORS

dim ~S  oo, and (B ~S = ~. Herewith every operator 
seE

admits the decomposition (see [5], § 27).

Therefore it is enough to check the equalities

By the theorem 3. 6 03BB1~A1 and hence is a limit point of the
sequence LS (vlm») as Since are contractions and
dim ~S  oo we obtain for all s

that implies the required equality..
From the above lemma it is seen that

and using v lk~ * ~,1= xlk) À1 we conclude

Thus the theorem 3 . 7 is proved..

COROLLARY 3 . 9. - For all E S and E S the following
relations hold

4. CONVOLUTIONAL ATTRACTORS OF NORMAL SEQUENCES
OF MEASURES

The aim of this section is to describe the convolutional attractors for

arbitrary normal sequences in u1 (G).
In common with the sec. 3 be a fixed normal sequence in

u1 (G) and m, n E N be its convolutions defined by (3.1). We preserve
all notation of the sec. 3 and introduce also the sets:

Vol. 30, n° 2-1994.
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THEOREM 4 . 1. - For any normal sequence { n}~n= 1

Proof. - By th. 3. 6, 3. 7 and cor. 3. 9

For m &#x3E; 1 and any

Further, for any fixed n the is normal i

is a such one. Therefore ~~n~ _ ~~n~, n E N
oo

The set ~~ °°~ = (~ ( U B~n~) - contains of all limit points of all possible
k= 1 n&#x3E;_k

where Hence for all m and

The inclusion ~~°°~ c is obvious..

We shall call the set the convolutional attractor (CA) of the normal
The equality

defines the "limiting 1 such that the

sequences and

are asymptotically equivalent as n - oo, that is

It is easy to see that the CA

of the 1 coincides with and moreover

Let us describe now the set ~~ of all idempotents of 

Annales de l’lnstitut Henri Poincare - Probabilités et Statistiques



227CONVOLUTIONAL ATTRACTORS

COROLLARY 4.2.- For all mEN

This is a direct consequence of the equality = Am ~,m Am 1, mEN,
(see th . 4. 1 c).

COROLLARY 4.3. - Let K=[Km, mEN]- be the smallest compact
subgroup containing the subgroups Km, mEN. Then

and K is a subgroup of the group H = [ U S (v)] - .
~ ~ &#x3E;

We are going to elucidate now when the CA forms a group of measures
and when the sequence * converges (cf. ex. 3 . 4).

THEOREM 4.4. - The following conditions are related by
8) ~ 7) ~ 6) ~ 5) and 1) - 5) are equivalent among themselves:

1 ) ~,m = ~,1, mEN,
2) ~,m = ~,K, mEN,
3) there exists lim * 

n -&#x3E; o0

4) lim * = ~K,
n -&#x3E; o0

5) ~,K E 
6) is a subgroup of the semigroup ~~ 1 (G),
7) ~ ~ _ ~K H,
8) ~~n~ _ ~~ 1 ~ * ... * ~c 1 (n- times), n E N.
Proof. - 1), 2), 3), 4) are equivalent by cor. 4 . 2 and 4 . 3 .

2) ~ 5). a,K = 03BB1 ~ A1 c by th. 3. 6 b),
5) ~ 2). If 03BBK~B(~)={03BD(n)m, m, nEN}- then 03BBK ~ {03BD(n)m*03BBK, m, 
and 03BBK~{03BBm, m~N}-=~~.

and ~,K = ~,m, mEN.
7) ~ 5) is obvious
6) ~ 7) If is a group, the set $ 00 = { ~,m, of all its idempotents
coincides to ~ ~,K ~ . Then K is a normal subgroup of H, the group .91 00
has the form

The group .91 00 contains also the sets n E N and hence

7) ==&#x3E; 6) since K is a normal subgroup of H in this case.

Vol. 30, n° 2-1994.



228 D. S. MINDLIN AND B. A. RUBSHTEIN

8) ~ 6). If 8) holds the set = U is a semigroup and
n=1

~~ °° ~ _ (~ ( ~J ~~n~) - is a subsemigroup of Hence ~,m * for
m=1 n&#x3E;_m

all m, nEN, and since ~,K is contained in the compact
semigroup generated by ~~ = { 03BBn, n E N } - . Using 5) ~ 2) we see that
$ 

00 
= { ÀK } .
Then * 03BBK = 03BBK * ~ A~ for all m, n E N

and

is the smallest left and in the same time right ideal of the compact semi-
groups and ~~ °° ~. Thus .91 00 is a group ([5], 9.22). N
Remark 4 . 5 a) The conditions 1)-5) do not imply 6) in a general case.

For example, if k E N, where ~,2 = ~, = x ~, x -1 and
~, x2 ~ ~,, one has the normal sequence ~ ~," ~ with ~ ~ _ ~ ~, } and

~~ _ ~ ~,, ~, x-1 ~ which is not a group and even semigroup.
b) Remember that the smallest two-sided ideal of a compact semigroup

is called its Sushkevich kernel. ([5], 9.21). We have proved now that
provided condition 8) of th. 4 . 4 holds the CAd 00 of a normal sequence

is the Sushkevich kernel of the semigroups and ~~ °° ~ and it is
a group.

It should be also noted that both inclusions may be
strict (see sec. 6).
As a consequence of the above results we can prove now the convergence

theorem.
Denote Dm= lim S (v~m~), m E N.

n -~ 00

THEOREM 4. 6. - For any 1 the following condi-
tions are equivalent

Each of the conditions 1)-5) holds for all mEN if it does for some one.
Proof. - 2) =~ 1) and 4) =&#x3E; 5) are obvious

1 ) ~ 3) If ~m = Am ~,m consists of the only point then Am C Km and hence
K.=H,

Annales de l’lnstitut Henri Poincare - Probabilités et Statistiques
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3) ~ 2) then 

2) ~ 4) H = S ( lim 
n ~ ~

2) ~ 6) ~,H = lim 
n -~ ao

6) ~ 2) I f ~H E ~~ °° = m, n E N) - ,
then ~,H E (v~m~ * ~,m, m, 
and .91 00 = { ~,H ~ i. e. 2) holds
5) ~ 3) If x E Dm then for every open U  x there exists no such that
U n S (v~m~)) ~ QS for all n &#x3E; no. Hence for (~ U we have

and

If U runs the filter of open neighborhoods of x the open set UKm runs
the filter of neighborhoods of x Km. We have now

Hence Am C Km and He Km and H = Km.
We have proved now 1 ) ~ 2) ~ 3) ~ 1 ) and 2) ~&#x3E; 6) and

2)~4)=&#x3E;(5)=&#x3E;3). N
In the simplest case, when = Jl * ... * Jl (n-times), the theorem pro-

ved above is the well known Ito-Kavada theorem (see [1], [2], [4], [5], [7]
and [8], ch. 2). For Borel normal sequences the implications 1 ) ~ 2) ~ 3)
have been proved by Urbanik [3]. The convergence of convolutions as

n ~ oo for every m to the same limit means the compositional convergence
in the Maksimov sense [6].

5. THE PROOF OF THE MAIN THEOREMS 1.1-1.4

In this section we shall deduce the main results stated in the introduction
from the theorems of the sec. 3 and 4.

Consider a I~n = l~n E o, on G which satisfies the
conditions A) and B) and let n E N be the corresponding
sequences of their convolutions defined in the sec. 1. We shall use again
the notations of the sec. 1.

Let (G) be the support of the distribution P ~ (vm"~) -1 of
the random measures (It does not depend on m). Also
~~n~ (o) = L m Pm ~ ~ (o), ~~"~ (~) _ (o), m, n e N) -.

Assertion 5. 1. - (~) ~ m =1 is a normal sequence in ~~ 1 (G) for
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Proof. - One can transfer the onto the space (Q, P)
of its realizations by the mapping

where Q is a compact subset of the countable direct product of the copies
of s~~n~. The compact set Q has a countable base of the topology by B).
Herewith the shift transformation 8 on Q preserves the measure

P = P ° cp -1 and 8 is ergodic by A).
One can now deduce a) and b) from the Poincare recurrence theorem

and ergodicity of 8, considering the coutable system of open sets

where { Uk }~= 1 is a base of the topology on d(n) (see [1], ch. 1 § 1, § 2)..
Consider now the sets ~~ °° ~, and the subgroups K, H defined in

sec. 1 and denote

Assertion 5 . 2. - a) ~~°°~ = ~~°°~, (t~) _ ~~°°~,
b) 

for E o.
This assertion follows immediatly from the above one.
Consider now the CA

of the sequence { n ( co) }~n= 1 with a fixed eo.

Assertion 5 . 3. - The mapping ~ ~ ~ ~ is constant a. s.

Proof. - The sequence { n (03C9)}~n= 1 is normal for For any such
t~ the limit

exists and one can consider the limiting sequence = * ~,,~ 
For the corresponding n-th convolutions = (co) * Àm (co) the

equality

holds on account of (4. 2), where
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and

On the other hand applying the above assertion for the SSRM

~ !~n ~~° i , one can see that the mapping m - is constant a. s..
In order to prove the rest statements of the theorems 1.1-1. 4 and to

complete their proofs one can apply now the results of the sec. 3 and 4
for a fixed normal sequence { ~,n ~~° 1.

6. EXAMPLES

We shall give here three simple examples of CA to illustrate the objects
under consideration.

1) Let n E N be i. i. d. random elements on Q with the values
in a compact group G which has a countable base of its topology. Define
the SSRM

and denote by S the essential image of xn.
In this case we obtain for a.a.co

One can see that Am and ~m (co) essentially depend on m and co and
the CA A~ need not coincide with ÀK H.

2) Let H be a subgroup of a finite group G and Ko be a non-normal
subgroup of H.
Denote

where Ào denotes the Haar measure of Ko.
Consider the SSRM ~,n = ~,n (~), n EN, which is a Markov chain with

the finite state space r, and transition probability matrix

and stationary vector of probabilities

Vol. 30, n° 2-1994.



232 D. S. MINDLIN AND B. A. RUBSHTEIN

We demand that the transition matrix Q satisfies the condition

(ones 
This Markov chain is mixing and for the corresponding convolutions

we have a. s. for n, mEN

and

Since Ko is not a normal subgroup of H the contains a
nontrivial set of 
As in the example 1) the SSRM coincides with its limiting sequence

3) We can change the previous example extending the state space of
the considering Markov chain as follows

and taking the matrix Q’ = { r’ which satisfies the same require-
ment (6.1) as Q.
Then the CA ~~ of the obtained coincides with r

which is not equal to r’ and we have the strict inclusion in

such case.
One can construct a lot of different examples of CA replacing the "~"

in the condition (6 .1 ) on ".. ~" or considering generalization on the
continuous state space case.
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