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ABSTRACT. — We consider a stationary ergodic sequence p,=p, (),
neN, of random probability measures on a compact group G and study
the asymptotic behaviour of their convolutions

Vg:)(m)=um+n—1 ((D) * ... *l»lm(m)
in the weak topology as n — 0.
Let &/, (w) be the set of all limit points of v (w) as n— oo,
o)

A, (®) =< U supp v (m)>_ and A, (®)= lim v (@) * v (w). There

n=1 n - ©

exists a compact &/ , such that a.s.

A = A (@) b (@) Ay (@) = Tim &fm(m)=< U Mm(m)>_

m = o m=1

A.M.S. Classification: 60 J 15, 60 B 15.

() Research supported by the Israel Ministries of Science and of Absorption.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques - 0246-0203
Vol. 30/94/02/$ 4,00/© Gauthier-Villars



214 D. S. MINDLIN AND B. A. RUBSHTEIN

We call this set o/, the convolutional attractor of {p, }, since also
A =V (@), meN)~a.s. where the sequence v=v® (@)% L, (o) is
asymptotically equivalent to v{(w) as n — oo a.s. Describing properties
of o/, we in particular find conditions under which A, (®), A,, (®) and
</ ,,(®) do not depend essentially on ® and </, forms a group of measures
as in the well known case of convolution powers p® of a single measure .

Key words : Random measures, convergence of convolutions, compact groups.

REsUME. — Nous considérons une suite stationnaire et ergodique
M, =W, (®), neN, de mesures de probabilités sur un groupe compact G et
étudions le comportement asymptotique des produits de convolution
VI (@) =y p—q (@) * . .. * 1, (0) dans la topologie faible lorsque n — oo.

Soit o/, () I'ensemble de tous les points d’adhérence de v (o) lorsque

n— o, A, (0))=< U supp v (co)>_ et A, (@)= lim v (@) * v (o).

n=1 n - o

I1 existe un ensemble compact o7 tel que, p.p.,

Ay = Ay (©) A (@) Ay (@)~ = Tim wm(m)=<(3 szf,,,«»))_

m — o
Nous appelons T'attracteur convolutionnel de la suite { p,, }, puisque
A = (VW (@), n, me N)™ p.p.
ou la suite v%=v" () * A, (®) est p.p. asymptotiquement équivalente a
la suite v (o) lorsque n — o p. p.

En décrivant les propriétés de o/, nous trouvons en particulier des
conditions pour que A, (0), A, (®) et </, (») ne dépendent pas essentielle-
ment de o, et pour que &/, forme un groupe de mesures comme dans le
cas bien connu des puissances de convolution p™ d’une mesure unique p
est p.p.

1. INTRODUCTION

Let G be a compact Hausdorff group and .#*'(G) be the convolution
semigroup of Borel probability measures on G with the weak topology.
We consider a stationary random process p,=p, (®), neN, defined on
the probability space (Q, &, P) with values in .#* (G) and study the limit
behaviour of the random measures.
Ve (@) =My sy (@)% ... ¥, (@),  mneN

for the typical realizations of the process p, (®) as n — oo.

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



CONVOLUTIONAL ATTRACTORS 215

The convergence of convolutions of probability measures on a compact
group has been examined by many authors (e. g. see [1], [4], [6], [7], [8],
[10], [11], [14]-[16] and references cited there).

Precisely, the asymptotic behaviour of the sequence of the convolution
powers vV®W=p x ... *p (n-times), ne N for a fixed pe.#, (G) is described
as follows (see [4], ch. II).

THEOREM 1.0. — a) The set o/ =LmP,_ ,v™ of all limit points of the

sequence { V" 2 has the form

o= AH={Lx, xeH}
where A=\ is the normalized Haar measure of the subgroup

K= l: U S(V™ x v‘”’)]

n=1
K is a normal subgroup of
H=130)"=| U s | = fim s
n=1 n = o

and furthermore

A= lim V™ %™ = lim v® % y®

n — o© n — ©

b) The sequence V™ is asymptotically equivalent to the sequence
q ymp y eq q

VW =% ... %[ of the convolution powers of the measure =M\ * , i.e.
lim (v — ) =0
n — ©
and
o =LmP,_  v"=("" neN)~

Here and elsewhere [A] denotes the group generated by the set A and
A~ is its closure. S(p) denotes the support of the measure p and we use
the notation px and xp instead p*3, and &, % p where 8, is a Dirac
measure in a point. The measure p is the image of p by the involution
x — x~!, xe G. The definition of lim and lim see in [4], ch. 2, or in [9],
§ 29, and LmP, _, , means the set of all limit (accumulation) points of
the corresponding sequence as n — 0.

It’s natural to call the set . in the above theorem 1.0 the convolutional
attractor (CA) of the measure p.

The main purpose of the paper is to construct the analogous (as it is
possible) convolutional attractor for a stationary sequence of random
measures (SSRM) p,=p, (), neN. To this end we shall investigate the
limit points of the corresponding convolutions v (w) as n — oo.

For a given SSRM {p, };2, on G we introduce the following notation.

Vol. 30, n® 2-1994.



216 D. S. MINDLIN AND B. A. RUBSHTEIN

Denote by /™ the essential image of the random element v, i.e. the
support of its distribution P (v?")~! on .#, (G). Put also

of (©) = m &{(”), gg(oo)=<6 .sz("))_,

n - o n=1

H=[S(), ve#™]~, K=[S(V*V), ve B~
We shall assume everywhere in the course of the paper that the following
conditions hold.

A) The SSRM {u,, (@)}, is ergodic, i.e. every stationary event has
the probability 0 or 1.

B) The compact set #‘® (and therefore ./ for all n) has a countable
base of its topology.

The condition B) is equivalent to the metrizability of the compact set
B (see [9], § 41. II). But we do not assume any conditions of sepability
or metrizability on G.

The main results of the paper are the theorems 1.1-1.4 stated below

THEOREM 1.1. — For all m and a.a.® the following statements hold.
a) The set o/, (0)=LmP,_ v (o) of all limit points of the sequence
v (@) as n — oo has the form

A (©) = Ay (©) 1, ()
where

An(@)= Tim SO (m»:( U s (m))>"
and

A (@)= lim V® (o) * v ()

n — oo

are the Haar measures of the subgroups

K, (co)=[ U S (@) * v (m»]_

n=1
and
K=[K,,(®), meN]~
Herewith the subgroups K, (o) are conjugated in H and
LmP,_ v® (o) * v® (0)=(A,, (), me N)~
b) The equality
o (0) =, (@) * A, ()
defines a SSRM such that the sequence of corresponding convolutions

\.}g:)(o‘))=}lm+n—l((‘o)* oo *l'.lm(o‘))

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



CONVOLUTIONAL ATTRACTORS 217

is asymptotically equivalent to V") (®) as n — o
lim (v§ (@)= Vi (©))=0

for all m and a.a.o.
¢) There exists a compact subset o ,, of o' =B such that

A = Ay (@) dy (@) A, (@) 7' = lim o, (o)

m — ©

=< C)) %m(w)>_ = (Vi (@), n,meN)”

m=1
for a.a.o.
We shall call the above set o, the convolutional attractor of the SSRM
{ un }::0= 1

The asymptotic behavior of the convolutions v as n — oo is completely
defined by the convolutions v (w) of the limiting SSRM {p, };> ;. The
correspondence

{”n};o:l_’ {l.ln};o=1

is retractive i.e. the limiting SSRM of {p, };%, is { { , } itself

It should be mentioned that the sets K, (0), A, (0) and </, (®) (unlike
K, H, &, o* and #*) can essentially depend on ® and m. The main
new phenomenon arising here is that CA need not to be a group of
measures. In particular it can contain the Haar measures of a family of
distinct conjugated subgroups K,, (®) of the group K.

Such phenomenon appears even in the case when {p, } forms a Markov
chain with a finite state space (sec. 6). But it disappears for independent
random measures ,.

Tueorem 1.2. — The following conditions are related by
8) = 7) <> 6) = 5) and 1)-5) are equivalent among themeselves.

1) the mapping ® — A, (®) is constant a.e.;

2) A, (@)=MAga.e., where A is the Haar measure of K,

3) there exists lim v (®) * V" (0)a.e.;

n — o

4) lim v (0) * v (0)=Ag a. e.;

5) AgeB™

6) o is a subgroup of the semigroup M | (G).
7 o=\ H;

8) AM=of/Wx . x.ofV(n-times), neN.

CorOLLARY 1.3. — If {p,}2, is a sequence of independent identically
distributed (i.1.d.) random measures, then the condition 8) and hence the
other conditions of the Theorem 1.2 hold.

Vol. 30, n° 2-1994.



218 D. S. MINDLIN AND B. A. RUBSHTEIN

In fact the i.i.d. sequence {, } satisfies the following condition:
SP,)=SP,)x...xS(P,) (n-times), neN,
where P, be the distributions of the random vectors (y,, .. .,p,). Thus 8)
holds too.

Thus the CA of a sequence of i.i.d. random measures always has a
quite similar form and properties as in the case of convolution powers
{p"} | (theorem 1.0).

As a consequence we obtain the convergence conditions for v ().

THEOREM 1.4. — The following properties are equivalent.
1) One of the limits lim V" (w) exists a.e.;

2) lim v (0)=MAy,a.e.YmeN;

3) K, (0)=H a.e. for some (or for all) meN;

4) A, (0)= lim S(v% (w)) with positive probability;

n — o

5) lim S (v (0))# & with positive probability.

6) Aye B ™.

This theorem generalizes the familar Ito-Kawada theorem (see [6], [7],
[8], [15] and [4], ch. 2). It is an easy consequence of the above results. The
condition 2) in the above theorem means the compositional convergence
of the sequence { p, (®) },‘f; . in the sence of Maksimov [11].

Our method of the study of the CA is based on the notion of a normal
sequence, which is introduced in sec. 2. These are sequence with a block
recurrence property in the topological sense. Every Borel normal sequence
(see [16]) is a normal in our sence but not conversely.

It is easily verified (see ass. 5.1) that almost all realizations of a SSRM
{n, } satisfying A) and B) are normal sequences. Therefore we can consider
the CA of an arbitrary normal sequence of measures and obtain the
above results as a consequence of the corresponding theorems for normal
sequences in the sections 2-4. Some of the results about normal sequences
(th. 3.1, th. 4.1 and others) are of independent interest.

A part of the results of this paper was announced in [12], [13].

We would like to thank Prof. M. Lin for useful and stimulating discus-
sions.

2. NORMAL SEQUENCES

Recall that a sequence { a, };> , is said to be Borel normal (see e. q. [16])
if for every /=1 there exist infinitely many numbers » such that

ayei=a, i=12,...,1

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



CONVOLUTIONAL ATTRACTORS 219

DEFINITION 2.1. — A sequence {a,}X, of elements of a topological
space E will be called normal if for every 1=1 and for any collection of
neighborhoods V 1, . . ., V, of the points a,, . . . a, there exist infinitely many

numbers n such that
a,+:€V, i=1,2,...,1 2.1

Every Borel normal sequence is obviously normal and these two notions
coincide when E has the discrete topology.

The strictly increasing sequence {n, };%; which consists all n satisfying
(2.1) will be called the recurrence sequence of the block (ay, . . .,aq) into
the neighborhood V X ... xV,.

The next theorem plays an important part in the sequel.

Let now E be a compact semigroup and for an arbitrary sequence
{a,}, in E consider its partial products

b,=a,...a,, neN.

THEOREM 2.2. — Let {a,, },7’:1 be a normal sequence in a compact
semigroup E and & denotes the set of all limit points of the corresponding
sequence { b, },‘:‘; 1- Then & contains at least one idempotent.

Proof. — Let % be the totality of all sequences { U, };%,, where U, is
an neighborhood of g, for each n. We shall fix one such sequence
u={U,}2 e and for every /=1 consider the recurrence sequence
m=m(u, ), k=1, of the block (a, ... a) into U; x ... x U,

Let now £ (u, I) be the set of all limit points of the sequence {5, },
where n,=n, (u, ).

The set & (u, ) is closed as the totality of all limits of the convergent
subnets of the sequence {b, };, and £ (u, [)# on account of the
normality of {a,}.

Since

{m@, 1), k=1}s{n @, I1+1), k21}
we have a decreasing sequence of non-empty closed subsets

{& (u, )}, which has the non-empty intersection £ ()= N & (u, I).

=1
We may define the intersection of a finite subset {u;, i=1, ...,s} of %
by

N ui={ﬂ U,,,,} 4
i=1

i=1 n=1

Vol. 30, n° 2-1994.



220 D. S. MINDLIN AND B. A. RUBSHTEIN

where u;={U, ;}:2,€%. Since {a,} is normal
N Z@u)=N (ﬂ &L (u;, l)>3 N <$<ﬂ U, l>>=$<ﬂ ui>5‘ég
i=1 1=1\i=1 =1 i=1 i=1

2.2)

We obtain the system {LP (w), ueu } of nonempty closed subsets of Z.
It is a centered system by (2.2), i.e. it has the finite intersection property.

Thus its intersection ¥y= N £ (u) is a non-empty closed susbset of &Z.
ueU

We shall show now that
b, Lo, neN (2.3)

If this inclusion is false there exist /e N and be ¥, such that b b¢ 2.
One can choose u={U, }:>, €%, which satisfies

U-...- U by NZL=g (2.4)

and U,=E for n>Il Since be £, ¥ (u, ), it is a limit point of the
sequence {b,, }&. 1, where m=m,(u, I) is the recurrence sequence of the

block (g, ... a) into U; x ... xU,. Taken a convergent net b, = —b we
deduce from

by +1€U; - ... - Upb,
that the set (U;- ... - U; b)” contains limit points of the net b, ., and

then limit points of b,. This contradicts (2.4).
Thus (2.3) holds and hence ¥ L c Z.
By construction we have ¥ c.¥ and then & contains the compact

o0 -—
semigroup ( U 2"{,) generated by %,. Any compact semigroup contains

n=1

an idempotent ([5], 9.18). Employing this assertion to the semigroup

< U .‘?’5) we complete the proof. W

=1

3. CENTERED CONVERGENCE AND ITS CONSEQUENCES

In the course of the sections 3 and 4 we shall consider a fixed normal
sequence {p, }<  in ., (G) and its convolutions

VO =y k.. k. m,neN 3.1
Introduce the compact groups

=1

Km=[ U S(Vi.'.")S(VL'I’)]_, meN

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques



CONVOLUTIONAL ATTRACTORS 221

of the group H=[S (i), neN]~ and denote by A,, the probability Haar
measure of K,,.

The next theorem on centered convergence will be the main tool to
describe limit points of v as n — oo

Tueorem 3.1. — For a normal sequence {p,}= | in M, (G) there exist
the following limits
lim xX®v®=) =~ meN
n = o

where A, is the Haar measure of the subgroup K,, and {x"}= | is an
arbitrary sequence of elements x™ e S (V).

To prove this theorem we make use the left regular representation of G
and , (G) in the Hilbert space # =L, (G, Ag), which are defined by

L@s=8,xf, LWwf=nx*f

for fe#, geG and pe.#,(G). The mapping L is in fact a unitary
representation of G and a *-representation of the convolutional semigroup
M1 (G); L(n)=L (w* and | L (w)||<1 (see [5], § 27). Herewith, L: p — L ()
is a topological isomorphism of .#, (G) onto L (#, (G)) with the strong
operator (so)-topology or with the weak operator (wo)-topology on
L (4, (G)) on account of the compactness of .4, (G).

Proof of theorem 3.1. — It is enough to consider the case m=1.
Denote T,=L(v{"), neN. We will use the order on L (.#, (G)) which
is induced by the cone of all non-negative defined operators on #, i. e.

T<T <= (T'-T)f,/)=0, Ve
Then 0T} T,<I, where I=id,,, and
0=L(u)*L(n,)=I

implies

0=TyT,=Ty L(w)*L () T, <T}_, T, , <1 (3.2
i.e. the sequence { T} T,}=., is a decreasing one and it is bounded below.
Hence there exists the limit

(wo)— lim T*T,=E, 0<E=I, EeL(#,(QG))

(see [3], prob. 94).

On the other hand, there is an idempotent in the set 2, of all limit
points of v{’ as n— oo by the Theorem 2.2. Then A is a limit point of
the sequence V{” * v{". Since L: p — L (i) is a homeomorphism, there exists
the limit lim v{ x v{" =2, where L (A\)=E.

n = oo

The operator L(A) is an orthogonal projector on # and it gives the

orthogonal decomposition # =X, @Y, where X, =ImE and Y, =KerE.

Vol. 30, n° 2-1994.



222 D. S. MINDLIN AND B. A. RUBSHTEIN

We have by (3.2)
feXy < TiTSf->f = (GT.LN)->U])
IT A=l = [ TAl=]A]Yn
= (T, N=(/,/)Vn < TyT,f=fVn
= Ef=f = feX,
and
feY, = TT,f-0 = (T¥T.f./)=|T.f|*~>0
= (Ef,/)=0 = Ef=f <« f[feY,
Thus

X, ={fe X\ TAN=|fIVn}={fe# T}T,f=fVn} (3.3)
={feAd:||T,f||->0,n> w0} (3.4

We want to show now that A=A4,.

We have A x A, =X, by v{ x v{ - ) and S(V{" x v{")cK,. Conversely,
if \xf=f, feH (i.e. feX,) then V¥ x v x f=f for all n by (3.3) and
hence 8 *f=f a.e. for all xeS(V{" * V), neN. Therefore 5 *f=f a.e.
for all xeK; and A, xf=f Thus A, *x A=A and hence A,=A. (It was
used, that p* f=f<3_*f=fa.e. for all xeS(p), (See [4], 1.2.7).) Let
now { X}, with X eS (V). For feX, we have X{) vV * f=f=L, *f
a.e. by (3.3) since S(x{" vi")e K. Forer we have

|| X vm s f || = || v * £ || - 0, n—

by (3.4). Taking into account the decomposition #=X,@Y,; and
X,=L(\,) s we obtain

[|XP v xf—0 *xf|| >0, n-0
for all f € # and hence X" *v{" > 1,. W

CoROLLARY 3.2. — For all meN the following limits exist
a) lim VO xv®=)
n — o©
b) lim (VW —v®x) )=0
n— o©
¢) lim (V0 * V& —xWx, xW)=0
n — ©

for all X &S () and 5 S (7).

Remark 3.3. — The choice of a centering sequence X on the left side
of v is essentially connected with the order of the factors p, ,_q, . ..
i, in v®. The following simple example shows that the sequence v * v(")
need not converge as n — co. In this case v x™ does not converge under
any choice of x®,

Annales de I'Institut Henri Poincaré - Probabilités et Statistiques
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Example 3.4. — Let L, and L, be a pair of conjugate subgroups of G
and L,=xL,x™!, L #L,. Consider a periodic sequence { , }, supposing

u’3k=)"L19 u3k+1:8x’ ”3k+2=8x_1’ k=071’2"~

For n23 we have v x v{=2, , but v{?xV{?=%,, for n=3k+1 and
viPx v{P=2, otherwise. Then v{? * v{) has exactly two limit points A
and A ,.

Remark 3.5 If the Second Axiom of Countability holds on G the
centering sequence always exists for every (even non-normal) sequence in
M, (G) (see [8]). In the case of a normal sequence we need not SAC-
condition and the limit of the centered sequence of measures always has
the form x A, where xe H and A is an idempotent.

We are able to describe now the limits points of v as n — oo

Introduce the following notation.

Bo=(USOD) . A= m SO8)
n=1 n— ©

and C,, be the set of all limit points of all possible sequences { x% } | as
n— oo where xXeS (V). At last let, o/, be the set of all limit points of
v® as n— oo and fixed meN. i.e. o/, =LmP,_ v,

THEOREM 3.6. — For a normal sequence {p,}, in M| (G) and meN
the following assertions hold:

@) A,=B,=C. 5K,

by o =A A S

Proof. — We may suppose m=1.

1) C{ =A,. It is obvious that C,cA;=A] and hence C; <A,. For
every xe A, and an arbitrary neighborhood U and of x one can choose a
sequence {x{"}®_ ; such that x{?eS(v{"), neN and x{"e U for infinitely
many of n. By the compactness the sequence { x{" };, has a limit point
in U™. Hence C; N U™ #J for every neighborhood U of x and xeC;.
Thus A, =C7y.

2) o =C, A, follows from theorem 3.1, since

1 =LmP,_  (xPr)=LmP,_ , xM)%,

for any sequence {x{" }2, with x{?eS (V{).

3) &/;9),. By theorem 2.2 &/, contains an idempotent A, which has
the form A=xA, by 2). Then A=2X,.

4) A,;oK,. Since A, €./, there exists a subnet { v{*®} of the sequence
{v{" } which converges to A,. For any n, there exists o, such that n () >n,
for all o> a,. Hence

K;=SQ)=Slmvy)c(U SOM™)"<(U SMM)~

a>ag n>nqg

Vol. 30, n° 2-1994.



224 D. S. MINDLIN AND B. A. RUBSHTEIN

On the other hand for x¢ A; one can choose a number 7, and a
neighborhood U of x such that S(v{?) "\ U= for all n>n, and hence
UNK,;=¢g,ie x¢K,. Thus K, cA,.

5) A;>B;. The equality v, , * v{" =v{"*" implies

S(Vik1)-S(VM)=S (v{"*"), m,neN.

Hence C,.,S(v{")=C,, meN. Using 1) to A,,, and A,, we have
also A, ., SW™)<A,, meN.

Applying 4) to the set A,,,, we obtain A,,,; >K,, ., 2e, where e is the
unit element of G. Hence S(v{")cA,, meN and B,cA,. The inverse
inclusion is obvious. MW

THEOREM 3.7. — For a normal sequence { p, }2 , in M | (G) the following
equalities hold for all m, neN and x e S (v")

Vi::)* >"m=)\'m+n * vsr':)=x$r':))“m=}"m+nxi:)

Proof. — We again may suppose m=1.
Choosen any x{?e S (v{) and x{", €S (v{"),) we deduce by theorem 3.1
asn— oo

-1 k)N — k
DTV oMy and (e x) TV 5 A
Then taking into account the equality
k) — +k

Vi v = vt
we obtain

kn—1 k) —

) M x VP =2
that is
Merr *VP=xPA,,  keN, xPeSHwP)
Taking integration over x{? e S (v{¥) by the measures v we have also
k) — \,(k
s X VP =vP %),

To prove the last equality

XP Ry =Ny X
we need the following lemma.

Lemma 3.8. — Let #=X,®Y,, be the decomposition of the Hilbert
space 3 defined by the orthoprojector L (A,,), meN. Then
LV X=Xyt 1, meN

Proof. — 1t is obvious L(W)X,<=X,,,,. Since G is compact the
representation L is decomposed into the direct sum of finite dimensional
sub-representations L= ® L° acting in the subspaces ° where

seB
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dim #*< o0, and @ #°=H#. Herewith every operator L(n), pe #,(G)

sekE

admits the decomposition (see [5], § 27).
Lw=® L'(w

Therefore it is enough to check the equalities
L (V") X =X 415 where X5 1 =H° N X1y
By the theorem 3.6 A, e/, and hence L*()A,) is a limit point of the

sequence Lf(V{") as m— oo. Since L°(V{") are contractions and
dim s#° < 00 we obtain for all s

dim Ls (v{") X§ =dim X§ =dim X§, , ; <00

that implies the required equality. W
From the above lemma it is seen that

A =VE R, % VP, keN
and using v x A, =x¥ L, we conclude
k) — +(k
M1 XP=xPA,,  keN, xPeSHWP)
Thus the theorem 3.7 is proved. W

COROLLARY 3.9. — For all xXPeS(™) and X" eS (V™) the following
relations hold

a) Kypiy=x0 Ky X7

b) A, xP=A

4. CONVOLUTIONAL ATTRACTORS OF NORMAL SEQUENCES
OF MEASURES

The aim of this section is to describe the convolutional attractors for
arbitrary normal sequences in #, (G).

In common with the sec. 3 let {p,}=, be a fixed normal sequence in
M, (G) and v®, m, ne N be its convolutions defined by (3.1). We preserve
all notation of the sec. 3 and introduce also the sets:

AP=LmP, _, V¥,  B"=VD, meN)~
= lim M("), g(m)=( G gg(n))-

n — oo

@.1)

n=1

m — ©

o = Tm o, gm=< U d,n)_

m=1
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THEOREM 4.1. — For any normal sequence { ,}*.
a) A"=2" neN
b) A =B, A B
¢) o =AM AL, meN
Proof. — By th. 3.6, 3.7 and cor. 3.9
A=A, N, =AM SV,  meN
o = m o, =A A (Tim SV =A%, AT

m = o m — o

9300=<U dm) :A17V1<U S(VY’")”) :A17”1B1_I=A1)‘1A1_1

m=1 m=1
For m>1 and any x{" " VeS (V"™ 1), X"~ De§(HWim-1)
Ap g Ay = AL X DA XM DA =A A AT L
Further, for any fixed n the sequence { Vi }=_, is normal since {p,, }2_,
is a such one. Therefore /™ =%" neN

The set o= N (U B™)~ contains of all limit points of all possible
k=1 n2k

sequences {v™}*_ |, where vWe#™. Hence o, .o/ for all m and
A (=A™

The inclusion &/® = #*) is obvious. W

We shall call the set .o/ the convolutional attractor (CA) of the normal
sequence { u, }° ;. The equality

l:j'n=un*;\‘m neN

defines the “limiting sequence” {p,}, for {p,}2, such that the
sequences v and

vW=p ik .okp, mneN
are asymptotically equivalent as n — oo, that is

lim (v —v™)=0, meN

n = o
It is easy to see that the CA

. o -
A = lim LmP, , vy
m — oo

of the sequence { , };>, coincides with .«  and moreover
A=A =", meN, neN)~ 4.2

Let us describe now the set &, of all idempotents of o7
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COROLLARY 4.2. — For all meN
Epi={aed i’ =a}={a*a aecd,}
={ax*xa aesl J=LmP, v *xy"
=\, neN)"={x),x7!, xeA,}

This is a direct consequence of the equality o/, =A,A,A, ", meN,

(see th. 4.1¢).

CoroLLARY 4.3. — Let K=[K,, meN]~ be the smallest compact
subgroup containing the subgroups K,,, me N. Then

K=[ U SE*v] =[ U SE*V)]”
ve B(©) ve B
=[S(A), Ae&,] =[xK,x"!, xeA,], meN
and K is a subgroup of the group H=[ U S(V)]".
ve B
We are going to elucidate now when the CA forms a group of measures
and when the sequence v{" * v{ converges (cf. ex. 3.4).

TueoreM 4.4, — The following conditions are related by
8) = 7)< 6)=15) and 1)—5) are equivalent among themselves:
1) A,,=A;, meN,

2) A=Ay, meN,
3) there exists lim v % v®,

n — o©

4) lim v * 3§,’,"=KK,

5) A€ B,

6) A, is a subgroup of the semigroup M | (G),
7 o =AH,

8) A M=oV x .. . x gV (n-times), neN.

Proof. — 1), 2), 3), 4) are equivalent by cor. 4.2 and 4.3.
2)=5). \g=M, €./, = B by th. 3.6b),
5)=2). If \eB={V, m,neN}", then Age{v®*r, m, neN}"
and Ay e{A,, meN} =¢&_.
Thus & ,={Ac } and Ax =2,,, meN.
7) = 5) is obvious
6)=7) If o, is a group, the set &,={A,, me N}~ of all its idempotents
coincides to {Ag }. Then K is a normal subgroup of H, the group .o/
has the form

A=A )\‘KAl_lz(AlAl_l))"KCH}"K

The group &/, contains also the sets (A; A Y)"Ax, neN and hence
Higcof .
7) = 6) since K is a normal subgroup of H in this case.
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8)=6). If 8) holds the set 53“"”=<U &i‘”’) is a semigroup and

n=1

A= N (U &™) is a subsemigroup of #*. Hence A, * A, € .o/ for

m=1 n2m
all m, neN, and A¢e =B, since A is contained in the compact
semigroup generated by &,={\,, neN}~. Using 5)=2) we see that
Eo={h}.
Then v * h¢=Ag * VW e o/ for all m, neN
and

Ak A D =h x B =of

is the smallest left and in the same time right ideal of the compact semi-
groups &/ and #®. Thus .«/  is a group ([5], 9.22). W

Remark 4.5 a) The conditions 1)-5) do not imply 6) in a general case.
For example, if p,,=Ax, p,_,=Ax"!, keN, where A2=A=xAx"! and
Ax*#X, one has the normal sequence {p,} with &,={A} and
o ={A, Ax, Ax~'} which is not a group and even semigroup.

b) Remember that the smallest two-sided ideal of a compact semigroup
is called its Sushkevich kernel. ([5], 9.21). We have proved now that
provided condition 8) of th. 4.4 holds the CA o/ , of a normal sequence
{n,} is the Sushkevich kernel of the semigroups #*) and & and it is
a group.

It should be also noted that both inclusions o/ , = .o/ = %) may be
strict (see sec. 6).

As a consequence of the above results we can prove now the convergence
theorem.

Denote D,,= lim S(v), meN.

n = o

THEOREM 4.6. — For any normal sequence {u,, o the following condi-
tions are equivalent
1) lim v exists,

n — oo

2) lim VW=, for all meN,

3) K,,=H,

4) A,=D,,

5) D, #,

6) Ay B,

Each of the conditions 1)-5) holds for all meN if it does for some one.

Proof. — 2)=>1) and 4) = 5) are obvious
1)=3) If &/, =A,, A, consists of the only point then A,,cK,, and hence
K, =H,
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3)=2) If K,,=H then o,,= A, Ap=AnAu={ A},

2)=4) H=S(lim v")cD, cA, cH,

2)=>6) Ay= lim VWe.of B,

6)=2) If \ye B =(v®, m, neN)~,

then Aye (VW %A, m, neN)" =of _ =A, A, A%,

and o ,={Ay}i.e. 2) holds

5)=3) If xeD,, then for every open Usx there exists n, such that
UNS(V™M)# for all n>n,. Hence for x”eS (v®) N U we have

SV cx®WK, cUK,, n>n,
and
A,= m S(Y) < UK,
If U runs the filter of open neighborhoods of x the open set UK,, runs
the filter of neighborhoods of xK,,. We have now

K,<cA,cxK,,

Hence A,,<K,, and HcK,, and H=K,,.

We have proved now 1)=2)=3)=1) and 2)<6) and
2)=>4)=(5)=3). 1

In the simplest case, when v =p % . .. x pu (n-times), the theorem pro-
ved above is the well known Ito-Kavada theorem (see [1], [2], [4], [5], [7]
and [8], ch. 2). For Borel normal sequences the implications 1) <>2)<>3)
have been proved by Urbanik [3]. The convergence of convolutions v as
n — oo for every m to the same limit means the compositional convergence
in the Maksimov sense [6].

5. THE PROOF OF THE MAIN THEOREMS 1.1-1.4

In this section we shall deduce the main results stated in the introduction
from the theorems of the sec. 3 and 4.

Consider a SSRM {p, }2,, B, =1, (®), ®€Q, on G which satisfies the
conditions A) and B) and let V%" =v® (@), m, ne N be the corresponding
sequences of their convolutions defined in the sec. 1. We shall use again
the notations of the sec. 1.

Let o#/™c.#,(G) be the support of the distribution Pe(v®)~! of
the random measures v (o). (It does not depend on m). Also
A" (@)=L mP,, , v (0), B (0)=(V"(0), m, neN)".

Assertion 5.1. — a) {V®(0)}2-, is a normal sequence in M (G) for
a.a.o.
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b) oAM= g™ ((D)z,%(") ((0) for a.a.o.

Proof. — One can transfer the SSRM {v{}_, onto the space (Q, P)
of its realizations by the mapping

9: Q30— {VW(0)}r_,eQ

where Q is a compact subset of the countable direct product of the copies
of o/™. The compact set Q has a countable base of the topology by B).
Herewith the shift transformation 6 on Q preserves the measure
P=P-¢~! and 0 is ergodic by A).

One can now deduce a) and b) from the Poincare recurrence theorem
and ergodicity of 6, considering the coutable system of open sets

U, x ... xUg, meN,

where { U, }; | is a base of the topology on ./ (see [1],ch. 1§ 1,§2). W
Consider now the sets /), #'® and the subgroups K, H defined in
sec. 1 and denote

o (@)= Tm o/ (), @(w’(co)=( O @ (m))ﬂ

n— o n=1
H (0)=[S (1, (), neN]~,
K (@)=[S (V" (®) * V" (0)), m, ne N]~
Assertion 5.2. — a) oA (0)=o), B (0)=R",
b) H(w)=H, K(0)=K
for a.a.neQ.
This assertion follows immediatly from the above one.
Consider now the CA

o (@)= lim LmP, , , Vi (@)

of the sequence { p, (@) };%, with a fixed o.
Assertion 5.3. — The mapping ® — &/  (®) is constant a.s.

Proof. — The sequence { p,(®)}, is normal for a.a.e. For any such
o the limit

A (@)= lim V® (0) * v ()

exists and one can consider the limiting sequence i, (@)= p,, (@) * A, (®).
For the corresponding n-th convolutions v (0)=v® (®)* A, () the
equality
o (@)=, (@)= A (@) =5 (@)
holds on account of (4.2), where
o, (w)= lim LmP v ()

n— o0 "m
m — oo
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and
B (0)= (P (®), m, neN)".

On the other hand applying the above assertion for the SSRM
{ R, } 1, one can see that the mapping ® — #® () is constant a.s. B

In order to prove the rest statements of the theorems 1.1-1.4 and to
complete their proofs one can apply now the results of the sec. 3 and 4
for a fixed normal sequence { p, (@) };% ;.

6. EXAMPLES

We shall give here three simple examples of CA to illustrate the objects
under consideration.

1) Let x,=x,(®), neN be i.i.d. random elements on Q with the values
in a compact group G which has a countable base of its topology. Define
the SSRM

p’n(m)zsxn.;.l(m). x,,(m)_lo neN, 0e)

and denote by S the essential image of x,.
In this case we obtain for a.a.0

Vg)(m)=6xn+m(m).xm(m)*l’
S=(x,(w), neN)"=LmP, , ,x,(0), H=[S]”
A,(@)=Sx,(@)7 " A, (@={8, xeS.x, (@)}
K=K, (0)={e}, €o=1{8,}
M‘")=dm=ﬂ(w)=g‘w)={5x, xeSS_l}

m,neN

One can see that A, (w) and 7, (®) essentially depend on m and ® and
the CA &/, need not coincide with A, H.

2) Let H be a subgroup of a finite group G and K, be a non-normal
subgroup of H.
Denote

I={xky !, x,yeH} < (G)

where A, denotes the Haar measure of K,,.
Consider the SSRM p,=p,(®), neN, which is a Markov chain with
the finite state space I', and transition probability matrix

Q={‘I5E}a, g er> Where g, 3=P{un+1 =B|Hn=°‘},
and stationary vector of probabilities

4,=P{p,=a}, ael
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We demand that the transition matrix Q satisfies the condition
9p>0 < Pxael 6.1)

(ones sees Bx el < a*xa=p *p).
This Markov chain is mixing and for the corresponding convolutions
v (0) we have a.s. for n, meN

AM=T, _A,(@)=H, Eo={xhox"!, xeH}
A (©) = 1 (@) ¥ (0), K, (0)=S (A, (@)
A p(@=HA,(0), K=[xKy,x ! xeH]
and
A = = B =T

Since K, is not a normal subgroup of H the CA &/ =TI contains a
nontrivial set of idempotents & ,={xA,x~*, xeH}.

As in the example 1) the SSRM { p, } coincides with its limiting sequence
{n,}and & =T.

3) We can change the previous example extending the state space of
the considering Markov chain as follows

I'=TyU{s, xeH}

and taking the matrix Q'={g; 4}, g Which satisfies the same require-
ment (6.1) as Q.

Then the CA <, of the obtained SSRM {,};%, coincides with T
which is not equal to I'" and we have the strict inclusion o/ <&/ in
such case.

One can construct a lot of different examples of CA replacing the “‘«”

in the condition (6.1) on “..=>" or considering generalization on the
continuous state space case.
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